1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
(* Copyright (c) 2008, Adam Chlipala
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - The names of contributors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*)
structure Elaborate :> ELABORATE = struct
structure P = Prim
structure L = Source
structure L' = Elab
structure E = ElabEnv
structure U = ElabUtil
open Print
open ElabPrint
fun elabKind (k, loc) =
case k of
L.KType => (L'.KType, loc)
| L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc)
| L.KName => (L'.KName, loc)
| L.KRecord k => (L'.KRecord (elabKind k), loc)
fun elabExplicitness e =
case e of
L.Explicit => L'.Explicit
| L.Implicit => L'.Implicit
fun occursKind r =
U.Kind.exists (fn L'.KUnif (_, r') => r = r'
| _ => false)
datatype kunify_error =
KOccursCheckFailed of L'.kind * L'.kind
| KIncompatible of L'.kind * L'.kind
exception KUnify' of kunify_error
fun kunifyError err =
case err of
KOccursCheckFailed (k1, k2) =>
eprefaces "Kind occurs check failed"
[("Kind 1", p_kind k1),
("Kind 2", p_kind k2)]
| KIncompatible (k1, k2) =>
eprefaces "Incompatible kinds"
[("Kind 1", p_kind k1),
("Kind 2", p_kind k2)]
fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) =
let
fun err f = raise KUnify' (f (k1All, k2All))
in
case (k1, k2) of
(L'.KType, L'.KType) => ()
| (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) =>
(unifyKinds' d1 d2;
unifyKinds' r1 r2)
| (L'.KName, L'.KName) => ()
| (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2
| (L'.KError, _) => ()
| (_, L'.KError) => ()
| (L'.KUnif (_, ref (SOME k1All)), _) => unifyKinds' k1All k2All
| (_, L'.KUnif (_, ref (SOME k2All))) => unifyKinds' k1All k2All
| (L'.KUnif (_, r1), L'.KUnif (_, r2)) =>
if r1 = r2 then
()
else
r1 := SOME k2All
| (L'.KUnif (_, r), _) =>
if occursKind r k2All then
err KOccursCheckFailed
else
r := SOME k2All
| (_, L'.KUnif (_, r)) =>
if occursKind r k1All then
err KOccursCheckFailed
else
r := SOME k1All
| _ => err KIncompatible
end
exception KUnify of L'.kind * L'.kind * kunify_error
fun unifyKinds k1 k2 =
unifyKinds' k1 k2
handle KUnify' err => raise KUnify (k1, k2, err)
datatype con_error =
UnboundCon of ErrorMsg.span * string
| WrongKind of L'.con * L'.kind * L'.kind * kunify_error
fun conError env err =
case err of
UnboundCon (loc, s) =>
ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s)
| WrongKind (c, k1, k2, kerr) =>
(ErrorMsg.errorAt (#2 c) "Wrong kind";
eprefaces' [("Constructor", p_con env c),
("Have kind", p_kind k1),
("Need kind", p_kind k2)];
kunifyError kerr)
fun checkKind env c k1 k2 =
unifyKinds k1 k2
handle KUnify (k1, k2, err) =>
conError env (WrongKind (c, k1, k2, err))
val dummy = ErrorMsg.dummySpan
val ktype = (L'.KType, dummy)
val kname = (L'.KName, dummy)
val ktype_record = (L'.KRecord ktype, dummy)
val cerror = (L'.CError, dummy)
val kerror = (L'.KError, dummy)
val eerror = (L'.EError, dummy)
local
val count = ref 0
in
fun resetKunif () = count := 0
fun kunif () =
let
val n = !count
val s = if n <= 26 then
str (chr (ord #"A" + n))
else
"U" ^ Int.toString (n - 26)
in
count := n + 1;
(L'.KUnif (s, ref NONE), dummy)
end
end
local
val count = ref 0
in
fun resetCunif () = count := 0
fun cunif k =
let
val n = !count
val s = if n <= 26 then
str (chr (ord #"A" + n))
else
"U" ^ Int.toString (n - 26)
in
count := n + 1;
(L'.CUnif (k, s, ref NONE), dummy)
end
end
fun elabCon env (c, loc) =
case c of
L.CAnnot (c, k) =>
let
val k' = elabKind k
val (c', ck) = elabCon env c
in
checkKind env c' ck k';
(c', k')
end
| L.TFun (t1, t2) =>
let
val (t1', k1) = elabCon env t1
val (t2', k2) = elabCon env t2
in
checkKind env t1' k1 ktype;
checkKind env t2' k2 ktype;
((L'.TFun (t1', t2'), loc), ktype)
end
| L.TCFun (e, x, k, t) =>
let
val e' = elabExplicitness e
val k' = elabKind k
val env' = E.pushCRel env x k'
val (t', tk) = elabCon env' t
in
checkKind env t' tk ktype;
((L'.TCFun (e', x, k', t'), loc), ktype)
end
| L.TRecord c =>
let
val (c', ck) = elabCon env c
val k = (L'.KRecord ktype, loc)
in
checkKind env c' ck k;
((L'.TRecord c', loc), ktype)
end
| L.CVar s =>
(case E.lookupC env s of
E.NotBound =>
(conError env (UnboundCon (loc, s));
(cerror, kerror))
| E.Rel (n, k) =>
((L'.CRel n, loc), k)
| E.Named (n, k) =>
((L'.CNamed n, loc), k))
| L.CApp (c1, c2) =>
let
val (c1', k1) = elabCon env c1
val (c2', k2) = elabCon env c2
val dom = kunif ()
val ran = kunif ()
in
checkKind env c1' k1 (L'.KArrow (dom, ran), loc);
checkKind env c2' k2 dom;
((L'.CApp (c1', c2'), loc), ran)
end
| L.CAbs (x, k, t) =>
let
val k' = elabKind k
val env' = E.pushCRel env x k'
val (t', tk) = elabCon env' t
in
((L'.CAbs (x, k', t'), loc),
(L'.KArrow (k', tk), loc))
end
| L.CName s =>
((L'.CName s, loc), kname)
| L.CRecord xcs =>
let
val k = kunif ()
val xcs' = map (fn (x, c) =>
let
val (x', xk) = elabCon env x
val (c', ck) = elabCon env c
in
checkKind env x' xk kname;
checkKind env c' ck k;
(x', c')
end) xcs
in
((L'.CRecord (k, xcs'), loc), (L'.KRecord k, loc))
end
| L.CConcat (c1, c2) =>
let
val (c1', k1) = elabCon env c1
val (c2', k2) = elabCon env c2
val ku = kunif ()
val k = (L'.KRecord ku, loc)
in
checkKind env c1' k1 k;
checkKind env c2' k2 k;
((L'.CConcat (c1', c2'), loc), k)
end
fun kunifsRemain k =
case k of
L'.KUnif (_, ref NONE) => true
| _ => false
fun cunifsRemain c =
case c of
L'.CUnif (_, _, ref NONE) => true
| _ => false
val kunifsInKind = U.Kind.exists kunifsRemain
val kunifsInCon = U.Con.exists {kind = kunifsRemain,
con = fn _ => false}
val kunifsInExp = U.Exp.exists {kind = kunifsRemain,
con = fn _ => false,
exp = fn _ => false}
val cunifsInCon = U.Con.exists {kind = fn _ => false,
con = cunifsRemain}
val cunifsInExp = U.Exp.exists {kind = fn _ => false,
con = cunifsRemain,
exp = fn _ => false}
fun occursCon r =
U.Con.exists {kind = fn _ => false,
con = fn L'.CUnif (_, _, r') => r = r'
| _ => false}
datatype cunify_error =
CKind of L'.kind * L'.kind * kunify_error
| COccursCheckFailed of L'.con * L'.con
| CIncompatible of L'.con * L'.con
| CExplicitness of L'.con * L'.con
| CKindof of L'.con
| CRecordFailure
exception CUnify' of cunify_error
fun cunifyError env err =
case err of
CKind (k1, k2, kerr) =>
(eprefaces "Kind unification failure"
[("Kind 1", p_kind k1),
("Kind 2", p_kind k2)];
kunifyError kerr)
| COccursCheckFailed (c1, c2) =>
eprefaces "Constructor occurs check failed"
[("Con 1", p_con env c1),
("Con 2", p_con env c2)]
| CIncompatible (c1, c2) =>
eprefaces "Incompatible constructors"
[("Con 1", p_con env c1),
("Con 2", p_con env c2)]
| CExplicitness (c1, c2) =>
eprefaces "Differing constructor function explicitness"
[("Con 1", p_con env c1),
("Con 2", p_con env c2)]
| CKindof c =>
eprefaces "Kind unification variable blocks kindof calculation"
[("Con", p_con env c)]
| CRecordFailure =>
eprefaces "Can't unify record constructors" []
exception SynUnif = E.SynUnif
val liftConInCon = E.liftConInCon
val subConInCon =
U.Con.mapB {kind = fn k => k,
con = fn (xn, rep) => fn c =>
case c of
L'.CRel xn' =>
if xn = xn' then
#1 rep
else
c
| L'.CUnif _ => raise SynUnif
| _ => c,
bind = fn ((xn, rep), U.Con.Rel _) => (xn+1, liftConInCon 0 rep)
| (ctx, _) => ctx}
type record_summary = {
fields : (L'.con * L'.con) list,
unifs : (L'.con * L'.con option ref) list,
others : L'.con list
}
fun summaryToCon {fields, unifs, others} =
let
val c = (L'.CRecord (ktype, []), dummy)
val c = List.foldr (fn (c', c) => (L'.CConcat (c', c), dummy)) c others
val c = List.foldr (fn ((c', _), c) => (L'.CConcat (c', c), dummy)) c unifs
in
(L'.CConcat ((L'.CRecord (ktype, fields), dummy), c), dummy)
end
fun p_summary env s = p_con env (summaryToCon s)
exception CUnify of L'.con * L'.con * cunify_error
fun hnormKind (kAll as (k, _)) =
case k of
L'.KUnif (_, ref (SOME k)) => hnormKind k
| _ => kAll
fun kindof env (c, loc) =
case c of
L'.TFun _ => ktype
| L'.TCFun _ => ktype
| L'.TRecord _ => ktype
| L'.CRel xn => #2 (E.lookupCRel env xn)
| L'.CNamed xn => #2 (E.lookupCNamed env xn)
| L'.CApp (c, _) =>
(case #1 (hnormKind (kindof env c)) of
L'.KArrow (_, k) => k
| L'.KError => kerror
| _ => raise CUnify' (CKindof c))
| L'.CAbs (x, k, c) => (L'.KArrow (k, kindof (E.pushCRel env x k) c), loc)
| L'.CName _ => kname
| L'.CRecord (k, _) => (L'.KRecord k, loc)
| L'.CConcat (c, _) => kindof env c
| L'.CError => kerror
| L'.CUnif (k, _, _) => k
fun unifyRecordCons env (c1, c2) =
let
val k1 = kindof env c1
val k2 = kindof env c2
in
unifyKinds k1 k2;
unifySummaries env (k1, recordSummary env c1, recordSummary env c2)
end
and recordSummary env c : record_summary =
case hnormCon env c of
(L'.CRecord (_, xcs), _) => {fields = xcs, unifs = [], others = []}
| (L'.CConcat (c1, c2), _) =>
let
val s1 = recordSummary env c1
val s2 = recordSummary env c2
in
{fields = #fields s1 @ #fields s2,
unifs = #unifs s1 @ #unifs s2,
others = #others s1 @ #others s2}
end
| (L'.CUnif (_, _, ref (SOME c)), _) => recordSummary env c
| c' as (L'.CUnif (_, _, r), _) => {fields = [], unifs = [(c', r)], others = []}
| c' => {fields = [], unifs = [], others = [c']}
and consEq env (c1, c2) =
(unifyCons env c1 c2;
true)
handle CUnify _ => false
and unifySummaries env (k, s1 : record_summary, s2 : record_summary) =
let
(*val () = eprefaces "Summaries" [("#1", p_summary env s1),
("#2", p_summary env s2)]*)
fun eatMatching p (ls1, ls2) =
let
fun em (ls1, ls2, passed1) =
case ls1 of
[] => (rev passed1, ls2)
| h1 :: t1 =>
let
fun search (ls2', passed2) =
case ls2' of
[] => em (t1, ls2, h1 :: passed1)
| h2 :: t2 =>
if p (h1, h2) then
em (t1, List.revAppend (passed2, t2), passed1)
else
search (t2, h2 :: passed2)
in
search (ls2, [])
end
in
em (ls1, ls2, [])
end
val (fs1, fs2) = eatMatching (fn ((x1, c1), (x2, c2)) =>
if consEq env (x1, x2) then
(unifyCons env c1 c2;
true)
else
false) (#fields s1, #fields s2)
(*val () = eprefaces "Summaries2" [("#1", p_summary env {fields = fs1, unifs = #unifs s1, others = #others s1}),
("#2", p_summary env {fields = fs2, unifs = #unifs s2, others = #others s2})]*)
val (unifs1, unifs2) = eatMatching (fn ((_, r1), (_, r2)) => r1 = r2) (#unifs s1, #unifs s2)
val (others1, others2) = eatMatching (consEq env) (#others s1, #others s2)
fun unifFields (fs, others, unifs) =
case (fs, others, unifs) of
([], [], _) => ([], [], unifs)
| (_, _, []) => (fs, others, [])
| (_, _, (_, r) :: rest) =>
let
val r' = ref NONE
val cr' = (L'.CUnif (k, "recd", r'), dummy)
val prefix = case (fs, others) of
([], other :: others) =>
List.foldl (fn (other, c) =>
(L'.CConcat (c, other), dummy))
other others
| (fs, []) =>
(L'.CRecord (k, fs), dummy)
| (fs, others) =>
List.foldl (fn (other, c) =>
(L'.CConcat (c, other), dummy))
(L'.CRecord (k, fs), dummy) others
in
r := SOME (L'.CConcat (prefix, cr'), dummy);
([], [], (cr', r') :: rest)
end
val (fs1, others1, unifs2) = unifFields (fs1, others1, unifs2)
val (fs2, others2, unifs1) = unifFields (fs2, others2, unifs1)
val clear1 = case (fs1, others1) of
([], []) => true
| _ => false
val clear2 = case (fs2, others2) of
([], []) => true
| _ => false
val empty = (L'.CRecord (k, []), dummy)
fun pairOffUnifs (unifs1, unifs2) =
case (unifs1, unifs2) of
([], _) =>
if clear1 then
List.app (fn (_, r) => r := SOME empty) unifs2
else
raise CUnify' CRecordFailure
| (_, []) =>
if clear2 then
List.app (fn (_, r) => r := SOME empty) unifs1
else
raise CUnify' CRecordFailure
| ((c1, _) :: rest1, (_, r2) :: rest2) =>
(r2 := SOME c1;
pairOffUnifs (rest1, rest2))
in
pairOffUnifs (unifs1, unifs2)
end
and hnormCon env (cAll as (c, _)) =
case c of
L'.CUnif (_, _, ref (SOME c)) => hnormCon env c
| L'.CNamed xn =>
(case E.lookupCNamed env xn of
(_, _, SOME c') => hnormCon env c'
| _ => cAll)
| L'.CApp (c1, c2) =>
(case hnormCon env c1 of
(L'.CAbs (_, _, cb), _) =>
((hnormCon env (subConInCon (0, c2) cb))
handle SynUnif => cAll)
| _ => cAll)
| L'.CConcat (c1, c2) =>
(case (hnormCon env c1, hnormCon env c2) of
((L'.CRecord (k, xcs1), loc), (L'.CRecord (_, xcs2), _)) =>
(L'.CRecord (k, xcs1 @ xcs2), loc)
| _ => cAll)
| _ => cAll
and unifyCons' env c1 c2 =
unifyCons'' env (hnormCon env c1) (hnormCon env c2)
and unifyCons'' env (c1All as (c1, _)) (c2All as (c2, _)) =
let
fun err f = raise CUnify' (f (c1All, c2All))
fun isRecord () = unifyRecordCons env (c1All, c2All)
in
case (c1, c2) of
(L'.TFun (d1, r1), L'.TFun (d2, r2)) =>
(unifyCons' env d1 d2;
unifyCons' env r1 r2)
| (L'.TCFun (expl1, x1, d1, r1), L'.TCFun (expl2, _, d2, r2)) =>
if expl1 <> expl2 then
err CExplicitness
else
(unifyKinds d1 d2;
unifyCons' (E.pushCRel env x1 d1) r1 r2)
| (L'.TRecord r1, L'.TRecord r2) => unifyCons' env r1 r2
| (L'.CRel n1, L'.CRel n2) =>
if n1 = n2 then
()
else
err CIncompatible
| (L'.CNamed n1, L'.CNamed n2) =>
if n1 = n2 then
()
else
err CIncompatible
| (L'.CApp (d1, r1), L'.CApp (d2, r2)) =>
(unifyCons' env d1 d2;
unifyCons' env r1 r2)
| (L'.CAbs (x1, k1, c1), L'.CAbs (_, k2, c2)) =>
(unifyKinds k1 k2;
unifyCons' (E.pushCRel env x1 k1) c1 c2)
| (L'.CName n1, L'.CName n2) =>
if n1 = n2 then
()
else
err CIncompatible
| (L'.CError, _) => ()
| (_, L'.CError) => ()
| (L'.CUnif (_, _, ref (SOME c1All)), _) => unifyCons' env c1All c2All
| (_, L'.CUnif (_, _, ref (SOME c2All))) => unifyCons' env c1All c2All
| (L'.CUnif (k1, _, r1), L'.CUnif (k2, _, r2)) =>
if r1 = r2 then
()
else
(unifyKinds k1 k2;
r1 := SOME c2All)
| (L'.CUnif (_, _, r), _) =>
if occursCon r c2All then
err COccursCheckFailed
else
r := SOME c2All
| (_, L'.CUnif (_, _, r)) =>
if occursCon r c1All then
err COccursCheckFailed
else
r := SOME c1All
| (L'.CRecord _, _) => isRecord ()
| (_, L'.CRecord _) => isRecord ()
| (L'.CConcat _, _) => isRecord ()
| (_, L'.CConcat _) => isRecord ()
| _ => err CIncompatible
end
and unifyCons env c1 c2 =
unifyCons' env c1 c2
handle CUnify' err => raise CUnify (c1, c2, err)
| KUnify args => raise CUnify (c1, c2, CKind args)
datatype exp_error =
UnboundExp of ErrorMsg.span * string
| Unify of L'.exp * L'.con * L'.con * cunify_error
| Unif of string * L'.con
| WrongForm of string * L'.exp * L'.con
fun expError env err =
case err of
UnboundExp (loc, s) =>
ErrorMsg.errorAt loc ("Unbound expression variable " ^ s)
| Unify (e, c1, c2, uerr) =>
(ErrorMsg.errorAt (#2 e) "Unification failure";
eprefaces' [("Expression", p_exp env e),
("Have con", p_con env c1),
("Need con", p_con env c2)];
cunifyError env uerr)
| Unif (action, c) =>
(ErrorMsg.errorAt (#2 c) ("Unification variable blocks " ^ action);
eprefaces' [("Con", p_con env c)])
| WrongForm (variety, e, t) =>
(ErrorMsg.errorAt (#2 e) ("Expression is not a " ^ variety);
eprefaces' [("Expression", p_exp env e),
("Type", p_con env t)])
fun checkCon env e c1 c2 =
unifyCons env c1 c2
handle CUnify (c1, c2, err) =>
expError env (Unify (e, c1, c2, err))
fun primType env p =
let
val s = case p of
P.Int _ => "int"
| P.Float _ => "float"
| P.String _ => "string"
in
case E.lookupC env s of
E.NotBound => raise Fail ("Primitive type " ^ s ^ " unbound")
| E.Rel _ => raise Fail ("Primitive type " ^ s ^ " bound as relative")
| E.Named (n, (L'.KType, _)) => L'.CNamed n
| E.Named _ => raise Fail ("Primitive type " ^ s ^ " bound at non-Type kind")
end
fun typeof env (e, loc) =
case e of
L'.EPrim p => (primType env p, loc)
| L'.ERel n => #2 (E.lookupERel env n)
| L'.ENamed n => #2 (E.lookupENamed env n)
| L'.EApp (e1, _) =>
(case #1 (typeof env e1) of
L'.TFun (_, c) => c
| _ => raise Fail "typeof: Bad EApp")
| L'.EAbs (x, t, e1) => (L'.TFun (t, typeof (E.pushERel env x t) e1), loc)
| L'.ECApp (e1, c) =>
(case #1 (typeof env e1) of
L'.TCFun (_, _, _, c1) => subConInCon (0, c) c1
| _ => raise Fail "typeof: Bad ECApp")
| L'.ECAbs (expl, x, k, e1) => (L'.TCFun (expl, x, k, typeof (E.pushCRel env x k) e1), loc)
| L'.ERecord xes => (L'.TRecord (L'.CRecord (ktype, map (fn (x, e) => (x, typeof env e)) xes), loc), loc)
| L'.EField (_, _, {field, ...}) => field
| L'.EError => cerror
fun elabHead env (e as (_, loc)) t =
let
fun unravel (t, e) =
case hnormCon env t of
(L'.TCFun (L'.Implicit, x, k, t'), _) =>
let
val u = cunif k
in
unravel (subConInCon (0, u) t',
(L'.ECApp (e, u), loc))
end
| _ => (e, t)
in
unravel (t, e)
end
fun elabExp env (e, loc) =
case e of
L.EAnnot (e, t) =>
let
val (e', et) = elabExp env e
val (t', _) = elabCon env t
in
checkCon env e' et t';
(e', t')
end
| L.EPrim p => ((L'.EPrim p, loc), (primType env p, loc))
| L.EVar s =>
(case E.lookupE env s of
E.NotBound =>
(expError env (UnboundExp (loc, s));
(eerror, cerror))
| E.Rel (n, t) => ((L'.ERel n, loc), t)
| E.Named (n, t) => ((L'.ENamed n, loc), t))
| L.EApp (e1, e2) =>
let
val (e1', t1) = elabExp env e1
val (e1', t1) = elabHead env e1' t1
val (e2', t2) = elabExp env e2
val dom = cunif ktype
val ran = cunif ktype
val t = (L'.TFun (dom, ran), dummy)
in
checkCon env e1' t1 t;
checkCon env e2' t2 dom;
((L'.EApp (e1', e2'), loc), ran)
end
| L.EAbs (x, to, e) =>
let
val t' = case to of
NONE => cunif ktype
| SOME t =>
let
val (t', tk) = elabCon env t
in
checkKind env t' tk ktype;
t'
end
val (e', et) = elabExp (E.pushERel env x t') e
in
((L'.EAbs (x, t', e'), loc),
(L'.TFun (t', et), loc))
end
| L.ECApp (e, c) =>
let
val (e', et) = elabExp env e
val (e', et) = elabHead env e' et
val (c', ck) = elabCon env c
in
case #1 (hnormCon env et) of
L'.CError => (eerror, cerror)
| L'.TCFun (_, _, k, eb) =>
let
val () = checkKind env c' ck k
val eb' = subConInCon (0, c') eb
handle SynUnif => (expError env (Unif ("substitution", eb));
cerror)
in
((L'.ECApp (e', c'), loc), eb')
end
| L'.CUnif _ =>
(expError env (Unif ("application", et));
(eerror, cerror))
| _ =>
(expError env (WrongForm ("constructor function", e', et));
(eerror, cerror))
end
| L.ECAbs (expl, x, k, e) =>
let
val expl' = elabExplicitness expl
val k' = elabKind k
val (e', et) = elabExp (E.pushCRel env x k') e
in
((L'.ECAbs (expl', x, k', e'), loc),
(L'.TCFun (expl', x, k', et), loc))
end
| L.ERecord xes =>
let
val xes' = map (fn (x, e) =>
let
val (x', xk) = elabCon env x
val (e', et) = elabExp env e
in
checkKind env x' xk kname;
(x', e', et)
end) xes
in
((L'.ERecord (map (fn (x', e', _) => (x', e')) xes'), loc),
(L'.TRecord (L'.CRecord (ktype, map (fn (x', _, et) => (x', et)) xes'), loc), loc))
end
| L.EField (e, c) =>
let
val (e', et) = elabExp env e
val (c', ck) = elabCon env c
val ft = cunif ktype
val rest = cunif ktype_record
in
checkKind env c' ck kname;
checkCon env e' et (L'.TRecord (L'.CConcat ((L'.CRecord (ktype, [(c', ft)]), loc), rest), loc), loc);
((L'.EField (e', c', {field = ft, rest = rest}), loc), ft)
end
datatype decl_error =
KunifsRemainKind of ErrorMsg.span * L'.kind
| KunifsRemainCon of ErrorMsg.span * L'.con
| KunifsRemainExp of ErrorMsg.span * L'.exp
| CunifsRemainCon of ErrorMsg.span * L'.con
| CunifsRemainExp of ErrorMsg.span * L'.exp
fun declError env err =
case err of
KunifsRemainKind (loc, k) =>
(ErrorMsg.errorAt loc "Some kind unification variables are undetermined in kind";
eprefaces' [("Kind", p_kind k)])
| KunifsRemainCon (loc, c) =>
(ErrorMsg.errorAt loc "Some kind unification variables are undetermined in constructor";
eprefaces' [("Constructor", p_con env c)])
| KunifsRemainExp (loc, e) =>
(ErrorMsg.errorAt loc "Some kind unification variables are undetermined in expression";
eprefaces' [("Expression", p_exp env e)])
| CunifsRemainCon (loc, c) =>
(ErrorMsg.errorAt loc "Some constructor unification variables are undetermined in constructor";
eprefaces' [("Constructor", p_con env c)])
| CunifsRemainExp (loc, e) =>
(ErrorMsg.errorAt loc "Some constructor unification variables are undetermined in expression";
eprefaces' [("Expression", p_exp env e)])
fun elabDecl env (d, loc) =
(resetKunif ();
resetCunif ();
case d of
L.DCon (x, ko, c) =>
let
val k' = case ko of
NONE => kunif ()
| SOME k => elabKind k
val (c', ck) = elabCon env c
val (env', n) = E.pushCNamed env x k' (SOME c')
in
checkKind env c' ck k';
if ErrorMsg.anyErrors () then
()
else (
if kunifsInKind k' then
declError env (KunifsRemainKind (loc, k'))
else
();
if kunifsInCon c' then
declError env (KunifsRemainCon (loc, c'))
else
()
);
(env',
(L'.DCon (x, n, k', c'), loc))
end
| L.DVal (x, co, e) =>
let
val (c', ck) = case co of
NONE => (cunif ktype, ktype)
| SOME c => elabCon env c
val (e', et) = elabExp env e
val (env', n) = E.pushENamed env x c'
in
checkCon env e' et c';
if ErrorMsg.anyErrors () then
()
else (
if kunifsInCon c' then
declError env (KunifsRemainCon (loc, c'))
else
();
if cunifsInCon c' then
declError env (CunifsRemainCon (loc, c'))
else
();
if kunifsInExp e' then
declError env (KunifsRemainExp (loc, e'))
else
();
if cunifsInExp e' then
declError env (CunifsRemainExp (loc, e'))
else
());
(env',
(L'.DVal (x, n, c', e'), loc))
end)
fun elabFile env ds =
ListUtil.mapfoldl (fn (d, env) => elabDecl env d) env ds
end
|