1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
(* Copyright (c) 2008, Adam Chlipala
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - The names of contributors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*)
structure Disjoint :> DISJOINT = struct
open Elab
open ElabOps
datatype piece =
NameC of string
| NameR of int
| NameN of int
| NameM of int * string list * string
| RowR of int
| RowN of int
| RowM of int * string list * string
fun p2s p =
case p of
NameC s => "NameC(" ^ s ^ ")"
| NameR n => "NameR(" ^ Int.toString n ^ ")"
| NameN n => "NameN(" ^ Int.toString n ^ ")"
| NameM (n, _, s) => "NameR(" ^ Int.toString n ^ ", " ^ s ^ ")"
| RowR n => "RowR(" ^ Int.toString n ^ ")"
| RowN n => "RowN(" ^ Int.toString n ^ ")"
| RowM (n, _, s) => "RowR(" ^ Int.toString n ^ ", " ^ s ^ ")"
fun pp p = print (p2s p ^ "\n")
structure PK = struct
type ord_key = piece
fun join (o1, o2) =
case o1 of
EQUAL => o2 ()
| v => v
fun joinL f (os1, os2) =
case (os1, os2) of
(nil, nil) => EQUAL
| (nil, _) => LESS
| (h1 :: t1, h2 :: t2) =>
join (f (h1, h2), fn () => joinL f (t1, t2))
| (_ :: _, nil) => GREATER
fun compare (p1, p2) =
case (p1, p2) of
(NameC s1, NameC s2) => String.compare (s1, s2)
| (NameR n1, NameR n2) => Int.compare (n1, n2)
| (NameN n1, NameN n2) => Int.compare (n1, n2)
| (NameM (n1, ss1, s1), NameM (n2, ss2, s2)) =>
join (Int.compare (n1, n2),
fn () => join (String.compare (s1, s2), fn () =>
joinL String.compare (ss1, ss2)))
| (RowR n1, RowR n2) => Int.compare (n1, n2)
| (RowN n1, RowN n2) => Int.compare (n1, n2)
| (RowM (n1, ss1, s1), RowM (n2, ss2, s2)) =>
join (Int.compare (n1, n2),
fn () => join (String.compare (s1, s2), fn () =>
joinL String.compare (ss1, ss2)))
| (NameC _, _) => LESS
| (_, NameC _) => GREATER
| (NameR _, _) => LESS
| (_, NameR _) => GREATER
| (NameN _, _) => LESS
| (_, NameN _) => GREATER
| (NameM _, _) => LESS
| (_, NameM _) => GREATER
| (RowR _, _) => LESS
| (_, RowR _) => GREATER
| (RowN _, _) => LESS
| (_, RowN _) => GREATER
end
structure PS = BinarySetFn(PK)
structure PM = BinaryMapFn(PK)
type env = PS.set PM.map
type goal = ErrorMsg.span * ElabEnv.env * env * Elab.con * Elab.con
val empty = PM.empty
fun nameToRow (c, loc) =
(CRecord ((KUnit, loc), [((c, loc), (CUnit, loc))]), loc)
fun pieceToRow (p, loc) =
case p of
NameC s => nameToRow (CName s, loc)
| NameR n => nameToRow (CRel n, loc)
| NameN n => nameToRow (CNamed n, loc)
| NameM (n, xs, x) => nameToRow (CModProj (n, xs, x), loc)
| RowR n => (CRel n, loc)
| RowN n => (CNamed n, loc)
| RowM (n, xs, x) => (CModProj (n, xs, x), loc)
datatype piece' =
Piece of piece
| Unknown of con
fun pieceEnter p =
case p of
NameR n => NameR (n + 1)
| RowR n => RowR (n + 1)
| _ => p
fun enter denv =
PM.foldli (fn (p, pset, denv') =>
PM.insert (denv', pieceEnter p, PS.map pieceEnter pset))
PM.empty denv
fun prove1 denv (p1, p2) =
case (p1, p2) of
(NameC s1, NameC s2) => s1 <> s2
| _ =>
case PM.find (denv, p1) of
NONE => false
| SOME pset => PS.member (pset, p2)
fun decomposeRow (env, denv) c =
let
fun decomposeName (c, (acc, gs)) =
let
val (cAll as (c, _), gs') = hnormCon (env, denv) c
val acc = case c of
CName s => Piece (NameC s) :: acc
| CRel n => Piece (NameR n) :: acc
| CNamed n => Piece (NameN n) :: acc
| CModProj (m1, ms, x) => Piece (NameM (m1, ms, x)) :: acc
| _ => Unknown cAll :: acc
in
(acc, gs' @ gs)
end
fun decomposeRow (c, (acc, gs)) =
let
val (cAll as (c, _), gs') = hnormCon (env, denv) c
val gs = gs' @ gs
in
case c of
CRecord (_, xcs) => foldl (fn ((x, _), acc_gs) => decomposeName (x, acc_gs)) (acc, gs) xcs
| CConcat (c1, c2) => decomposeRow (c1, decomposeRow (c2, (acc, gs)))
| CRel n => (Piece (RowR n) :: acc, gs)
| CNamed n => (Piece (RowN n) :: acc, gs)
| CModProj (m1, ms, x) => (Piece (RowM (m1, ms, x)) :: acc, gs)
| _ => (Unknown cAll :: acc, gs)
end
in
decomposeRow (c, ([], []))
end
and assert env denv (c1, c2) =
let
val (ps1, gs1) = decomposeRow (env, denv) c1
val (ps2, gs2) = decomposeRow (env, denv) c2
val unUnknown = List.mapPartial (fn Unknown _ => NONE | Piece p => SOME p)
val ps1 = unUnknown ps1
val ps2 = unUnknown ps2
(*val () = print "APieces1:\n"
val () = app pp ps1
val () = print "APieces2:\n"
val () = app pp ps2*)
fun assertPiece ps (p, denv) =
let
val pset = Option.getOpt (PM.find (denv, p), PS.empty)
val ps = case p of
NameC _ => List.filter (fn NameC _ => false | _ => true) ps
| _ => ps
val pset = PS.addList (pset, ps)
in
PM.insert (denv, p, pset)
end
val denv = foldl (assertPiece ps2) denv ps1
in
(foldl (assertPiece ps1) denv ps2, gs1 @ gs2)
end
and prove env denv (c1, c2, loc) =
let
val (ps1, gs1) = decomposeRow (env, denv) c1
val (ps2, gs2) = decomposeRow (env, denv) c2
val hasUnknown = List.exists (fn Unknown _ => true | _ => false)
val unUnknown = List.mapPartial (fn Unknown _ => NONE | Piece p => SOME p)
in
if hasUnknown ps1 orelse hasUnknown ps2 then
[(loc, env, denv, c1, c2)]
else
let
val ps1 = unUnknown ps1
val ps2 = unUnknown ps2
in
(*print "Pieces1:\n";
app pp ps1;
print "Pieces2:\n";
app pp ps2;*)
foldl (fn (p1, rem) =>
foldl (fn (p2, rem) =>
if prove1 denv (p1, p2) then
rem
else
(loc, env, denv, pieceToRow (p1, loc), pieceToRow (p2, loc)) :: rem) rem ps2)
(gs1 @ gs2) ps1
end
end
and hnormCon (env, denv) c =
let
val cAll as (c, loc) = ElabOps.hnormCon env c
fun doDisj (c1, c2, c) =
let
val (c, gs) = hnormCon (env, denv) c
in
(c, prove env denv (c1, c2, loc) @ gs)
end
in
case c of
CDisjoint cs => doDisj cs
| TDisjoint cs => doDisj cs
| _ => (cAll, [])
end
end
|