1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
(* Copyright (c) 2009, Adam Chlipala
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - The names of contributors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*)
Require Import Arith List TheoryList.
Require Import Axioms.
Require Import Syntax.
Set Implicit Arguments.
Definition row (T : Type) := list (name * T).
Fixpoint record (r : row Set) : Set :=
match r with
| nil => unit
| (_, T) :: r' => T * record r'
end%type.
Fixpoint kDen (k : kind) : Type :=
match k with
| KType => Set
| KName => name
| KArrow k1 k2 => kDen k1 -> kDen k2
| KRecord k1 => row (kDen k1)
end.
Fixpoint cfold T T' (f : name -> T -> T' -> T') (i : T') (r : row T) {struct r} : T' :=
match r with
| nil => i
| (n, v) :: r' => f n v (cfold f i r')
end.
Fixpoint cDen k (c : con kDen k) {struct c} : kDen k :=
match c in con _ k return kDen k with
| CVar _ x => x
| Arrow c1 c2 => cDen c1 -> cDen c2
| Poly _ c1 => forall x, cDen (c1 x)
| CAbs _ _ c1 => fun x => cDen (c1 x)
| CApp _ _ c1 c2 => (cDen c1) (cDen c2)
| Name n => n
| TRecord c1 => record (cDen c1)
| CEmpty _ => nil
| CSingle _ c1 c2 => (cDen c1, cDen c2) :: nil
| CConcat _ c1 c2 => cDen c1 ++ cDen c2
| CFold k1 k2 => @cfold _ _
| CGuarded _ _ _ _ c => cDen c
end.
Theorem subs_correct : forall k1 (c1 : con kDen k1) k2 (c2 : _ -> con kDen k2) c2',
subs c1 c2 c2'
-> cDen (c2 (cDen c1)) = cDen c2'.
induction 1; simpl; intuition; try (apply ext_eq_forallS || apply ext_eq);
repeat match goal with
| [ H : _ |- _ ] => rewrite H
end; intuition.
Qed.
Definition disjoint T (r1 r2 : row T) :=
AllS (fun p1 => AllS (fun p2 => fst p1 <> fst p2) r2) r1.
Definition dvar k (c1 c2 : con kDen (KRecord k)) :=
disjoint (cDen c1) (cDen c2).
Lemma AllS_app : forall T P (ls2 : list T),
AllS P ls2
-> forall ls1, AllS P ls1
-> AllS P (ls1 ++ ls2).
induction 2; simpl; intuition.
Qed.
Lemma AllS_weaken : forall T (P P' : T -> Prop),
(forall x, P x -> P' x)
-> forall ls,
AllS P ls
-> AllS P' ls.
induction 2; simpl; intuition.
Qed.
Theorem disjoint_symm : forall T (r1 r2 : row T),
disjoint r1 r2
-> disjoint r2 r1.
Hint Constructors AllS.
Hint Resolve AllS_weaken.
unfold disjoint; induction r2; simpl; intuition.
constructor.
eapply AllS_weaken; eauto.
intuition.
inversion H0; auto.
apply IHr2.
eapply AllS_weaken; eauto.
intuition.
inversion H0; auto.
Qed.
Lemma map_id : forall k (r : row k),
cfold (fun x x0 (x1 : row _) => (x, x0) :: x1) nil r = r.
induction r; simpl; intuition;
match goal with
| [ H : _ |- _ ] => rewrite H
end; intuition.
Qed.
Lemma map_dist : forall T1 T2 (f : T1 -> T2) (r2 r1 : row T1),
cfold (fun x x0 (x1 : row _) => (x, f x0) :: x1) nil (r1 ++ r2)
= cfold (fun x x0 (x1 : row _) => (x, f x0) :: x1) nil r1
++ cfold (fun x x0 (x1 : row _) => (x, f x0) :: x1) nil r2.
induction r1; simpl; intuition;
match goal with
| [ H : _ |- _ ] => rewrite H
end; intuition.
Qed.
Lemma fold_fuse : forall T1 T2 T3 (f : name -> T1 -> T2 -> T2) (i : T2) (f' : T3 -> T1) (c : row T3),
cfold f i (cfold (fun x x0 (x1 : row _) => (x, f' x0) :: x1) nil c)
= cfold (fun x x0 => f x (f' x0)) i c.
induction c; simpl; intuition;
match goal with
| [ H : _ |- _ ] => rewrite <- H
end; intuition.
Qed.
Scheme deq_mut := Minimality for deq Sort Prop
with disj_mut := Minimality for disj Sort Prop.
Theorem deq_correct : forall k (c1 c2 : con kDen k),
deq dvar c1 c2
-> cDen c1 = cDen c2.
Hint Resolve map_id map_dist fold_fuse AllS_app disjoint_symm.
Hint Extern 1 (_ = _) => unfold row; symmetry; apply app_ass.
apply (deq_mut (dvar := dvar)
(fun k (c1 c2 : con kDen k) =>
cDen c1 = cDen c2)
(fun k (c1 c2 : con kDen (KRecord k)) =>
disjoint (cDen c1) (cDen c2)));
simpl; intuition;
repeat (match goal with
| [ H : _ |- _ ] => rewrite H
| [ H : subs _ _ _ |- _ ] => rewrite <- (subs_correct H)
end; simpl; intuition); try congruence; unfold disjoint in *; intuition;
fold kDen in *; repeat match goal with
| [ H : AllS _ (_ :: _) |- _ ] => inversion H; clear H; subst; simpl in *
end; auto.
Qed.
|