summaryrefslogtreecommitdiff
path: root/doc/intro.ur
blob: d7de5ad397d25da870915a490698e781be50d802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
(* Chapter 1: Introduction *)

(* begin hide *)
val show_string = mkShow (fn s => "\"" ^ s ^ "\"")
(* end *)

(* This tutorial by <a href="http://adam.chlipala.net/">Adam Chlipala</a> is licensed under a <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License</a>. *)

(* This is a tutorial for the <a href="http://www.impredicative.com/ur/">Ur/Web</a> programming language.<br>
<br>
Briefly, <b>Ur</b> is a programming language in the tradition of <a target="_top" href="http://en.wikipedia.org/wiki/ML_(programming_language)">ML</a> and <a target="_top" href="http://en.wikipedia.org/wiki/Haskell_(programming_language)">Haskell</a>, but featuring a significantly richer type system.  Ur is <a target="_top" href="http://en.wikipedia.org/wiki/Functional_programming">functional</a>, <a target="_top" href="http://en.wikipedia.org/wiki/Purely_functional">pure</a>, <a target="_top" href="http://en.wikipedia.org/wiki/Statically-typed">statically-typed</a>, and <a target="_top" href="http://en.wikipedia.org/wiki/Strict_programming_language">strict</a>.  Ur supports a powerful kind of <b>metaprogramming</b> based on <b>row types</b>.<br>
<br>
<b>Ur/Web</b> is Ur plus a special standard library and associated rules for parsing and optimization.  Ur/Web supports construction of dynamic web applications backed by SQL databases, with mixed server-side and client-side applications generated from source code in one language.<br>
<br>
Ur inherits its foundation from ML and Haskell, then going further to add fancier stuff.  This first chapter of the tutorial reviews the key ML and Haskell features, giving their syntax in Ur.  I do assume reading familiarity with ML and Haskell and won't dwell too much on explaining the imported features.<br>
<br>
For information on compiling applications (and for some full example applications), see the intro page of <a href="http://www.impredicative.com/ur/demo/">the online demo</a>, with further detail available in <a href="http://www.impredicative.com/ur/manual.pdf">the reference manual</a>. *)

(* * Basics *)

(* Let's start with features shared with both ML and Haskell.  First, we have the basic numeric, string, and Boolean stuff.  (In the following examples, <tt>==</tt> is used to indicate the result of evaluating an expression.  It's not valid Ur syntax!) *)

(* begin eval *)
1 + 1
(* end *)

(* begin eval *)
1.2 + 3.4
(* end *)

(* begin eval *)
"Hello " ^ "world!"
(* end *)

(* begin eval *)
1 + 1 < 6
(* end *)

(* begin eval *)
0.0 < -3.2
(* end *)

(* begin eval *)
"Hello" = "Goodbye" || (1 * 2 <> 8 && True <> False)
(* end *)

(* We also have function definitions with type inference for parameter and return types. *)

fun double n = 2 * n

(* begin eval *)
double 8
(* end *)

fun fact n = if n = 0 then 1 else n * fact (n - 1)

(* begin eval *)
fact 5
(* end *)

fun isEven n = n = 0 || isOdd (n - 1)
and isOdd n = n = 1 || isEven (n - 1)

(* begin eval *)
isEven 32
(* end *)


(* Of course we have anonymous functions, too. *)

val inc = fn x => x + 1

(* begin eval *)
inc 3
(* end *)

(* Then there's parametric polymorphism.  Unlike in ML and Haskell, polymorphic functions in Ur/Web often require full type annotations.  That is because more advanced features (which we'll get to in the next chapter) make Ur type inference undecidable. *)

fun id [a] (x : a) : a = x

(* begin eval *)
id "hi"
(* end *)

fun compose [a] [b] [c] (f : b -> c) (g : a -> b) (x : a) : c = f (g x)

(* begin eval *)
compose inc inc 3
(* end *)

(* The <tt>option</tt> type family is like ML's <tt>option</tt> or Haskell's <tt>Maybe</tt>.  We also have a <tt>case</tt> expression form lifted directly from ML.  Note that, while Ur follows most syntactic conventions of ML, one key difference is that type family names appear before their arguments, as in Haskell. *)

fun predecessor (n : int) : option int = if n >= 1 then Some (n - 1) else None

(* begin hide *)
fun show_option [t] (_ : show t) : show (option t) =
    mkShow (fn x => case x of
                        None => "None"
                      | Some x => "Some(" ^ show x ^ ")")
(* end *)

(* begin eval *)
predecessor 6
(* end *)

(* begin eval *)
predecessor 0
(* end *)

(* Naturally, there are lists, too! *)

val numbers : list int = 1 :: 2 :: 3 :: []
val strings : list string = "a" :: "bc" :: []

fun length [a] (ls : list a) : int =
    case ls of
        [] => 0
      | _ :: ls' => 1 + length ls'

(* begin eval *)
length numbers
(* end *)

(* begin eval *)
length strings
(* end *)

(* And lists make a good setting for demonstrating higher-order functions and local functions.  (This example also introduces one idiosyncrasy of Ur, which is that <tt>map</tt> is a keyword, so we name our "map" function <tt>mp</tt>.) *)

(* begin hide *)
fun show_list [t] (_ : show t) : show (list t) =
    mkShow (let
                fun shower (ls : list t) =
                    case ls of
                        [] => "[]"
                      | x :: ls' => show x ^ " :: " ^ shower ls'
            in
                shower
            end)
(* end *)

fun mp [a] [b] (f : a -> b) : list a -> list b =
    let
        fun loop (ls : list a) =
            case ls of
                [] => []
              | x :: ls' => f x :: loop ls'
    in
        loop
    end

(* begin eval *)
mp inc numbers
(* end *)

(* begin eval *)
mp (fn s => s ^ "!") strings
(* end *)

(* We can define our own polymorphic datatypes and write higher-order functions over them. *)

datatype tree a = Leaf of a | Node of tree a * tree a

(* begin hide *)
fun show_tree [t] (_ : show t) : show (tree t) =
    mkShow (let
                fun shower (t : tree t) =
                    case t of
                        Leaf x => "Leaf(" ^ show x ^ ")"
                      | Node (t1, t2) => "Node(" ^ shower t1 ^ ", " ^ shower t2 ^ ")"
            in
                shower
            end)
(* end *)

fun size [a] (t : tree a) : int =
    case t of
        Leaf _ => 1
      | Node (t1, t2) => size t1 + size t2

(* begin eval *)
size (Node (Leaf 0, Leaf 1))
(* end *)

(* begin eval *)
size (Node (Leaf 1.2, Node (Leaf 3.4, Leaf 4.5)))
(* end *)

fun tmap [a] [b] (f : a -> b) : tree a -> tree b =
    let
        fun loop (t : tree a) : tree b =
            case t of
                Leaf x => Leaf (f x)
              | Node (t1, t2) => Node (loop t1, loop t2)
    in
        loop
    end

(* begin eval *)
tmap inc (Node (Leaf 0, Leaf 1))
(* end *)

(* We also have anonymous record types, as in Standard ML.  The next chapter will show that there is quite a lot more going on here with records than in SML or OCaml, but we'll stick to the basics in this chapter.  We will add one tantalizing hint of what's to come by demonstrating the record concatention operator <tt>++</tt> and the record field removal operator <tt>--</tt>. *)

val x = { A = 0, B = 1.2, C = "hi", D = True }

(* begin eval *)
x.A
(* end *)

(* begin eval *)
x.C
(* end *)

type myRecord = { A : int, B : float, C : string, D : bool }

fun getA (r : myRecord) = r.A

(* begin eval *)
getA x
(* end *)

(* begin eval *)
getA (x -- #A ++ {A = 4})
(* end *)

val y = { A = "uhoh", B = 2.3, C = "bye", D = False }

(* begin eval *)
getA (y -- #A ++ {A = 5})
(* end *)


(* * Borrowed from ML *)

(* Ur includes an ML-style <b>module system</b>.  The most basic use case involves packaging abstract types with their "methods." *)

signature COUNTER = sig
    type t
    val zero : t
    val increment : t -> t
    val toInt : t -> int
end

structure Counter : COUNTER = struct
    type t = int
    val zero = 0
    val increment = plus 1
    fun toInt x = x
end

(* begin eval *)
Counter.toInt (Counter.increment Counter.zero)
(* end *)

(* We may package not just abstract types, but also abstract type families.  Here we see our first use of the <tt>con</tt> keyword, which stands for <b>constructor</b>.  Constructors are a generalization of types to include other "compile-time things"; for instance, basic type families, which are assigned the <b>kind</b> <tt>Type -> Type</tt>.  Kinds are to constructors as types are to normal values.  We also see how to write the type of a polymorphic function, using the <tt>:::</tt> syntax for type variable binding.  This <tt>:::</tt> differs from the <tt>::</tt> used with the <tt>con</tt> keyword because it marks a type parameter as implicit, so that it need not be supplied explicitly at call sites.  Such an option is the only one available in ML and Haskell, but, in the next chapter, we'll meet cases where it is appropriate to use explicit constructor parameters. *)

signature STACK = sig
    con t :: Type -> Type
    val empty : a ::: Type -> t a
    val push : a ::: Type -> t a -> a -> t a
    val pop : a ::: Type -> t a -> option a
end

structure Stack : STACK = struct
    con t = list
    val empty [a] = []
    fun push [a] (t : t a) (x : a) = x :: t
    fun pop [a] (t : t a) = case t of
                                [] => None
                              | x :: _ => Some x
end

(* begin eval *)
Stack.pop (Stack.push (Stack.push Stack.empty "A") "B")
(* end *)

(* Ur also inherits the ML concept of <b>functors</b>, which are functions from modules to modules. *)

datatype order = Less | Equal | Greater

signature COMPARABLE = sig
    type t
    val compare : t -> t -> order
end

signature DICTIONARY = sig
    type key
    con t :: Type -> Type
    val empty : a ::: Type -> t a
    val insert : a ::: Type -> t a -> key -> a -> t a
    val lookup : a ::: Type -> t a -> key -> option a
end

functor BinarySearchTree(M : COMPARABLE) : DICTIONARY where type key = M.t = struct
    type key = M.t
    datatype t a = Leaf | Node of t a * key * a * t a

    val empty [a] = Leaf

    fun insert [a] (t : t a) (k : key) (v : a) : t a =
        case t of
            Leaf => Node (Leaf, k, v, Leaf)
          | Node (left, k', v', right) =>
            case M.compare k k' of
                Equal => Node (left, k, v, right)
              | Less => Node (insert left k v, k', v', right)
              | Greater => Node (left, k', v', insert right k v)

    fun lookup [a] (t : t a) (k : key) : option a =
        case t of
            Leaf => None
          | Node (left, k', v, right) =>
            case M.compare k k' of
                Equal => Some v
              | Less => lookup left k
              | Greater => lookup right k
end

structure IntTree = BinarySearchTree(struct
                                         type t = int
                                         fun compare n1 n2 =
                                             if n1 = n2 then
                                                 Equal
                                             else if n1 < n2 then
                                                 Less
                                             else
                                                 Greater
                                     end)

(* begin eval *)
IntTree.lookup (IntTree.insert (IntTree.insert IntTree.empty 0 "A") 1 "B") 1
(* end *)

(* It is sometimes handy to rebind modules to shorter names. *)

structure IT = IntTree

(* begin eval *)
IT.lookup (IT.insert (IT.insert IT.empty 0 "A") 1 "B") 0
(* end *)

(* One can even use the <tt>open</tt> command to import a module's namespace wholesale, though this can make it harder for someone reading code to tell which identifiers come from which modules. *)

open IT

(* begin eval *)
lookup (insert (insert empty 0 "A") 1 "B") 2
(* end *)

(* Ur adopts OCaml's approach to splitting projects across source files.  When a project contains files <tt>foo.ur</tt> and <tt>foo.urs</tt>, these are taken as defining a module named <tt>Foo</tt> whose signature is drawn from <tt>foo.urs</tt> and whose implementation is drawn from <tt>foo.ur</tt>.  If <tt>foo.ur</tt> exists without <tt>foo.urs</tt>, then module <tt>Foo</tt> is defined without an explicit signature, so that it is assigned its <b>principal signature</b>, which exposes all typing details without abstraction. *)


(* * Borrowed from Haskell *)

(* Ur includes a take on <b>type classes</b>.  For instance, here is a generic "max" function that relies on a type class <tt>ord</tt>.  Notice that the type class membership witness is treated like an ordinary function parameter, though we don't assign it a name here, because type inference figures out where it should be used.  The more advanced examples of the next chapter will include cases where we manipulate type class witnesses explicitly. *)

fun max [a] (_ : ord a) (x : a) (y : a) : a =
    if x < y then
        y
    else
        x

(* begin eval *)
max 1 2
(* end *)

(* begin eval *)
max "ABC" "ABA"
(* end *)

(* The idiomatic way to define a new type class is to stash it inside a module, like in this example: *)

signature DOUBLE = sig
    class double
    val double : a ::: Type -> double a -> a -> a
    val mkDouble : a ::: Type -> (a -> a) -> double a

    val double_int : double int
    val double_string : double string
end

structure Double : DOUBLE = struct
    class double a = a -> a

    fun double [a] (f : double a) (x : a) : a = f x
    fun mkDouble [a] (f : a -> a) : double a = f

    val double_int = mkDouble (times 2)
    val double_string = mkDouble (fn s => s ^ s)
end

open Double

(* begin eval *)
double 13
(* end *)

(* begin eval *)
double "ho"
(* end *)

val double_float = mkDouble (times 2.0)

(* begin eval *)
double 2.3
(* end *)

(* That example had a mix of instances defined with a class and instances defined outside its module.  Its possible to create <b>closed type classes</b> simply by omitting from the module an instance creation function like <tt>mkDouble</tt>.  This way, only the instances you decide on may be allowed, which enables you to enforce program-wide invariants over instances. *)

signature OK_TYPE = sig
    class ok
    val importantOperation : a ::: Type -> ok a -> a -> string
    val ok_int : ok int
    val ok_float : ok float
end

structure OkType : OK_TYPE = struct
    class ok a = unit
    fun importantOperation [a] (_ : ok a) (_ : a) = "You found an OK value!"
    val ok_int = ()
    val ok_float = ()
end

open OkType

(* begin eval *)
importantOperation 13
(* end *)

(* Like Haskell, Ur supports the more general notion of <b>constructor classes</b>, whose instances may be parameterized over constructors with kinds beside <tt>Type</tt>.  Also like in Haskell, the flagship constructor class is <tt>monad</tt>.  Ur/Web's counterpart of Haskell's <tt>IO</tt> monad is <tt>transaction</tt>, which indicates the tight coupling with transactional execution in server-side code.  Just as in Haskell, <tt>transaction</tt> must be used to create side-effecting actions, since Ur is purely functional (but has eager evaluation).  Here is a quick example transaction, showcasing Ur's variation on Haskell <tt>do</tt> notation. *)

val readBack : transaction int =
   src <- source 0;
   set src 1;
   n <- get src;
   return (n + 1)

(* We get ahead of ourselves a bit here, as this example uses functions associated with client-side code to create and manipulate a mutable data source. *)