structure Sqlcache (* DEBUG: add back :> SQLCACHE. *) = struct open Mono structure IS = IntBinarySet structure IM = IntBinaryMap structure SK = struct type ord_key = string val compare = String.compare end structure SS = BinarySetFn(SK) structure SM = BinaryMapFn(SK) structure SIMM = MultimapFn(structure KeyMap = SM structure ValSet = IS) (* Filled in by [cacheWrap] during [Sqlcache]. *) val ffiInfo : {index : int, params : int} list ref = ref [] fun resetFfiInfo () = ffiInfo := [] fun getFfiInfo () = !ffiInfo (* Some FFIs have writing as their only effect, which the caching records. *) val ffiEffectful = (* ASK: how can this be less hard-coded? *) let val fs = SS.fromList ["htmlifyInt_w", "htmlifyFloat_w", "htmlifyString_w", "htmlifyBool_w", "htmlifyTime_w", "attrifyInt_w", "attrifyFloat_w", "attrifyString_w", "attrifyChar_w", "urlifyInt_w", "urlifyFloat_w", "urlifyString_w", "urlifyBool_w", "urlifyChannel_w"] in fn (m, f) => Settings.isEffectful (m, f) andalso not (m = "Basis" andalso SS.member (fs, f)) end val cache = ref LruCache.cache fun setCache c = cache := c fun getCache () = !cache (* Effect analysis. *) (* Makes an exception for [EWrite] (which is recorded when caching). *) fun effectful doPrint (effs : IS.set) (inFunction : bool) (bound : int) : exp -> bool = (* If result is true, expression is definitely effectful. If result is false, then expression is definitely not effectful if effs is fully populated. The intended pattern is to use this a number of times equal to the number of declarations in a file, Bellman-Ford style. *) (* TODO: make incrementing of the number of bound variables cleaner, probably by using [MonoUtil] instead of all this. *) let (* DEBUG: remove printing when done. *) fun tru msg = if doPrint then (print (msg ^ "\n"); true) else true val rec eff' = (* ASK: is there a better way? *) fn EPrim _ => false (* We don't know if local functions have effects when applied. *) | ERel idx => if inFunction andalso idx >= bound then tru ("rel" ^ Int.toString idx) else false | ENamed name => if IS.member (effs, name) then tru "named" else false | ECon (_, _, NONE) => false | ECon (_, _, SOME e) => eff e | ENone _ => false | ESome (_, e) => eff e | EFfi (m, f) => if ffiEffectful (m, f) then tru "ffi" else false | EFfiApp (m, f, _) => if ffiEffectful (m, f) then tru "ffiapp" else false (* ASK: we're calling functions effectful if they have effects when applied or if the function expressions themselves have effects. Is that okay? *) (* This is okay because the values we ultimately care about aren't functions, and this is a conservative approximation, anyway. *) | EApp (eFun, eArg) => effectful doPrint effs true bound eFun orelse eff eArg | EAbs (_, _, _, e) => effectful doPrint effs inFunction (bound+1) e | EUnop (_, e) => eff e | EBinop (_, _, e1, e2) => eff e1 orelse eff e2 | ERecord xs => List.exists (fn (_, e, _) => eff e) xs | EField (e, _) => eff e (* If any case could be effectful, consider it effectful. *) | ECase (e, xs, _) => eff e orelse List.exists (fn (_, e) => eff e) xs | EStrcat (e1, e2) => eff e1 orelse eff e2 (* ASK: how should we treat these three? *) | EError _ => tru "error" | EReturnBlob _ => tru "blob" | ERedirect _ => tru "redirect" (* EWrite is a special exception because we record writes when caching. *) | EWrite _ => false | ESeq (e1, e2) => eff e1 orelse eff e2 (* TODO: keep context of which local variables aren't effectful? Only makes a difference for function expressions, though. *) | ELet (_, _, eBind, eBody) => eff eBind orelse effectful doPrint effs inFunction (bound+1) eBody | EClosure (_, es) => List.exists eff es (* TODO: deal with EQuery. *) | EQuery _ => tru "query" | EDml _ => tru "dml" | ENextval _ => tru "nextval" | ESetval _ => tru "setval" | EUnurlify (e, _, _) => eff e (* ASK: how should we treat this? *) | EJavaScript _ => tru "javascript" (* ASK: these are all effectful, right? *) | ESignalReturn _ => tru "signalreturn" | ESignalBind _ => tru "signalbind" | ESignalSource _ => tru "signalsource" | EServerCall _ => tru "servercall" | ERecv _ => tru "recv" | ESleep _ => tru "sleep" | ESpawn _ => tru "spawn" and eff = fn (e', _) => eff' e' in eff end (* TODO: test this. *) val effectfulMap = let fun doVal ((_, name, _, e, _), effMap) = if effectful false effMap false 0 e then IS.add (effMap, name) else effMap val doDecl = fn (DVal v, effMap) => doVal (v, effMap) (* Repeat the list of declarations a number of times equal to its size. *) | (DValRec vs, effMap) => List.foldl doVal effMap (List.concat (List.map (fn _ => vs) vs)) (* ASK: any other cases? *) | (_, effMap) => effMap in MonoUtil.File.fold {typ = #2, exp = #2, decl = doDecl} IS.empty end (* Boolean formula normalization. *) datatype junctionType = Conj | Disj datatype 'atom formula = Atom of 'atom | Negate of 'atom formula | Combo of junctionType * 'atom formula list val flipJt = fn Conj => Disj | Disj => Conj fun concatMap f xs = List.concat (map f xs) val rec cartesianProduct : 'a list list -> 'a list list = fn [] => [[]] | (xs :: xss) => concatMap (fn ys => concatMap (fn x => [x :: ys]) xs) (cartesianProduct xss) (* Pushes all negation to the atoms.*) fun pushNegate (negate : 'atom -> 'atom) (negating : bool) = fn Atom x => Atom (if negating then negate x else x) | Negate f => pushNegate negate (not negating) f | Combo (n, fs) => Combo (if negating then flipJt n else n, map (pushNegate negate negating) fs) val rec flatten = fn Combo (_, [f]) => flatten f | Combo (j, fs) => Combo (j, List.foldr (fn (f, acc) => case f of Combo (j', fs') => if j = j' orelse length fs' = 1 then fs' @ acc else f :: acc | _ => f :: acc) [] (map flatten fs)) | f => f fun normalize' (simplify : 'a list list -> 'a list list) (negate : 'a -> 'a) (junc : junctionType) = let fun norm junc = simplify o (fn Atom x => [[x]] | Negate f => map (map negate) (norm (flipJt junc) f) | Combo (j, fs) => let val fss = map (norm junc) fs in if j = junc then List.concat fss else map List.concat (cartesianProduct fss) end) in norm junc end fun normalize simplify negate junc = normalize' simplify negate junc o flatten o pushNegate negate false fun mapFormula mf = fn Atom x => Atom (mf x) | Negate f => Negate (mapFormula mf f) | Combo (j, fs) => Combo (j, map (mapFormula mf) fs) (* SQL analysis. *) structure CmpKey : ORD_KEY = struct type ord_key = Sql.cmp val compare = fn (Sql.Eq, Sql.Eq) => EQUAL | (Sql.Eq, _) => LESS | (_, Sql.Eq) => GREATER | (Sql.Ne, Sql.Ne) => EQUAL | (Sql.Ne, _) => LESS | (_, Sql.Ne) => GREATER | (Sql.Lt, Sql.Lt) => EQUAL | (Sql.Lt, _) => LESS | (_, Sql.Lt) => GREATER | (Sql.Le, Sql.Le) => EQUAL | (Sql.Le, _) => LESS | (_, Sql.Le) => GREATER | (Sql.Gt, Sql.Gt) => EQUAL | (Sql.Gt, _) => LESS | (_, Sql.Gt) => GREATER | (Sql.Ge, Sql.Ge) => EQUAL end (* functor ListKeyFn (K : ORD_KEY) : ORD_KEY = struct type ord_key = K.ord_key list val rec compare = fn ([], []) => EQUAL | ([], _) => LESS | (_, []) => GREATER | (x :: xs, y :: ys) => (case K.compare (x, y) of EQUAL => compare (xs, ys) | ord => ord) end *) functor OptionKeyFn (K : ORD_KEY) : ORD_KEY = struct type ord_key = K.ord_key option val compare = fn (NONE, NONE) => EQUAL | (NONE, _) => LESS | (_, NONE) => GREATER | (SOME x, SOME y) => K.compare (x, y) end functor TripleKeyFn (structure I : ORD_KEY structure J : ORD_KEY structure K : ORD_KEY) : ORD_KEY where type ord_key = I.ord_key * J.ord_key * K.ord_key = struct type ord_key = I.ord_key * J.ord_key * K.ord_key fun compare ((i1, j1, k1), (i2, j2, k2)) = case I.compare (i1, i2) of EQUAL => (case J.compare (j1, j2) of EQUAL => K.compare (k1, k2) | ord => ord) | ord => ord end val rec chooseTwos : 'a list -> ('a * 'a) list = fn [] => [] | x :: ys => map (fn y => (x, y)) ys @ chooseTwos ys fun removeRedundant madeRedundantBy zs = let fun removeRedundant' (xs, ys) = case xs of [] => ys | x :: xs' => removeRedundant' (xs', if List.exists (fn y => madeRedundantBy (x, y)) (xs' @ ys) then ys else x :: ys) in removeRedundant' (zs, []) end datatype atomExp = QueryArg of int | DmlRel of int | Prim of Prim.t | Field of string * string structure AtomExpKey : ORD_KEY = struct type ord_key = atomExp val compare = fn (QueryArg n1, QueryArg n2) => Int.compare (n1, n2) | (QueryArg _, _) => LESS | (_, QueryArg _) => GREATER | (DmlRel n1, DmlRel n2) => Int.compare (n1, n2) | (DmlRel _, _) => LESS | (_, DmlRel _) => GREATER | (Prim p1, Prim p2) => Prim.compare (p1, p2) | (Prim _, _) => LESS | (_, Prim _) => GREATER | (Field (t1, f1), Field (t2, f2)) => case String.compare (t1, t2) of EQUAL => String.compare (f1, f2) | ord => ord end structure UF = UnionFindFn(AtomExpKey) structure ConflictMaps = struct structure TK = TripleKeyFn(structure I = CmpKey structure J = OptionKeyFn(AtomExpKey) structure K = OptionKeyFn(AtomExpKey)) structure TS = BinarySetFn(TK) (* structure TLS = BinarySetFn(ListKeyFn(TK)) *) val toKnownEquality = (* [NONE] here means unkown. Anything that isn't a comparison between two knowns shouldn't be used, and simply dropping unused terms is okay in disjunctive normal form. *) fn (Sql.Eq, SOME e1, SOME e2) => SOME (e1, e2) | _ => NONE val equivClasses : (Sql.cmp * atomExp option * atomExp option) list -> atomExp list list = UF.classes o List.foldl UF.union' UF.empty o List.mapPartial toKnownEquality fun addToEqs (eqs, n, e) = case IM.find (eqs, n) of (* Comparing to a constant is probably better than comparing to a variable? Checking that existing constants match a new ones is handled by [accumulateEqs]. *) SOME (Prim _) => eqs | _ => IM.insert (eqs, n, e) val accumulateEqs = (* [NONE] means we have a contradiction. *) fn (_, NONE) => NONE | ((Prim p1, Prim p2), eqso) => (case Prim.compare (p1, p2) of EQUAL => eqso | _ => NONE) | ((QueryArg n, Prim p), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((QueryArg n, DmlRel r), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) | ((Prim p, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((DmlRel r, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) (* TODO: deal with equalities between [DmlRel]s and [Prim]s. This would involve guarding the invalidation with a check for the relevant comparisons. *) | (_, eqso) => eqso val eqsOfClass : atomExp list -> atomExp IM.map option = List.foldl accumulateEqs (SOME IM.empty) o chooseTwos fun toAtomExps rel (cmp, e1, e2) = let val qa = (* Here [NONE] means unkown. *) fn Sql.SqConst p => SOME (Prim p) | Sql.Field tf => SOME (Field tf) | Sql.Inj (EPrim p, _) => SOME (Prim p) | Sql.Inj (ERel n, _) => SOME (rel n) (* We can't deal with anything else, e.g., CURRENT_TIMESTAMP becomes Sql.Unmodeled, which becomes NONE here. *) | _ => NONE in (cmp, qa e1, qa e2) end fun negateCmp (cmp, e1, e2) = (case cmp of Sql.Eq => Sql.Ne | Sql.Ne => Sql.Eq | Sql.Lt => Sql.Ge | Sql.Le => Sql.Gt | Sql.Gt => Sql.Le | Sql.Ge => Sql.Lt, e1, e2) val markQuery : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps QueryArg) val markDml : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps DmlRel) (* No eqs should have key conflicts because no variable is in two equivalence classes, so the [#1] could be [#2]. *) val mergeEqs : (atomExp IntBinaryMap.map option list -> atomExp IntBinaryMap.map option) = List.foldr (fn (SOME eqs, SOME acc) => SOME (IM.unionWith #1 (eqs, acc)) | _ => NONE) (SOME IM.empty) fun dnf (fQuery, fDml) = let val simplify = map TS.listItems o removeRedundant (fn (x, y) => TS.isSubset (y, x)) o map (fn xs => TS.addList (TS.empty, xs)) in normalize simplify negateCmp Disj (Combo (Conj, [markQuery fQuery, markDml fDml])) end val conflictMaps = List.mapPartial (mergeEqs o map eqsOfClass o equivClasses) o dnf end val conflictMaps = ConflictMaps.conflictMaps val rec sqexpToFormula = fn Sql.SqTrue => Combo (Conj, []) | Sql.SqFalse => Combo (Disj, []) | Sql.SqNot e => Negate (sqexpToFormula e) | Sql.Binop (Sql.RCmp c, e1, e2) => Atom (c, e1, e2) | Sql.Binop (Sql.RLop l, p1, p2) => Combo (case l of Sql.And => Conj | Sql.Or => Disj, [sqexpToFormula p1, sqexpToFormula p2]) (* ASK: any other sqexps that can be props? *) | _ => raise Match fun renameTables tablePairs = let fun renameString table = case List.find (fn (_, t) => table = t) tablePairs of NONE => table | SOME (realTable, _) => realTable val renameSqexp = fn Sql.Field (table, field) => Sql.Field (renameString table, field) | e => e fun renameAtom (cmp, e1, e2) = (cmp, renameSqexp e1, renameSqexp e2) in mapFormula renameAtom end val rec queryToFormula = fn Sql.Query1 {Where = NONE, ...} => Combo (Conj, []) | Sql.Query1 {From = tablePairs, Where = SOME e, ...} => renameTables tablePairs (sqexpToFormula e) | Sql.Union (q1, q2) => Combo (Disj, [queryToFormula q1, queryToFormula q2]) fun valsToFormula (table, vals) = Combo (Conj, map (fn (field, v) => Atom (Sql.Eq, Sql.Field (table, field), v)) vals) val rec dmlToFormula = fn Sql.Insert (table, vals) => valsToFormula (table, vals) | Sql.Delete (table, wher) => renameTables [(table, "T")] (sqexpToFormula wher) | Sql.Update (table, vals, wher) => let val fWhere = sqexpToFormula wher val fVals = valsToFormula (table, vals) val modifiedFields = SS.addList (SS.empty, map #1 vals) (* TODO: don't use field name hack. *) val markField = fn e as Sql.Field (t, v) => if SS.member (modifiedFields, v) then Sql.Field (t, v ^ "'") else e | e => e val mark = mapFormula (fn (cmp, e1, e2) => (cmp, markField e1, markField e2)) in renameTables [(table, "T")] (Combo (Disj, [Combo (Conj, [fVals, mark fWhere]), Combo (Conj, [mark fVals, fWhere])])) end val rec tablesQuery = fn Sql.Query1 {From = tablePairs, ...} => SS.fromList (map #1 tablePairs) | Sql.Union (q1, q2) => SS.union (tablesQuery q1, tablesQuery q2) val tableDml = fn Sql.Insert (tab, _) => tab | Sql.Delete (tab, _) => tab | Sql.Update (tab, _, _) => tab (* Program instrumentation. *) val varName = let val varNumber = ref 0 in fn s => (varNumber := !varNumber + 1; s ^ Int.toString (!varNumber)) end val {check, store, flush, ...} = getCache () val dummyLoc = ErrorMsg.dummySpan fun stringExp s = (EPrim (Prim.String (Prim.Normal, s)), dummyLoc) val stringTyp = (TFfi ("Basis", "string"), dummyLoc) val sequence = fn (exp :: exps) => let val loc = dummyLoc in List.foldl (fn (e', seq) => ESeq ((seq, loc), (e', loc))) exp exps end | _ => raise Match (* Always increments negative indices because that's what we need later. *) fun incRelsBound bound inc = MonoUtil.Exp.mapB {typ = fn x => x, exp = fn level => (fn ERel n => ERel (if n >= level orelse n < 0 then n + inc else n) | x => x), bind = fn (level, MonoUtil.Exp.RelE _) => level + 1 | (level, _) => level} bound val incRels = incRelsBound 0 fun cacheWrap (query, i, urlifiedRel0, resultTyp, args) = let val () = ffiInfo := {index = i, params = length args} :: !ffiInfo val loc = dummyLoc (* We ensure before this step that all arguments aren't effectful. by turning them into local variables as needed. *) val argsInc = map (incRels 1) args val check = (check (i, args), dummyLoc) val store = (store (i, argsInc, urlifiedRel0), dummyLoc) val rel0 = (ERel 0, loc) in ECase (check, [((PNone stringTyp, loc), (ELet (varName "q", resultTyp, query, (ESeq (store, rel0), loc)), loc)), ((PSome (stringTyp, (PVar (varName "hit", stringTyp), loc)), loc), (* Boolean is false because we're not unurlifying from a cookie. *) (EUnurlify (rel0, resultTyp, false), loc))], {disc = stringTyp, result = resultTyp}) end fun fileMapfold doExp file start = case MonoUtil.File.mapfold {typ = Search.return2, exp = fn x => (fn s => Search.Continue (doExp x s)), decl = Search.return2} file start of Search.Continue x => x | Search.Return _ => raise Match fun fileMap doExp file = #1 (fileMapfold (fn x => fn _ => (doExp x, ())) file ()) fun factorOutNontrivial text = let val loc = dummyLoc fun strcat (e1, e2) = (EStrcat (e1, e2), loc) val chunks = Sql.chunkify text val (newText, newVariables) = (* Important that this is foldr (to oppose foldl below). *) List.foldr (fn (chunk, (qText, newVars)) => (* Variable bound to the head of newBs will have the lowest index. *) case chunk of Sql.Exp (e as (EPrim _, _)) => (strcat (e, qText), newVars) | Sql.Exp e => let val n = length newVars in (* This is the (n + 1)th new variable, so there are already n new variables bound, so we increment indices by n. *) (strcat ((ERel (~(n+1)), loc), qText), incRels n e :: newVars) end | Sql.String s => (strcat (stringExp s, qText), newVars)) (stringExp "", []) chunks fun wrapLets e' = (* Important that this is foldl (to oppose foldr above). *) List.foldl (fn (v, e') => ELet (varName "sqlArg", stringTyp, v, (e', loc))) e' newVariables val numArgs = length newVariables in (newText, wrapLets, numArgs) end fun addChecking file = let fun doExp (queryInfo as (tableToIndices, indexToQueryNumArgs, index)) = fn e' as EQuery {query = origQueryText, sqlcacheInfo = urlifiedRel0, state = resultTyp, initial, body, tables, exps} => let val (newQueryText, wrapLets, numArgs) = factorOutNontrivial origQueryText (* Increment once for each new variable just made. *) val queryExp = incRels numArgs (EQuery {query = newQueryText, sqlcacheInfo = urlifiedRel0, state = resultTyp, initial = initial, body = body, tables = tables, exps = exps}, dummyLoc) val (EQuery {query = queryText, ...}, _) = queryExp (* DEBUG *) val () = Print.preface ("sqlcache> ", (MonoPrint.p_exp MonoEnv.empty queryText)) val args = List.tabulate (numArgs, fn n => (ERel n, dummyLoc)) fun bind x f = Option.mapPartial f x fun guard b x = if b then x else NONE (* DEBUG: set first boolean argument to true to turn on printing. *) fun safe bound = not o effectful true (effectfulMap file) false bound val attempt = (* Ziv misses Haskell's do notation.... *) guard (safe 0 queryText andalso safe 0 initial andalso safe 2 body) ( bind (Sql.parse Sql.query queryText) (fn queryParsed => SOME (wrapLets (cacheWrap (queryExp, index, urlifiedRel0, resultTyp, args)), (SS.foldr (fn (tab, qi) => SIMM.insert (qi, tab, index)) tableToIndices (tablesQuery queryParsed), IM.insert (indexToQueryNumArgs, index, (queryParsed, numArgs)), index + 1)))) in case attempt of SOME pair => pair | NONE => (e', queryInfo) end | e' => (e', queryInfo) in fileMapfold (fn exp => fn state => doExp state exp) file (SIMM.empty, IM.empty, 0) end structure Invalidations = struct val loc = dummyLoc val optionAtomExpToExp = fn NONE => (ENone stringTyp, loc) | SOME e => (ESome (stringTyp, (case e of DmlRel n => ERel n | Prim p => EPrim p (* TODO: make new type containing only these two. *) | _ => raise Match, loc)), loc) fun eqsToInvalidation numArgs eqs = let fun inv n = if n < 0 then [] else IM.find (eqs, n) :: inv (n - 1) in inv (numArgs - 1) end (* Tests if [ys] makes [xs] a redundant cache invalidation. [NONE] here represents unknown, which means a wider invalidation. *) val rec madeRedundantBy : atomExp option list * atomExp option list -> bool = fn ([], []) => true | (_ :: xs, NONE :: ys) => madeRedundantBy (xs, ys) | (SOME x :: xs, SOME y :: ys) => (case AtomExpKey.compare (x, y) of EQUAL => madeRedundantBy (xs, ys) | _ => false) | _ => false fun eqss (query, dml) = conflictMaps (queryToFormula query, dmlToFormula dml) fun invalidations ((query, numArgs), dml) = (map (map optionAtomExpToExp) o removeRedundant madeRedundantBy o map (eqsToInvalidation numArgs) o eqss) (query, dml) end val invalidations = Invalidations.invalidations (* DEBUG *) val gunk : ((Sql.query * int) * Sql.dml) list ref = ref [] fun addFlushing (file, (tableToIndices, indexToQueryNumArgs, _)) = let val flushes = List.concat o map (fn (i, argss) => map (fn args => flush (i, args)) argss) val doExp = fn EDml (origDmlText, failureMode) => let val (newDmlText, wrapLets, numArgs) = factorOutNontrivial origDmlText val dmlText = incRels numArgs newDmlText val dmlExp = EDml (dmlText, failureMode) (* DEBUG *) val () = Print.preface ("sqlcache> ", (MonoPrint.p_exp MonoEnv.empty dmlText)) val invs = case Sql.parse Sql.dml dmlText of SOME dmlParsed => map (fn i => (case IM.find (indexToQueryNumArgs, i) of SOME queryNumArgs => (* DEBUG *) (gunk := (queryNumArgs, dmlParsed) :: !gunk; (i, invalidations (queryNumArgs, dmlParsed))) (* TODO: fail more gracefully. *) | NONE => raise Match)) (SIMM.findList (tableToIndices, tableDml dmlParsed)) (* TODO: fail more gracefully. *) | NONE => raise Match in wrapLets (sequence (flushes invs @ [dmlExp])) end | e' => e' in (* DEBUG *) gunk := []; fileMap doExp file end val inlineSql = let val doExp = (* TODO: EQuery, too? *) (* ASK: should this live in [MonoOpt]? *) fn EDml ((ECase (disc, cases, {disc = dTyp, ...}), loc), failureMode) => let val newCases = map (fn (p, e) => (p, (EDml (e, failureMode), loc))) cases in ECase (disc, newCases, {disc = dTyp, result = (TRecord [], loc)}) end | e => e in fileMap doExp end fun go file = let (* TODO: do something nicer than [Sql] being in one of two modes. *) val () = (resetFfiInfo (); Sql.sqlcacheMode := true) val file' = addFlushing (addChecking (inlineSql file)) val () = Sql.sqlcacheMode := false in file' end end