structure Sqlcache (* :> SQLCACHE *) = struct open Mono structure IS = IntBinarySet structure IM = IntBinaryMap structure SK = struct type ord_key = string val compare = String.compare end structure SS = BinarySetFn(SK) structure SM = BinaryMapFn(SK) structure SIMM = MultimapFn(structure KeyMap = SM structure ValSet = IS) (* Filled in by [cacheWrap] during [Sqlcache]. *) val ffiInfo : {index : int, params : int} list ref = ref [] fun getFfiInfo () = !ffiInfo (* Some FFIs have writing as their only effect, which the caching records. *) val ffiEffectful = (* TODO: have this less hard-coded. *) let val fs = SS.fromList ["htmlifyInt_w", "htmlifyFloat_w", "htmlifyString_w", "htmlifyBool_w", "htmlifyTime_w", "attrifyInt_w", "attrifyFloat_w", "attrifyString_w", "attrifyChar_w", "urlifyInt_w", "urlifyFloat_w", "urlifyString_w", "urlifyBool_w", "urlifyChannel_w"] in fn (m, f) => Settings.isEffectful (m, f) andalso not (m = "Basis" andalso SS.member (fs, f)) end (* Effect analysis. *) (* Makes an exception for [EWrite] (which is recorded when caching). *) fun effectful doPrint (effs : IS.set) (inFunction : bool) (bound : int) : Mono.exp -> bool = (* If result is true, expression is definitely effectful. If result is false, then expression is definitely not effectful if effs is fully populated. The intended pattern is to use this a number of times equal to the number of declarations in a file, Bellman-Ford style. *) (* TODO: make incrementing of bound less janky, probably by using MonoUtil instead of all this. *) let (* DEBUG: remove printing when done. *) fun tru msg = if doPrint then (print (msg ^ "\n"); true) else true val rec eff' = (* ASK: is there a better way? *) fn EPrim _ => false (* We don't know if local functions have effects when applied. *) | ERel idx => if inFunction andalso idx >= bound then tru ("rel" ^ Int.toString idx) else false | ENamed name => if IS.member (effs, name) then tru "named" else false | ECon (_, _, NONE) => false | ECon (_, _, SOME e) => eff e | ENone _ => false | ESome (_, e) => eff e | EFfi (m, f) => if ffiEffectful (m, f) then tru "ffi" else false | EFfiApp (m, f, _) => if ffiEffectful (m, f) then tru "ffiapp" else false (* ASK: we're calling functions effectful if they have effects when applied or if the function expressions themselves have effects. Is that okay? *) (* This is okay because the values we ultimately care about aren't functions, and this is a conservative approximation, anyway. *) | EApp (eFun, eArg) => effectful doPrint effs true bound eFun orelse eff eArg | EAbs (_, _, _, e) => effectful doPrint effs inFunction (bound+1) e | EUnop (_, e) => eff e | EBinop (_, _, e1, e2) => eff e1 orelse eff e2 | ERecord xs => List.exists (fn (_, e, _) => eff e) xs | EField (e, _) => eff e (* If any case could be effectful, consider it effectful. *) | ECase (e, xs, _) => eff e orelse List.exists (fn (_, e) => eff e) xs | EStrcat (e1, e2) => eff e1 orelse eff e2 (* ASK: how should we treat these three? *) | EError _ => tru "error" | EReturnBlob _ => tru "blob" | ERedirect _ => tru "redirect" (* EWrite is a special exception because we record writes when caching. *) | EWrite _ => false | ESeq (e1, e2) => eff e1 orelse eff e2 (* TODO: keep context of which local variables aren't effectful? Only makes a difference for function expressions, though. *) | ELet (_, _, eBind, eBody) => eff eBind orelse effectful doPrint effs inFunction (bound+1) eBody | EClosure (_, es) => List.exists eff es (* TODO: deal with EQuery. *) | EQuery _ => tru "query" | EDml _ => tru "dml" | ENextval _ => tru "nextval" | ESetval _ => tru "setval" | EUnurlify (e, _, _) => eff e (* ASK: how should we treat this? *) | EJavaScript _ => tru "javascript" (* ASK: these are all effectful, right? *) | ESignalReturn _ => tru "signalreturn" | ESignalBind _ => tru "signalbind" | ESignalSource _ => tru "signalsource" | EServerCall _ => tru "servercall" | ERecv _ => tru "recv" | ESleep _ => tru "sleep" | ESpawn _ => tru "spawn" and eff = fn (e', _) => eff' e' in eff end (* TODO: test this. *) val effectfulMap = let fun doVal ((_, name, _, e, _), effMap) = if effectful false effMap false 0 e then IS.add (effMap, name) else effMap val doDecl = fn (DVal v, effMap) => doVal (v, effMap) (* Repeat the list of declarations a number of times equal to its size. *) | (DValRec vs, effMap) => List.foldl doVal effMap (List.concat (List.map (fn _ => vs) vs)) (* ASK: any other cases? *) | (_, effMap) => effMap in MonoUtil.File.fold {typ = #2, exp = #2, decl = doDecl} IS.empty end (* Boolean formula normalization. *) datatype normalForm = Cnf | Dnf datatype 'atom formula = Atom of 'atom | Negate of 'atom formula | Combo of normalForm * 'atom formula list val flipNf = fn Cnf => Dnf | Dnf => Cnf fun bind xs f = List.concat (map f xs) val rec cartesianProduct : 'a list list -> 'a list list = fn [] => [[]] | (xs :: xss) => bind (cartesianProduct xss) (fn ys => bind xs (fn x => [x :: ys])) (* Pushes all negation to the atoms.*) fun pushNegate (negate : 'atom -> 'atom) (negating : bool) = fn Atom x => Atom (if negating then negate x else x) | Negate f => pushNegate negate (not negating) f | Combo (n, fs) => Combo (if negating then flipNf n else n, map (pushNegate negate negating) fs) val rec flatten = fn Combo (n, fs) => Combo (n, List.foldr (fn (f, acc) => case f of Combo (n', fs') => if n = n' then fs' @ acc else f :: acc | _ => f :: acc) [] (map flatten fs)) | f => f fun normalize' (negate : 'atom -> 'atom) (norm : normalForm) = fn Atom x => [[x]] | Negate f => map (map negate) (normalize' negate (flipNf norm) f) | Combo (n, fs) => let val fss = bind fs (normalize' negate n) in if n = norm then fss else cartesianProduct fss end fun normalize negate norm = normalize' negate norm o flatten o pushNegate negate false fun mapFormulaSigned positive mf = fn Atom x => Atom (mf (positive, x)) | Negate f => Negate (mapFormulaSigned (not positive) mf f) | Combo (n, fs) => Combo (n, map (mapFormulaSigned positive mf) fs) fun mapFormula mf = mapFormulaSigned true (fn (_, x) => mf x) (* SQL analysis. *) val rec chooseTwos : 'a list -> ('a * 'a) list = fn [] => [] | x :: ys => map (fn y => (x, y)) ys @ chooseTwos ys datatype atomExp = QueryArg of int | DmlRel of int | Prim of Prim.t | Field of string * string val equalAtomExp = let val isEqual = fn EQUAL => true | _ => false in fn (QueryArg n1, QueryArg n2) => n1 = n2 | (DmlRel n1, DmlRel n2) => n1 = n2 | (Prim p1, Prim p2) => isEqual (Prim.compare (p1, p2)) | (Field (t1, f1), Field (t2, f2)) => isEqual (String.compare (t1 ^ "." ^ f1, t2 ^ "." ^ f2)) | _ => false end structure AtomExpKey : ORD_KEY = struct type ord_key = atomExp val compare = fn (QueryArg n1, QueryArg n2) => Int.compare (n1, n2) | (QueryArg _, _) => LESS | (_, QueryArg _) => GREATER | (DmlRel n1, DmlRel n2) => Int.compare (n1, n2) | (DmlRel _, _) => LESS | (_, DmlRel _) => GREATER | (Prim p1, Prim p2) => Prim.compare (p1, p2) | (Prim _, _) => LESS | (_, Prim _) => GREATER | (Field (t1, f1), Field (t2, f2)) => String.compare (t1 ^ "." ^ f1, t2 ^ "." ^ f2) end structure UF = UnionFindFn(AtomExpKey) (* val conflictMaps : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula *) (* * (Sql.cmp * Sql.sqexp * Sql.sqexp) formula *) (* -> Mono.exp' IM.map list = *) (* let *) val toKnownEquality = (* [NONE] here means unkown. Anything that isn't a comparison between two knowns shouldn't be used, and simply dropping unused terms is okay in disjunctive normal form. *) fn (Sql.Eq, SOME e1, SOME e2) => SOME (e1, e2) | _ => NONE val equivClasses : (Sql.cmp * atomExp option * atomExp option) list -> atomExp list list = UF.classes o List.foldl UF.union' UF.empty o List.mapPartial toKnownEquality fun addToEqs (eqs, n, e) = case IM.find (eqs, n) of (* Comparing to a constant seems better? *) SOME (Prim _) => eqs | _ => IM.insert (eqs, n, e) val accumulateEqs = (* [NONE] means we have a contradiction. *) fn (_, NONE) => NONE | ((Prim p1, Prim p2), eqso) => (case Prim.compare (p1, p2) of EQUAL => eqso | _ => NONE) | ((QueryArg n, Prim p), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((QueryArg n, DmlRel r), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) | ((Prim p, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((DmlRel r, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) (* TODO: deal with equalities involving just [DmlRel]s and [Prim]s. *) | (_, eqso) => eqso val eqsOfClass : atomExp list -> atomExp IM.map option = List.foldl accumulateEqs (SOME IM.empty) o chooseTwos fun toAtomExps rel (cmp, e1, e2) = let val qa = (* Here [NONE] means unkown. *) fn Sql.SqConst p => SOME (Prim p) | Sql.Field tf => SOME (Field tf) | Sql.Inj (EPrim p, _) => SOME (Prim p) | Sql.Inj (ERel n, _) => SOME (rel n) (* We can't deal with anything else. *) | _ => NONE in (cmp, qa e1, qa e2) end fun negateCmp (cmp, e1, e2) = (case cmp of Sql.Eq => Sql.Ne | Sql.Ne => Sql.Eq | Sql.Lt => Sql.Ge | Sql.Le => Sql.Gt | Sql.Gt => Sql.Le | Sql.Ge => Sql.Lt, e1, e2) val markQuery : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps QueryArg) val markDml : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps DmlRel) (* No eqs should have key conflicts because no variable is in two equivalence classes, so the [#1] can be anything. *) val mergeEqs : (atomExp IntBinaryMap.map option list -> atomExp IntBinaryMap.map option) = List.foldr (fn (SOME eqs, SOME acc) => SOME (IM.unionWith #1 (eqs, acc)) | _ => NONE) (SOME IM.empty) fun dnf (fQuery, fDml) = normalize negateCmp Dnf (Combo (Cnf, [markQuery fQuery, markDml fDml])) (* in *) val conflictMaps : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula * (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> atomExp IM.map list = List.mapPartial (mergeEqs o map eqsOfClass o equivClasses) o dnf (* end *) val rec sqexpToFormula = fn Sql.SqTrue => Combo (Cnf, []) | Sql.SqFalse => Combo (Dnf, []) | Sql.SqNot e => Negate (sqexpToFormula e) | Sql.Binop (Sql.RCmp c, e1, e2) => Atom (c, e1, e2) | Sql.Binop (Sql.RLop l, p1, p2) => Combo (case l of Sql.And => Cnf | Sql.Or => Dnf, [sqexpToFormula p1, sqexpToFormula p2]) (* ASK: any other sqexps that can be props? *) | _ => raise Match fun renameTables tablePairs = let fun renameString table = case List.find (fn (_, t) => table = t) tablePairs of NONE => table | SOME (realTable, _) => realTable val renameSqexp = fn Sql.Field (table, field) => Sql.Field (renameString table, field) | e => e fun renameAtom (cmp, e1, e2) = (cmp, renameSqexp e1, renameSqexp e2) in mapFormula renameAtom end val rec queryToFormula = fn Sql.Query1 {Where = NONE, ...} => Combo (Cnf, []) | Sql.Query1 {From = tablePairs, Where = SOME e, ...} => renameTables tablePairs (sqexpToFormula e) | Sql.Union (q1, q2) => Combo (Dnf, [queryToFormula q1, queryToFormula q2]) fun valsToFormula (table, vals) = Combo (Cnf, map (fn (field, v) => Atom (Sql.Eq, Sql.Field (table, field), v)) vals) val rec dmlToFormula = fn Sql.Insert tableVals => valsToFormula tableVals | Sql.Delete (table, wher) => renameTables [(table, "T")] (sqexpToFormula wher) (* TODO: refine formula for the vals part, which could take into account the wher part. *) (* TODO: use pushNegate instead of mapFormulaSigned? *) | Sql.Update (table, vals, wher) => let val f = sqexpToFormula wher fun update (positive, a) = let fun updateIfNecessary field = case List.find (fn (f, _) => field = f) vals of SOME (_, v) => (if positive then Sql.Eq else Sql.Ne, Sql.Field (table, field), v) | NONE => a in case a of (_, Sql.Field (_, field), _) => updateIfNecessary field | (_, _, Sql.Field (_, field)) => updateIfNecessary field | _ => a end in renameTables [(table, "T")] (Combo (Dnf, [f, Combo (Cnf, [valsToFormula (table, vals), mapFormulaSigned true update f])])) end val rec tablesQuery = fn Sql.Query1 {From = tablePairs, ...} => SS.fromList (map #1 tablePairs) | Sql.Union (q1, q2) => SS.union (tablesQuery q1, tablesQuery q2) val tableDml = fn Sql.Insert (tab, _) => tab | Sql.Delete (tab, _) => tab | Sql.Update (tab, _, _) => tab (* Program instrumentation. *) fun stringExp s = (EPrim (Prim.String (Prim.Normal, s)), ErrorMsg.dummySpan) val stringTyp = (TFfi ("Basis", "string"), ErrorMsg.dummySpan) val sequence = fn (exp :: exps) => let val loc = ErrorMsg.dummySpan in List.foldl (fn (e', seq) => ESeq ((seq, loc), (e', loc))) exp exps end | _ => raise Match fun ffiAppCache' (func, index, args) : Mono.exp' = EFfiApp ("Sqlcache", func ^ Int.toString index, args) fun ffiAppCache (func, index, args) : Mono.exp = (ffiAppCache' (func, index, args), ErrorMsg.dummySpan) val varPrefix = "queryResult" fun indexOfName varName = if String.isPrefix varPrefix varName then Int.fromString (String.extract (varName, String.size varPrefix, NONE)) else NONE (* Always increments negative indices because that's what we need later. *) fun incRelsBound bound inc = MonoUtil.Exp.mapB {typ = fn x => x, exp = fn level => (fn ERel n => ERel (if n >= level orelse n < 0 then n + inc else n) | x => x), bind = fn (level, MonoUtil.Exp.RelE _) => level + 1 | (level, _) => level} bound val incRels = incRelsBound 0 (* Filled in by instrumentQuery during [Monoize], used during [Sqlcache]. *) val urlifiedRel0s : Mono.exp IM.map ref = ref IM.empty (* Used by [Monoize]. *) val instrumentQuery = let val nextQuery = ref 0 fun iq (query, urlifiedRel0) = case query of (EQuery {state = typ, ...}, loc) => let val i = !nextQuery before nextQuery := !nextQuery + 1 in urlifiedRel0s := IM.insert (!urlifiedRel0s, i, urlifiedRel0); (ELet (varPrefix ^ Int.toString i, typ, query, (* Uses a dummy FFI call to keep the urlified expression around, which in turn keeps the declarations required for urlification safe from [MonoShake]. The dummy call is removed during [Sqlcache]. *) (* TODO: thread a [Monoize.Fm.t] through this module. *) (ESeq ((EFfiApp ("Sqlcache", "dummy", [(urlifiedRel0, stringTyp)]), loc), (ERel 0, loc)), loc)), loc) end | _ => raise Match in iq end fun cacheWrap (query, i, urlifiedRel0, args) = case query of (EQuery {state = typ, ...}, _) => let val () = ffiInfo := {index = i, params = length args} :: !ffiInfo val loc = ErrorMsg.dummySpan (* We ensure before this step that all arguments aren't effectful. by turning them into local variables as needed. *) val argTyps = map (fn e => (e, stringTyp)) args val argTypsInc = map (fn (e, typ) => (incRels 1 e, typ)) argTyps val check = ffiAppCache ("check", i, argTyps) val store = ffiAppCache ("store", i, (urlifiedRel0, stringTyp) :: argTypsInc) val rel0 = (ERel 0, loc) in (ECase (check, [((PNone stringTyp, loc), (ELet ("q", typ, query, (ESeq (store, rel0), loc)), loc)), ((PSome (stringTyp, (PVar ("hit", stringTyp), loc)), loc), (* Boolean is false because we're not unurlifying from a cookie. *) (EUnurlify (rel0, typ, false), loc))], {disc = stringTyp, result = typ}), loc) end | _ => raise Match fun fileMapfold doExp file start = case MonoUtil.File.mapfold {typ = Search.return2, exp = fn x => (fn s => Search.Continue (doExp x s)), decl = Search.return2} file start of Search.Continue x => x | Search.Return _ => raise Match fun fileMap doExp file = #1 (fileMapfold (fn x => fn _ => (doExp x, ())) file ()) fun addChecking file = let fun doExp (queryInfo as (tableToIndices, indexToQuery)) = fn e' as ELet (v, t, queryExp' as (EQuery {query = origQueryText, initial, body, state, tables, exps}, queryLoc), letBody) => let val loc = ErrorMsg.dummySpan val chunks = Sql.chunkify origQueryText fun strcat (e1, e2) = (EStrcat (e1, e2), loc) val (newQueryText, newVariables) = (* Important that this is foldr (to oppose foldl below). *) List.foldr (fn (chunk, (qText, newVars)) => (* Variable bound to the head of newBs will have the lowest index. *) case chunk of Sql.Exp (e as (EPrim _, _)) => (strcat (e, qText), newVars) | Sql.Exp e => let val n = length newVars in (* This is the (n + 1)th new variable, so there are already n new variables bound, so we increment indices by n. *) (strcat ((ERel (~(n+1)), loc), qText), incRels n e :: newVars) end | Sql.String s => (strcat (stringExp s, qText), newVars)) (stringExp "", []) chunks fun wrapLets e' = (* Important that this is foldl (to oppose foldr above). *) List.foldl (fn (v, e') => ELet ("sqlArgz", stringTyp, v, (e', loc))) e' newVariables val numArgs = length newVariables (* Increment once for each new variable just made. *) val queryExp = incRels (length newVariables) (EQuery {query = newQueryText, initial = initial, body = body, state = state, tables = tables, exps = exps}, queryLoc) val (EQuery {query = queryText, ...}, _) = queryExp val () = Print.preface ("sqlcache> ", (MonoPrint.p_exp MonoEnv.empty queryText)); val args = List.tabulate (numArgs, fn n => (ERel n, loc)) fun bind x f = Option.mapPartial f x fun guard b x = if b then x else NONE (* DEBUG: set first boolean argument to true to turn on printing. *) fun safe bound = not o effectful true (effectfulMap file) false bound val attempt = (* Ziv misses Haskell's do notation.... *) guard (safe 0 queryText andalso safe 0 initial andalso safe 2 body) ( bind (Sql.parse Sql.query queryText) (fn queryParsed => bind (indexOfName v) (fn index => bind (IM.find (!urlifiedRel0s, index)) (fn urlifiedRel0 => SOME (wrapLets (ELet (v, t, cacheWrap (queryExp, index, urlifiedRel0, args), incRelsBound 1 (length newVariables) letBody)), (SS.foldr (fn (tab, qi) => SIMM.insert (qi, tab, index)) tableToIndices (tablesQuery queryParsed), IM.insert (indexToQuery, index, (queryParsed, numArgs)))))))) in case attempt of SOME pair => pair | NONE => (e', queryInfo) end | ESeq ((EFfiApp ("Sqlcache", "dummy", _), _), (e', _)) => (e', queryInfo) | e' => (e', queryInfo) in fileMapfold (fn exp => fn state => doExp state exp) file (SIMM.empty, IM.empty) end val gunk' : (((Sql.cmp * Sql.sqexp * Sql.sqexp) formula) * ((Sql.cmp * Sql.sqexp * Sql.sqexp) formula)) list ref = ref [] fun invalidations (nQueryArgs, query, dml) = let val loc = ErrorMsg.dummySpan val optionAtomExpToExp = fn NONE => (ENone stringTyp, loc) | SOME e => (ESome (stringTyp, (case e of DmlRel n => ERel n | Prim p => EPrim p (* TODO: make new type containing only these two. *) | _ => raise Match, loc)), loc) fun eqsToInvalidation eqs = let fun inv n = if n < 0 then [] else IM.find (eqs, n) :: inv (n - 1) in inv (nQueryArgs - 1) end (* *) val rec madeRedundantBy : atomExp option list * atomExp option list -> bool = fn ([], []) => true | (NONE :: xs, _ :: ys) => madeRedundantBy (xs, ys) | (SOME x :: xs, SOME y :: ys) => equalAtomExp (x, y) andalso madeRedundantBy (xs, ys) | _ => false fun removeRedundant' (xss, yss) = case xss of [] => yss | xs :: xss' => removeRedundant' (xss', if List.exists (fn ys => madeRedundantBy (xs, ys)) (xss' @ yss) then yss else xs :: yss) fun removeRedundant xss = removeRedundant' (xss, []) val eqss = conflictMaps (queryToFormula query, dmlToFormula dml) in gunk' := (queryToFormula query, dmlToFormula dml) :: !gunk'; (map (map optionAtomExpToExp) o removeRedundant o map eqsToInvalidation) eqss end val gunk : Mono.exp list list list ref = ref [] fun addFlushing (file, queryInfo as (tableToIndices, indexToQuery)) = let val allIndices = SM.foldr (fn (x, acc) => IS.listItems x @ acc) [] tableToIndices val flushes = map (fn i => ffiAppCache' ("flush", i, [])) val doExp = fn dmlExp as EDml (dmlText, _) => let val indices = case Sql.parse Sql.dml dmlText of SOME dmlParsed => map (fn i => ((case IM.find (indexToQuery, i) of NONE => () | SOME (queryParsed, numArgs) => gunk := invalidations (numArgs, queryParsed, dmlParsed) :: !gunk); i)) (SIMM.findList (tableToIndices, tableDml dmlParsed)) | NONE => allIndices in sequence (flushes indices @ [dmlExp]) end | e' => e' in fileMap doExp file end fun go file = let val () = Sql.sqlcacheMode := true val file' = addFlushing (addChecking file) val () = Sql.sqlcacheMode := false in file' end end