structure Sqlcache :> SQLCACHE = struct open Mono structure IS = IntBinarySet structure IM = IntBinaryMap structure SK = struct type ord_key = string val compare = String.compare end structure SS = BinarySetFn(SK) structure SM = BinaryMapFn(SK) structure SIMM = MultimapFn(structure KeyMap = SM structure ValSet = IS) fun iterate f n x = if n < 0 then raise Fail "Can't iterate function negative number of times." else if n = 0 then x else iterate f (n-1) (f x) (* Filled in by [cacheWrap]. *) val ffiInfo : {index : int, params : int} list ref = ref [] fun resetFfiInfo () = ffiInfo := [] fun getFfiInfo () = !ffiInfo (* Some FFIs have writing as their only effect, which the caching records. *) val ffiEffectful = (* ASK: how can this be less hard-coded? *) let val okayWrites = SS.fromList ["htmlifyInt_w", "htmlifyFloat_w", "htmlifyString_w", "htmlifyBool_w", "htmlifyTime_w", "attrifyInt_w", "attrifyFloat_w", "attrifyString_w", "attrifyChar_w", "urlifyInt_w", "urlifyFloat_w", "urlifyString_w", "urlifyBool_w", "urlifyChannel_w"] in (* ASK: is it okay to hardcode Sqlcache functions as effectful? *) fn (m, f) => Settings.isEffectful (m, f) andalso not (m = "Basis" andalso SS.member (okayWrites, f)) end val cache = ref LruCache.cache fun setCache c = cache := c fun getCache () = !cache (* Used to have type context for local variables in MonoUtil functions. *) val doBind = fn (env, MonoUtil.Exp.RelE (x, t)) => MonoEnv.pushERel env x t NONE | (env, MonoUtil.Exp.NamedE (x, n, t, eo, s)) => MonoEnv.pushENamed env x n t eo s | (env, MonoUtil.Exp.Datatype (x, n, cs)) => MonoEnv.pushDatatype env x n cs (*******************) (* Effect Analysis *) (*******************) (* Makes an exception for [EWrite] (which is recorded when caching). *) fun effectful (effs : IS.set) = let val isFunction = fn (TFun _, _) => true | _ => false fun doExp (env, e) = case e of EPrim _ => false (* For now: variables of function type might be effectful, but others are fully evaluated and are therefore not effectful. *) | ERel n => isFunction (#2 (MonoEnv.lookupERel env n)) | ENamed n => IS.member (effs, n) | EFfi (m, f) => ffiEffectful (m, f) | EFfiApp (m, f, _) => ffiEffectful (m, f) (* These aren't effectful unless a subexpression is. *) | ECon _ => false | ENone _ => false | ESome _ => false | EApp _ => false | EAbs _ => false | EUnop _ => false | EBinop _ => false | ERecord _ => false | EField _ => false | ECase _ => false | EStrcat _ => false (* EWrite is a special exception because we record writes when caching. *) | EWrite _ => false | ESeq _ => false | ELet _ => false | EUnurlify _ => false (* ASK: what should we do about closures? *) (* Everything else is some sort of effect. We could flip this and explicitly list bits of Mono that are effectful, but this is conservatively robust to future changes (however unlikely). *) | _ => true in MonoUtil.Exp.existsB {typ = fn _ => false, exp = doExp, bind = doBind} end (* TODO: test this. *) fun effectfulDecls (decls, _) = let fun doVal ((_, name, _, e, _), effs) = if effectful effs MonoEnv.empty e then IS.add (effs, name) else effs val doDecl = fn ((DVal v, _), effs) => doVal (v, effs) (* Repeat the list of declarations a number of times equal to its size, making sure effectfulness propagates everywhere it should. This is analagous to the Bellman-Ford algorithm. *) | ((DValRec vs, _), effs) => List.foldl doVal effs (List.concat (List.map (fn _ => vs) vs)) (* ASK: any other cases? *) | (_, effs) => effs in List.foldl doDecl IS.empty decls end (*********************************) (* Boolean Formula Normalization *) (*********************************) datatype junctionType = Conj | Disj datatype 'atom formula = Atom of 'atom | Negate of 'atom formula | Combo of junctionType * 'atom formula list (* Guaranteed to have all negation pushed to the atoms. *) datatype 'atom formula' = Atom' of 'atom | Combo' of junctionType * 'atom formula' list val flipJt = fn Conj => Disj | Disj => Conj fun concatMap f xs = List.concat (map f xs) val rec cartesianProduct : 'a list list -> 'a list list = fn [] => [[]] | (xs :: xss) => concatMap (fn ys => concatMap (fn x => [x :: ys]) xs) (cartesianProduct xss) (* Pushes all negation to the atoms.*) fun pushNegate (normalizeAtom : bool * 'atom -> 'atom) (negating : bool) = fn Atom x => Atom' (normalizeAtom (negating, x)) | Negate f => pushNegate normalizeAtom (not negating) f | Combo (j, fs) => Combo' (if negating then flipJt j else j, map (pushNegate normalizeAtom negating) fs) val rec flatten = fn Combo' (_, [f]) => flatten f | Combo' (j, fs) => Combo' (j, List.foldr (fn (f, acc) => case f of Combo' (j', fs') => if j = j' orelse length fs' = 1 then fs' @ acc else f :: acc | _ => f :: acc) [] (map flatten fs)) | f => f (* [simplify] operates on the desired normal form. E.g., if [junc] is [Disj], consider the list of lists to be a disjunction of conjunctions. *) fun normalize' (simplify : 'a list list -> 'a list list) (junc : junctionType) = let fun norm junc = simplify o (fn Atom' x => [[x]] | Combo' (j, fs) => let val fss = map (norm junc) fs in if j = junc then List.concat fss else map List.concat (cartesianProduct fss) end) in norm junc end fun normalize simplify normalizeAtom junc = normalize' simplify junc o flatten o pushNegate normalizeAtom false fun mapFormula mf = fn Atom x => Atom (mf x) | Negate f => Negate (mapFormula mf f) | Combo (j, fs) => Combo (j, map (mapFormula mf) fs) (****************) (* SQL Analysis *) (****************) structure CmpKey = struct type ord_key = Sql.cmp val compare = fn (Sql.Eq, Sql.Eq) => EQUAL | (Sql.Eq, _) => LESS | (_, Sql.Eq) => GREATER | (Sql.Ne, Sql.Ne) => EQUAL | (Sql.Ne, _) => LESS | (_, Sql.Ne) => GREATER | (Sql.Lt, Sql.Lt) => EQUAL | (Sql.Lt, _) => LESS | (_, Sql.Lt) => GREATER | (Sql.Le, Sql.Le) => EQUAL | (Sql.Le, _) => LESS | (_, Sql.Le) => GREATER | (Sql.Gt, Sql.Gt) => EQUAL | (Sql.Gt, _) => LESS | (_, Sql.Gt) => GREATER | (Sql.Ge, Sql.Ge) => EQUAL end val rec chooseTwos : 'a list -> ('a * 'a) list = fn [] => [] | x :: ys => map (fn y => (x, y)) ys @ chooseTwos ys fun removeRedundant madeRedundantBy zs = let fun removeRedundant' (xs, ys) = case xs of [] => ys | x :: xs' => removeRedundant' (xs', if List.exists (fn y => madeRedundantBy (x, y)) (xs' @ ys) then ys else x :: ys) in removeRedundant' (zs, []) end datatype atomExp = QueryArg of int | DmlRel of int | Prim of Prim.t | Field of string * string structure AtomExpKey : ORD_KEY = struct type ord_key = atomExp val compare = fn (QueryArg n1, QueryArg n2) => Int.compare (n1, n2) | (QueryArg _, _) => LESS | (_, QueryArg _) => GREATER | (DmlRel n1, DmlRel n2) => Int.compare (n1, n2) | (DmlRel _, _) => LESS | (_, DmlRel _) => GREATER | (Prim p1, Prim p2) => Prim.compare (p1, p2) | (Prim _, _) => LESS | (_, Prim _) => GREATER | (Field (t1, f1), Field (t2, f2)) => case String.compare (t1, t2) of EQUAL => String.compare (f1, f2) | ord => ord end structure AtomOptionKey = OptionKeyFn(AtomExpKey) structure UF = UnionFindFn(AtomExpKey) structure ConflictMaps = struct structure TK = TripleKeyFn(structure I = CmpKey structure J = AtomOptionKey structure K = AtomOptionKey) structure TS : ORD_SET = BinarySetFn(TK) val toKnownEquality = (* [NONE] here means unkown. Anything that isn't a comparison between two knowns shouldn't be used, and simply dropping unused terms is okay in disjunctive normal form. *) fn (Sql.Eq, SOME e1, SOME e2) => SOME (e1, e2) | _ => NONE val equivClasses : (Sql.cmp * atomExp option * atomExp option) list -> atomExp list list = UF.classes o List.foldl UF.union' UF.empty o List.mapPartial toKnownEquality fun addToEqs (eqs, n, e) = case IM.find (eqs, n) of (* Comparing to a constant is probably better than comparing to a variable? Checking that existing constants match a new ones is handled by [accumulateEqs]. *) SOME (Prim _) => eqs | _ => IM.insert (eqs, n, e) val accumulateEqs = (* [NONE] means we have a contradiction. *) fn (_, NONE) => NONE | ((Prim p1, Prim p2), eqso) => (case Prim.compare (p1, p2) of EQUAL => eqso | _ => NONE) | ((QueryArg n, Prim p), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((QueryArg n, DmlRel r), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) | ((Prim p, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, Prim p)) | ((DmlRel r, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r)) (* TODO: deal with equalities between [DmlRel]s and [Prim]s. This would involve guarding the invalidation with a check for the relevant comparisons. *) | (_, eqso) => eqso val eqsOfClass : atomExp list -> atomExp IM.map option = List.foldl accumulateEqs (SOME IM.empty) o chooseTwos fun toAtomExps rel (cmp, e1, e2) = let val qa = (* Here [NONE] means unkown. *) fn Sql.SqConst p => SOME (Prim p) | Sql.Field tf => SOME (Field tf) | Sql.Inj (EPrim p, _) => SOME (Prim p) | Sql.Inj (ERel n, _) => SOME (rel n) (* We can't deal with anything else, e.g., CURRENT_TIMESTAMP becomes Sql.Unmodeled, which becomes NONE here. *) | _ => NONE in (cmp, qa e1, qa e2) end val negateCmp = fn Sql.Eq => Sql.Ne | Sql.Ne => Sql.Eq | Sql.Lt => Sql.Ge | Sql.Le => Sql.Gt | Sql.Gt => Sql.Le | Sql.Ge => Sql.Lt fun normalizeAtom (negating, (cmp, e1, e2)) = (* Restricting to Le/Lt and sorting the expressions in Eq/Ne helps with simplification, where we put the triples in sets. *) case (if negating then negateCmp cmp else cmp) of Sql.Eq => (case AtomOptionKey.compare (e1, e2) of LESS => (Sql.Eq, e2, e1) | _ => (Sql.Eq, e1, e2)) | Sql.Ne => (case AtomOptionKey.compare (e1, e2) of LESS => (Sql.Ne, e2, e1) | _ => (Sql.Ne, e1, e2)) | Sql.Lt => (Sql.Lt, e1, e2) | Sql.Le => (Sql.Le, e1, e2) | Sql.Gt => (Sql.Lt, e2, e1) | Sql.Ge => (Sql.Le, e2, e1) val markQuery : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps QueryArg) val markDml : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula -> (Sql.cmp * atomExp option * atomExp option) formula = mapFormula (toAtomExps DmlRel) (* No eqs should have key conflicts because no variable is in two equivalence classes, so the [#1] could be [#2]. *) val mergeEqs : (atomExp IntBinaryMap.map option list -> atomExp IntBinaryMap.map option) = List.foldr (fn (SOME eqs, SOME acc) => SOME (IM.unionWith #1 (eqs, acc)) | _ => NONE) (SOME IM.empty) val simplify = map TS.listItems o removeRedundant (fn (x, y) => TS.isSubset (y, x)) o map (fn xs => TS.addList (TS.empty, xs)) fun dnf (fQuery, fDml) = normalize simplify normalizeAtom Disj (Combo (Conj, [markQuery fQuery, markDml fDml])) val conflictMaps = List.mapPartial (mergeEqs o map eqsOfClass o equivClasses) o dnf end val conflictMaps = ConflictMaps.conflictMaps val rec sqexpToFormula = fn Sql.SqTrue => Combo (Conj, []) | Sql.SqFalse => Combo (Disj, []) | Sql.SqNot e => Negate (sqexpToFormula e) | Sql.Binop (Sql.RCmp c, e1, e2) => Atom (c, e1, e2) | Sql.Binop (Sql.RLop l, p1, p2) => Combo (case l of Sql.And => Conj | Sql.Or => Disj, [sqexpToFormula p1, sqexpToFormula p2]) (* ASK: any other sqexps that can be props? *) | _ => raise Match fun renameTables tablePairs = let fun renameString table = case List.find (fn (_, t) => table = t) tablePairs of NONE => table | SOME (realTable, _) => realTable val renameSqexp = fn Sql.Field (table, field) => Sql.Field (renameString table, field) | e => e fun renameAtom (cmp, e1, e2) = (cmp, renameSqexp e1, renameSqexp e2) in mapFormula renameAtom end val rec queryToFormula = fn Sql.Query1 {Where = NONE, ...} => Combo (Conj, []) | Sql.Query1 {From = tablePairs, Where = SOME e, ...} => renameTables tablePairs (sqexpToFormula e) | Sql.Union (q1, q2) => Combo (Disj, [queryToFormula q1, queryToFormula q2]) fun valsToFormula (table, vals) = Combo (Conj, map (fn (field, v) => Atom (Sql.Eq, Sql.Field (table, field), v)) vals) val rec dmlToFormula = fn Sql.Insert (table, vals) => valsToFormula (table, vals) | Sql.Delete (table, wher) => renameTables [(table, "T")] (sqexpToFormula wher) | Sql.Update (table, vals, wher) => let val fWhere = sqexpToFormula wher val fVals = valsToFormula (table, vals) val modifiedFields = SS.addList (SS.empty, map #1 vals) (* TODO: don't use field name hack. *) val markField = fn e as Sql.Field (t, v) => if SS.member (modifiedFields, v) then Sql.Field (t, v ^ "'") else e | e => e val mark = mapFormula (fn (cmp, e1, e2) => (cmp, markField e1, markField e2)) in renameTables [(table, "T")] (Combo (Disj, [Combo (Conj, [fVals, mark fWhere]), Combo (Conj, [mark fVals, fWhere])])) end val rec tablesQuery = fn Sql.Query1 {From = tablePairs, ...} => SS.fromList (map #1 tablePairs) | Sql.Union (q1, q2) => SS.union (tablesQuery q1, tablesQuery q2) val tableDml = fn Sql.Insert (tab, _) => tab | Sql.Delete (tab, _) => tab | Sql.Update (tab, _, _) => tab (*************************************) (* Program Instrumentation Utilities *) (*************************************) val varName = let val varNumber = ref 0 in fn s => (varNumber := !varNumber + 1; s ^ Int.toString (!varNumber)) end val {check, store, flush, ...} = getCache () val dummyLoc = ErrorMsg.dummySpan val dummyTyp = (TRecord [], dummyLoc) fun stringExp s = (EPrim (Prim.String (Prim.Normal, s)), dummyLoc) val stringTyp = (TFfi ("Basis", "string"), dummyLoc) val sequence = fn (exp :: exps) => let val loc = dummyLoc in List.foldl (fn (e', seq) => ESeq ((seq, loc), (e', loc))) exp exps end | _ => raise Match (* Always increments negative indices as a hack we use later. *) fun incRels inc = MonoUtil.Exp.mapB {typ = fn t' => t', exp = fn bound => (fn ERel n => ERel (if n >= bound orelse n < 0 then n + inc else n) | e' => e'), bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound} 0 fun fileTopLevelMapfoldB doTopLevelExp (decls, sideInfo) state = let fun doVal env ((x, n, t, exp, s), state) = let val (exp, state) = doTopLevelExp env exp state in ((x, n, t, exp, s), state) end fun doDecl' env (decl', state) = case decl' of DVal v => let val (v, state) = doVal env (v, state) in (DVal v, state) end | DValRec vs => let val (vs, state) = ListUtil.foldlMap (doVal env) state vs in (DValRec vs, state) end | _ => (decl', state) fun doDecl (decl as (decl', loc), (env, state)) = let val env = MonoEnv.declBinds env decl val (decl', state) = doDecl' env (decl', state) in ((decl', loc), (env, state)) end val (decls, (_, state)) = (ListUtil.foldlMap doDecl (MonoEnv.empty, state) decls) in ((decls, sideInfo), state) end fun fileAllMapfoldB doExp file start = case MonoUtil.File.mapfoldB {typ = Search.return2, exp = fn env => fn e' => fn s => Search.Continue (doExp env e' s), decl = fn _ => Search.return2, bind = doBind} MonoEnv.empty file start of Search.Continue x => x | Search.Return _ => raise Match fun fileMap doExp file = #1 (fileAllMapfoldB (fn _ => fn e => fn _ => (doExp e, ())) file ()) (**********************) (* Mono Type Checking *) (**********************) fun typOfExp' (env : MonoEnv.env) : exp' -> typ option = fn EPrim p => SOME (TFfi ("Basis", case p of Prim.Int _ => "int" | Prim.Float _ => "double" | Prim.String _ => "string" | Prim.Char _ => "char"), dummyLoc) | ERel n => SOME (#2 (MonoEnv.lookupERel env n)) | ENamed n => SOME (#2 (MonoEnv.lookupENamed env n)) (* ASK: okay to make a new [ref] each time? *) | ECon (dk, PConVar nCon, _) => let val (_, _, nData) = MonoEnv.lookupConstructor env nCon val (_, cs) = MonoEnv.lookupDatatype env nData in SOME (TDatatype (nData, ref (dk, cs)), dummyLoc) end | ECon (_, PConFfi {mod = s, datatyp, ...}, _) => SOME (TFfi (s, datatyp), dummyLoc) | ENone t => SOME (TOption t, dummyLoc) | ESome (t, _) => SOME (TOption t, dummyLoc) | EFfi _ => NONE | EFfiApp _ => NONE | EApp (e1, e2) => (case typOfExp env e1 of SOME (TFun (_, t), _) => SOME t | _ => NONE) | EAbs (_, t1, t2, _) => SOME (TFun (t1, t2), dummyLoc) (* ASK: is this right? *) | EUnop (unop, e) => (case unop of "!" => SOME (TFfi ("Basis", "bool"), dummyLoc) | "-" => typOfExp env e | _ => NONE) (* ASK: how should this (and other "=> NONE" cases) work? *) | EBinop _ => NONE | ERecord fields => SOME (TRecord (map (fn (s, _, t) => (s, t)) fields), dummyLoc) | EField (e, s) => (case typOfExp env e of SOME (TRecord fields, _) => (case List.find (fn (s', _) => s = s') fields of SOME (_, t) => SOME t | _ => NONE) | _ => NONE) | ECase (_, _, {result, ...}) => SOME result | EStrcat _ => SOME (TFfi ("Basis", "string"), dummyLoc) | EWrite _ => SOME (TRecord [], dummyLoc) | ESeq (_, e) => typOfExp env e | ELet (s, t, e1, e2) => typOfExp (MonoEnv.pushERel env s t (SOME e1)) e2 | EClosure _ => NONE | EUnurlify (_, t, _) => SOME t | _ => NONE and typOfExp env (e', loc) = typOfExp' env e' (*******************************) (* Caching Pure Subexpressions *) (*******************************) fun cacheWrap (env, exp, resultTyp, args, i) = let val loc = dummyLoc val rel0 = (ERel 0, loc) in case MonoFooify.urlify env (rel0, resultTyp) of NONE => NONE | SOME urlified => let val () = ffiInfo := {index = i, params = length args} :: !ffiInfo (* We ensure before this step that all arguments aren't effectful. by turning them into local variables as needed. *) val argsInc = map (incRels 1) args val check = (check (i, args), loc) val store = (store (i, argsInc, urlified), loc) in SOME (ECase (check, [((PNone stringTyp, loc), (ELet (varName "q", resultTyp, exp, (ESeq (store, rel0), loc)), loc)), ((PSome (stringTyp, (PVar (varName "hit", stringTyp), loc)), loc), (* Boolean is false because we're not unurlifying from a cookie. *) (EUnurlify (rel0, resultTyp, false), loc))], {disc = (TOption stringTyp, loc), result = resultTyp})) end end val freeVars = IS.listItems o MonoUtil.Exp.foldB {typ = #2, exp = fn (bound, ERel n, vars) => if n < bound then vars else IS.add (vars, n - bound) | (_, _, vars) => vars, bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound} 0 IS.empty val expSize = MonoUtil.Exp.fold {typ = #2, exp = fn (_, n) => n+1} 0 structure InvalidationInfo :> sig type t val empty : t val fromList : int list -> t val toList : t -> int list val union : t * t -> t val unbind : t * int -> t option end = struct (* Keep track of the minimum explicitly. NONE is the empty set. *) type t = (int * IS.set) option val fromList = List.foldl (fn (n, NONE) => SOME (n, IS.singleton n) | (n', SOME (n, ns)) => SOME (Int.min (n, n'), IS.add (ns, n'))) NONE val empty = fromList [] val toList = fn NONE => [] | SOME (_, ns) => IS.listItems ns val union = fn (SOME (n1, ns1), SOME (n2, ns2)) => SOME (Int.min (n1, n2), IS.union (ns1, ns2)) | (NONE, info) => info | (info, NONE) => info val unbind = fn (SOME (n, ns), unbound) => let val n = n - unbound in if n < 0 then NONE else SOME (SOME (n, IS.map (fn n => n - unbound) ns)) end | _ => SOME NONE end val unionUnbind = List.foldl (fn (_, NONE) => NONE | ((info, unbound), SOME infoAcc) => case InvalidationInfo.unbind (info, unbound) of NONE => NONE | SOME info => SOME (InvalidationInfo.union (info, infoAcc))) (SOME InvalidationInfo.empty) datatype subexp = Pure of unit -> exp | Impure of exp val isImpure = fn Pure _ => false | Impure _ => true val expOfSubexp = fn Pure f => f () | Impure e => e (* TODO: pick a number. *) val sizeWorthCaching = 5 fun makeCache (env, exp', index) = case typOfExp' env exp' of NONE => NONE | SOME (TFun _, _) => NONE | SOME typ => if expSize (exp', dummyLoc) < sizeWorthCaching then NONE else case List.foldr (fn ((_, _), NONE) => NONE | ((n, typ), SOME args) => case MonoFooify.urlify env ((ERel n, dummyLoc), typ) of NONE => NONE | SOME arg => SOME (arg :: args)) (SOME []) (map (fn n => (n, #2 (MonoEnv.lookupERel env n))) (freeVars (exp', dummyLoc))) of NONE => NONE | SOME args => cacheWrap (env, (exp', dummyLoc), typ, args, index) fun pureCache (effs : IS.set) ((env, exp as (exp', loc)), index) : subexp * int = let fun wrapBindN f (args : (MonoEnv.env * exp) list) = let val (subexps, index) = ListUtil.foldlMap (pureCache effs) index args fun mkExp () = (f (map expOfSubexp subexps), loc) in if List.exists isImpure subexps then (Impure (mkExp ()), index) else (Pure (fn () => case makeCache (env, f (map #2 args), index) of NONE => mkExp () | SOME e' => (e', loc)), (* Conservatively increment index. *) index + 1) end fun wrapBind1 f arg = wrapBindN (fn [arg] => f arg | _ => raise Match) [arg] fun wrapBind2 f (arg1, arg2) = wrapBindN (fn [arg1, arg2] => f (arg1, arg2) | _ => raise Match) [arg1, arg2] fun wrapN f es = wrapBindN f (map (fn e => (env, e)) es) fun wrap1 f e = wrapBind1 f (env, e) fun wrap2 f (e1, e2) = wrapBind2 f ((env, e1), (env, e2)) in case exp' of ECon (dk, pc, SOME e) => wrap1 (fn e => ECon (dk, pc, SOME e)) e | ESome (t, e) => wrap1 (fn e => ESome (t, e)) e | EFfiApp (s1, s2, args) => if ffiEffectful (s1, s2) then (Impure exp, index) else wrapN (fn es => EFfiApp (s1, s2, ListPair.map (fn (e, (_, t)) => (e, t)) (es, args))) (map #1 args) | EApp (e1, e2) => wrap2 EApp (e1, e2) | EAbs (s, t1, t2, e) => wrapBind1 (fn e => EAbs (s, t1, t2, e)) (MonoEnv.pushERel env s t1 NONE, e) | EUnop (s, e) => wrap1 (fn e => EUnop (s, e)) e | EBinop (bi, s, e1, e2) => wrap2 (fn (e1, e2) => EBinop (bi, s, e1, e2)) (e1, e2) | ERecord fields => wrapN (fn es => ERecord (ListPair.map (fn (e, (s, _, t)) => (s, e, t)) (es, fields))) (map #2 fields) | EField (e, s) => wrap1 (fn e => EField (e, s)) e | ECase (e, cases, {disc, result}) => wrapBindN (fn (e::es) => ECase (e, (ListPair.map (fn (e, (p, _)) => (p, e)) (es, cases)), {disc = disc, result = result}) | _ => raise Match) ((env, e) :: map (fn (p, e) => (MonoEnv.patBinds env p, e)) cases) | EStrcat (e1, e2) => wrap2 EStrcat (e1, e2) (* We record page writes, so they're cachable. *) | EWrite e => wrap1 EWrite e | ESeq (e1, e2) => wrap2 ESeq (e1, e2) | ELet (s, t, e1, e2) => wrapBind2 (fn (e1, e2) => ELet (s, t, e1, e2)) ((env, e1), (MonoEnv.pushERel env s t (SOME e1), e2)) (* ASK: | EClosure (n, es) => ? *) | EUnurlify (e, t, b) => wrap1 (fn e => EUnurlify (e, t, b)) e | _ => if effectful effs env exp then (Impure exp, index) else (Pure (fn () => (case makeCache (env, exp', index) of NONE => exp' | SOME e' => e', loc)), index + 1) end fun addPure (file, indexStart, effs) = let fun doTopLevelExp env exp index = let val (subexp, index) = pureCache effs ((env, exp), index) in (expOfSubexp subexp, index) end in #1 (fileTopLevelMapfoldB doTopLevelExp file indexStart) end (***********************) (* Caching SQL Queries *) (***********************) fun factorOutNontrivial text = let val loc = dummyLoc fun strcat (e1, e2) = (EStrcat (e1, e2), loc) val chunks = Sql.chunkify text val (newText, newVariables) = (* Important that this is foldr (to oppose foldl below). *) List.foldr (fn (chunk, (qText, newVars)) => (* Variable bound to the head of newBs will have the lowest index. *) case chunk of Sql.Exp (e as (EPrim _, _)) => (strcat (e, qText), newVars) | Sql.Exp e => let val n = length newVars in (* This is the (n+1)th new variable, so there are already n new variables bound, so we increment indices by n. *) (strcat ((ERel (~(n+1)), loc), qText), incRels n e :: newVars) end | Sql.String s => (strcat (stringExp s, qText), newVars)) (stringExp "", []) chunks fun wrapLets e' = (* Important that this is foldl (to oppose foldr above). *) List.foldl (fn (v, e') => ELet (varName "sqlArg", stringTyp, v, (e', loc))) e' newVariables val numArgs = length newVariables in (newText, wrapLets, numArgs) end fun cacheQuery effs env (queryInfo as (tableToIndices, indexToQueryNumArgs, index)) = fn e' as EQuery {query = origQueryText, state = resultTyp, initial, body, tables, exps} => let val (newQueryText, wrapLets, numArgs) = factorOutNontrivial origQueryText (* Increment once for each new variable just made. *) val queryExp = incRels numArgs (EQuery {query = newQueryText, state = resultTyp, initial = initial, body = body, tables = tables, exps = exps}, dummyLoc) (* DEBUG *) (* val () = Print.preface ("sqlcache> ", MonoPrint.p_exp MonoEnv.empty queryText) *) val args = List.tabulate (numArgs, fn n => (ERel n, dummyLoc)) fun bind x f = Option.mapPartial f x fun guard b x = if b then x else NONE (* We use dummyTyp here. I think this is okay because databases don't store (effectful) functions, but perhaps there's some pathalogical corner case missing.... *) fun safe bound = not o effectful effs (iterate (fn env => MonoEnv.pushERel env "_" dummyTyp NONE) bound env) val textOfQuery = fn (EQuery {query, ...}, _) => SOME query | _ => NONE val attempt = (* Ziv misses Haskell's do notation.... *) bind (textOfQuery queryExp) (fn queryText => guard (safe 0 queryText andalso safe 0 initial andalso safe 2 body) ( bind (Sql.parse Sql.query queryText) (fn queryParsed => bind (cacheWrap (env, queryExp, resultTyp, args, index)) (fn cachedExp => SOME (wrapLets cachedExp, (SS.foldr (fn (tab, qi) => SIMM.insert (qi, tab, index)) tableToIndices (tablesQuery queryParsed), IM.insert (indexToQueryNumArgs, index, (queryParsed, numArgs)), index + 1)))))) in case attempt of SOME pair => pair (* We have to increment index conservatively. *) (* TODO: just use a reference for current index.... *) | NONE => (e', (tableToIndices, indexToQueryNumArgs, index + 1)) end | e' => (e', queryInfo) fun addChecking file = let val effs = effectfulDecls file in (fileAllMapfoldB (fn env => fn exp => fn state => cacheQuery effs env state exp) file (SIMM.empty, IM.empty, 0), effs) end (************) (* Flushing *) (************) structure Invalidations = struct val loc = dummyLoc val optionAtomExpToExp = fn NONE => (ENone stringTyp, loc) | SOME e => (ESome (stringTyp, (case e of DmlRel n => ERel n | Prim p => EPrim p (* TODO: make new type containing only these two. *) | _ => raise Match, loc)), loc) fun eqsToInvalidation numArgs eqs = let fun inv n = if n < 0 then [] else IM.find (eqs, n) :: inv (n - 1) in inv (numArgs - 1) end (* Tests if [ys] makes [xs] a redundant cache invalidation. [NONE] here represents unknown, which means a wider invalidation. *) val rec madeRedundantBy : atomExp option list * atomExp option list -> bool = fn ([], []) => true | (_ :: xs, NONE :: ys) => madeRedundantBy (xs, ys) | (SOME x :: xs, SOME y :: ys) => (case AtomExpKey.compare (x, y) of EQUAL => madeRedundantBy (xs, ys) | _ => false) | _ => false fun eqss (query, dml) = conflictMaps (queryToFormula query, dmlToFormula dml) fun invalidations ((query, numArgs), dml) = (map (map optionAtomExpToExp) o removeRedundant madeRedundantBy o map (eqsToInvalidation numArgs) o eqss) (query, dml) end val invalidations = Invalidations.invalidations (* DEBUG *) (* val gunk : ((Sql.query * int) * Sql.dml) list ref = ref [] *) (* val gunk' : exp list ref = ref [] *) fun addFlushing ((file, (tableToIndices, indexToQueryNumArgs, index)), effs) = let val flushes = List.concat o map (fn (i, argss) => map (fn args => flush (i, args)) argss) val doExp = fn EDml (origDmlText, failureMode) => let (* DEBUG *) (* val () = gunk' := origDmlText :: !gunk' *) val (newDmlText, wrapLets, numArgs) = factorOutNontrivial origDmlText val dmlText = incRels numArgs newDmlText val dmlExp = EDml (dmlText, failureMode) (* DEBUG *) (* val () = Print.preface ("SQLCACHE: ", (MonoPrint.p_exp MonoEnv.empty origDmlText)) *) val inval = case Sql.parse Sql.dml dmlText of SOME dmlParsed => SOME (map (fn i => (case IM.find (indexToQueryNumArgs, i) of SOME queryNumArgs => (* DEBUG *) ((* gunk := (queryNumArgs, dmlParsed) :: !gunk; *) (i, invalidations (queryNumArgs, dmlParsed))) (* TODO: fail more gracefully. *) | NONE => raise Match)) (SIMM.findList (tableToIndices, tableDml dmlParsed))) | NONE => NONE in case inval of (* TODO: fail more gracefully. *) NONE => raise Match | SOME invs => wrapLets (sequence (flushes invs @ [dmlExp])) end | e' => e' in (* DEBUG *) (* gunk := []; *) (fileMap doExp file, index, effs) end (***************) (* Entry point *) (***************) val inlineSql = let val doExp = (* TODO: EQuery, too? *) (* ASK: should this live in [MonoOpt]? *) fn EDml ((ECase (disc, cases, {disc = dTyp, ...}), loc), failureMode) => let val newCases = map (fn (p, e) => (p, (EDml (e, failureMode), loc))) cases in ECase (disc, newCases, {disc = dTyp, result = (TRecord [], loc)}) end | e => e in fileMap doExp end fun insertAfterDatatypes ((decls, sideInfo), newDecls) = let val (datatypes, others) = List.partition (fn (DDatatype _, _) => true | _ => false) decls in (datatypes @ newDecls @ others, sideInfo) end val go' = addPure o addFlushing o addChecking o inlineSql fun go file = let (* TODO: do something nicer than [Sql] being in one of two modes. *) val () = (resetFfiInfo (); Sql.sqlcacheMode := true) val file = go' file (* Important that this happens after [MonoFooify.urlify] calls! *) val fmDecls = MonoFooify.getNewFmDecls () val () = Sql.sqlcacheMode := false in insertAfterDatatypes (file, rev fmDecls) end end