(* Copyright (c) 2008, Adam Chlipala * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - The names of contributors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *) structure Elaborate :> ELABORATE = struct structure P = Prim structure L = Source structure L' = Elab structure E = ElabEnv structure U = ElabUtil open Print open ElabPrint fun elabExplicitness e = case e of L.Explicit => L'.Explicit | L.Implicit => L'.Implicit fun occursKind r = U.Kind.exists (fn L'.KUnif (_, r') => r = r' | _ => false) datatype kunify_error = KOccursCheckFailed of L'.kind * L'.kind | KIncompatible of L'.kind * L'.kind exception KUnify' of kunify_error fun kunifyError err = case err of KOccursCheckFailed (k1, k2) => eprefaces "Kind occurs check failed" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] | KIncompatible (k1, k2) => eprefaces "Incompatible kinds" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)] fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) = let fun err f = raise KUnify' (f (k1All, k2All)) in case (k1, k2) of (L'.KType, L'.KType) => () | (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) => (unifyKinds' d1 d2; unifyKinds' r1 r2) | (L'.KName, L'.KName) => () | (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2 | (L'.KError, _) => () | (_, L'.KError) => () | (L'.KUnif (_, ref (SOME k1All)), _) => unifyKinds' k1All k2All | (_, L'.KUnif (_, ref (SOME k2All))) => unifyKinds' k1All k2All | (L'.KUnif (_, r1), L'.KUnif (_, r2)) => if r1 = r2 then () else r1 := SOME k2All | (L'.KUnif (_, r), _) => if occursKind r k2All then err KOccursCheckFailed else r := SOME k2All | (_, L'.KUnif (_, r)) => if occursKind r k1All then err KOccursCheckFailed else r := SOME k1All | _ => err KIncompatible end exception KUnify of L'.kind * L'.kind * kunify_error fun unifyKinds k1 k2 = unifyKinds' k1 k2 handle KUnify' err => raise KUnify (k1, k2, err) datatype con_error = UnboundCon of ErrorMsg.span * string | UnboundStrInCon of ErrorMsg.span * string | WrongKind of L'.con * L'.kind * L'.kind * kunify_error fun conError env err = case err of UnboundCon (loc, s) => ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s) | UnboundStrInCon (loc, s) => ErrorMsg.errorAt loc ("Unbound structure " ^ s) | WrongKind (c, k1, k2, kerr) => (ErrorMsg.errorAt (#2 c) "Wrong kind"; eprefaces' [("Constructor", p_con env c), ("Have kind", p_kind k1), ("Need kind", p_kind k2)]; kunifyError kerr) fun checkKind env c k1 k2 = unifyKinds k1 k2 handle KUnify (k1, k2, err) => conError env (WrongKind (c, k1, k2, err)) val dummy = ErrorMsg.dummySpan val ktype = (L'.KType, dummy) val kname = (L'.KName, dummy) val ktype_record = (L'.KRecord ktype, dummy) val cerror = (L'.CError, dummy) val kerror = (L'.KError, dummy) val eerror = (L'.EError, dummy) val sgnerror = (L'.SgnError, dummy) val strerror = (L'.StrError, dummy) local val count = ref 0 in fun resetKunif () = count := 0 fun kunif () = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.KUnif (s, ref NONE), dummy) end end local val count = ref 0 in fun resetCunif () = count := 0 fun cunif k = let val n = !count val s = if n <= 26 then str (chr (ord #"A" + n)) else "U" ^ Int.toString (n - 26) in count := n + 1; (L'.CUnif (k, s, ref NONE), dummy) end end fun elabKind (k, loc) = case k of L.KType => (L'.KType, loc) | L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc) | L.KName => (L'.KName, loc) | L.KRecord k => (L'.KRecord (elabKind k), loc) | L.KWild => kunif () fun elabCon env (c, loc) = case c of L.CAnnot (c, k) => let val k' = elabKind k val (c', ck) = elabCon env c in checkKind env c' ck k'; (c', k') end | L.TFun (t1, t2) => let val (t1', k1) = elabCon env t1 val (t2', k2) = elabCon env t2 in checkKind env t1' k1 ktype; checkKind env t2' k2 ktype; ((L'.TFun (t1', t2'), loc), ktype) end | L.TCFun (e, x, k, t) => let val e' = elabExplicitness e val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk) = elabCon env' t in checkKind env t' tk ktype; ((L'.TCFun (e', x, k', t'), loc), ktype) end | L.TRecord c => let val (c', ck) = elabCon env c val k = (L'.KRecord ktype, loc) in checkKind env c' ck k; ((L'.TRecord c', loc), ktype) end | L.CVar ([], s) => (case E.lookupC env s of E.NotBound => (conError env (UnboundCon (loc, s)); (cerror, kerror)) | E.Rel (n, k) => ((L'.CRel n, loc), k) | E.Named (n, k) => ((L'.CNamed n, loc), k)) | L.CVar (m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (conError env (UnboundStrInCon (loc, m1)); (cerror, kerror)) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val k = case E.projectCon env {sgn = sgn, str = str, field = s} of NONE => (conError env (UnboundCon (loc, s)); kerror) | SOME (k, _) => k in ((L'.CModProj (n, ms, s), loc), k) end) | L.CApp (c1, c2) => let val (c1', k1) = elabCon env c1 val (c2', k2) = elabCon env c2 val dom = kunif () val ran = kunif () in checkKind env c1' k1 (L'.KArrow (dom, ran), loc); checkKind env c2' k2 dom; ((L'.CApp (c1', c2'), loc), ran) end | L.CAbs (x, k, t) => let val k' = elabKind k val env' = E.pushCRel env x k' val (t', tk) = elabCon env' t in ((L'.CAbs (x, k', t'), loc), (L'.KArrow (k', tk), loc)) end | L.CName s => ((L'.CName s, loc), kname) | L.CRecord xcs => let val k = kunif () val xcs' = map (fn (x, c) => let val (x', xk) = elabCon env x val (c', ck) = elabCon env c in checkKind env x' xk kname; checkKind env c' ck k; (x', c') end) xcs in ((L'.CRecord (k, xcs'), loc), (L'.KRecord k, loc)) end | L.CConcat (c1, c2) => let val (c1', k1) = elabCon env c1 val (c2', k2) = elabCon env c2 val ku = kunif () val k = (L'.KRecord ku, loc) in checkKind env c1' k1 k; checkKind env c2' k2 k; ((L'.CConcat (c1', c2'), loc), k) end | L.CWild k => let val k' = elabKind k in (cunif k', k') end fun kunifsRemain k = case k of L'.KUnif (_, ref NONE) => true | _ => false fun cunifsRemain c = case c of L'.CUnif (_, _, ref NONE) => true | _ => false val kunifsInKind = U.Kind.exists kunifsRemain val kunifsInCon = U.Con.exists {kind = kunifsRemain, con = fn _ => false} val kunifsInExp = U.Exp.exists {kind = kunifsRemain, con = fn _ => false, exp = fn _ => false} val cunifsInCon = U.Con.exists {kind = fn _ => false, con = cunifsRemain} val cunifsInExp = U.Exp.exists {kind = fn _ => false, con = cunifsRemain, exp = fn _ => false} fun occursCon r = U.Con.exists {kind = fn _ => false, con = fn L'.CUnif (_, _, r') => r = r' | _ => false} datatype cunify_error = CKind of L'.kind * L'.kind * kunify_error | COccursCheckFailed of L'.con * L'.con | CIncompatible of L'.con * L'.con | CExplicitness of L'.con * L'.con | CKindof of L'.con | CRecordFailure exception CUnify' of cunify_error fun cunifyError env err = case err of CKind (k1, k2, kerr) => (eprefaces "Kind unification failure" [("Kind 1", p_kind k1), ("Kind 2", p_kind k2)]; kunifyError kerr) | COccursCheckFailed (c1, c2) => eprefaces "Constructor occurs check failed" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CIncompatible (c1, c2) => eprefaces "Incompatible constructors" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CExplicitness (c1, c2) => eprefaces "Differing constructor function explicitness" [("Con 1", p_con env c1), ("Con 2", p_con env c2)] | CKindof c => eprefaces "Kind unification variable blocks kindof calculation" [("Con", p_con env c)] | CRecordFailure => eprefaces "Can't unify record constructors" [] exception SynUnif = E.SynUnif val liftConInCon = E.liftConInCon val subConInCon = U.Con.mapB {kind = fn k => k, con = fn (xn, rep) => fn c => case c of L'.CRel xn' => if xn = xn' then #1 rep else c (*| L'.CUnif _ => raise SynUnif*) | _ => c, bind = fn ((xn, rep), U.Con.Rel _) => (xn+1, liftConInCon 0 rep) | (ctx, _) => ctx} fun subStrInSgn (m1, m2) = U.Sgn.map {kind = fn k => k, con = fn c as L'.CModProj (m1', ms, x) => if m1 = m1' then L'.CModProj (m2, ms, x) else c | c => c, sgn_item = fn sgi => sgi, sgn = fn sgn => sgn} type record_summary = { fields : (L'.con * L'.con) list, unifs : (L'.con * L'.con option ref) list, others : L'.con list } fun summaryToCon {fields, unifs, others} = let val c = (L'.CRecord (ktype, []), dummy) val c = List.foldr (fn (c', c) => (L'.CConcat (c', c), dummy)) c others val c = List.foldr (fn ((c', _), c) => (L'.CConcat (c', c), dummy)) c unifs in (L'.CConcat ((L'.CRecord (ktype, fields), dummy), c), dummy) end fun p_summary env s = p_con env (summaryToCon s) exception CUnify of L'.con * L'.con * cunify_error fun hnormKind (kAll as (k, _)) = case k of L'.KUnif (_, ref (SOME k)) => hnormKind k | _ => kAll fun kindof env (c, loc) = case c of L'.TFun _ => ktype | L'.TCFun _ => ktype | L'.TRecord _ => ktype | L'.CRel xn => #2 (E.lookupCRel env xn) | L'.CNamed xn => #2 (E.lookupCNamed env xn) | L'.CModProj (n, ms, x) => let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "kindof: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectCon env {sgn = sgn, str = str, field = x} of NONE => raise Fail "kindof: Unknown con in structure" | SOME (k, _) => k end | L'.CApp (c, _) => (case #1 (hnormKind (kindof env c)) of L'.KArrow (_, k) => k | L'.KError => kerror | _ => raise CUnify' (CKindof c)) | L'.CAbs (x, k, c) => (L'.KArrow (k, kindof (E.pushCRel env x k) c), loc) | L'.CName _ => kname | L'.CRecord (k, _) => (L'.KRecord k, loc) | L'.CConcat (c, _) => kindof env c | L'.CError => kerror | L'.CUnif (k, _, _) => k fun unifyRecordCons env (c1, c2) = let val k1 = kindof env c1 val k2 = kindof env c2 in unifyKinds k1 k2; unifySummaries env (k1, recordSummary env c1, recordSummary env c2) end and recordSummary env c : record_summary = case hnormCon env c of (L'.CRecord (_, xcs), _) => {fields = xcs, unifs = [], others = []} | (L'.CConcat (c1, c2), _) => let val s1 = recordSummary env c1 val s2 = recordSummary env c2 in {fields = #fields s1 @ #fields s2, unifs = #unifs s1 @ #unifs s2, others = #others s1 @ #others s2} end | (L'.CUnif (_, _, ref (SOME c)), _) => recordSummary env c | c' as (L'.CUnif (_, _, r), _) => {fields = [], unifs = [(c', r)], others = []} | c' => {fields = [], unifs = [], others = [c']} and consEq env (c1, c2) = (unifyCons env c1 c2; true) handle CUnify _ => false and unifySummaries env (k, s1 : record_summary, s2 : record_summary) = let (*val () = eprefaces "Summaries" [("#1", p_summary env s1), ("#2", p_summary env s2)]*) fun eatMatching p (ls1, ls2) = let fun em (ls1, ls2, passed1) = case ls1 of [] => (rev passed1, ls2) | h1 :: t1 => let fun search (ls2', passed2) = case ls2' of [] => em (t1, ls2, h1 :: passed1) | h2 :: t2 => if p (h1, h2) then em (t1, List.revAppend (passed2, t2), passed1) else search (t2, h2 :: passed2) in search (ls2, []) end in em (ls1, ls2, []) end val (fs1, fs2) = eatMatching (fn ((x1, c1), (x2, c2)) => if consEq env (x1, x2) then (unifyCons env c1 c2; true) else false) (#fields s1, #fields s2) (*val () = eprefaces "Summaries2" [("#1", p_summary env {fields = fs1, unifs = #unifs s1, others = #others s1}), ("#2", p_summary env {fields = fs2, unifs = #unifs s2, others = #others s2})]*) val (unifs1, unifs2) = eatMatching (fn ((_, r1), (_, r2)) => r1 = r2) (#unifs s1, #unifs s2) val (others1, others2) = eatMatching (consEq env) (#others s1, #others s2) fun unifFields (fs, others, unifs) = case (fs, others, unifs) of ([], [], _) => ([], [], unifs) | (_, _, []) => (fs, others, []) | (_, _, (_, r) :: rest) => let val r' = ref NONE val cr' = (L'.CUnif (k, "recd", r'), dummy) val prefix = case (fs, others) of ([], other :: others) => List.foldl (fn (other, c) => (L'.CConcat (c, other), dummy)) other others | (fs, []) => (L'.CRecord (k, fs), dummy) | (fs, others) => List.foldl (fn (other, c) => (L'.CConcat (c, other), dummy)) (L'.CRecord (k, fs), dummy) others in r := SOME (L'.CConcat (prefix, cr'), dummy); ([], [], (cr', r') :: rest) end val (fs1, others1, unifs2) = unifFields (fs1, others1, unifs2) val (fs2, others2, unifs1) = unifFields (fs2, others2, unifs1) val clear1 = case (fs1, others1) of ([], []) => true | _ => false val clear2 = case (fs2, others2) of ([], []) => true | _ => false val empty = (L'.CRecord (k, []), dummy) fun pairOffUnifs (unifs1, unifs2) = case (unifs1, unifs2) of ([], _) => if clear1 then List.app (fn (_, r) => r := SOME empty) unifs2 else raise CUnify' CRecordFailure | (_, []) => if clear2 then List.app (fn (_, r) => r := SOME empty) unifs1 else raise CUnify' CRecordFailure | ((c1, _) :: rest1, (_, r2) :: rest2) => (r2 := SOME c1; pairOffUnifs (rest1, rest2)) in pairOffUnifs (unifs1, unifs2) end and hnormCon env (cAll as (c, loc)) = case c of L'.CUnif (_, _, ref (SOME c)) => hnormCon env c | L'.CNamed xn => (case E.lookupCNamed env xn of (_, _, SOME c') => hnormCon env c' | _ => cAll) | L'.CModProj (n, ms, x) => let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "hnormCon: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectCon env {sgn = sgn, str = str, field = x} of NONE => raise Fail "kindof: Unknown con in structure" | SOME (_, NONE) => cAll | SOME (_, SOME c) => hnormCon env c end | L'.CApp (c1, c2) => (case hnormCon env c1 of (L'.CAbs (_, _, cb), _) => ((hnormCon env (subConInCon (0, c2) cb)) handle SynUnif => cAll) | _ => cAll) | L'.CConcat (c1, c2) => (case (hnormCon env c1, hnormCon env c2) of ((L'.CRecord (k, xcs1), loc), (L'.CRecord (_, xcs2), _)) => (L'.CRecord (k, xcs1 @ xcs2), loc) | _ => cAll) | _ => cAll and unifyCons' env c1 c2 = unifyCons'' env (hnormCon env c1) (hnormCon env c2) and unifyCons'' env (c1All as (c1, _)) (c2All as (c2, _)) = let fun err f = raise CUnify' (f (c1All, c2All)) fun isRecord () = unifyRecordCons env (c1All, c2All) in case (c1, c2) of (L'.TFun (d1, r1), L'.TFun (d2, r2)) => (unifyCons' env d1 d2; unifyCons' env r1 r2) | (L'.TCFun (expl1, x1, d1, r1), L'.TCFun (expl2, _, d2, r2)) => if expl1 <> expl2 then err CExplicitness else (unifyKinds d1 d2; unifyCons' (E.pushCRel env x1 d1) r1 r2) | (L'.TRecord r1, L'.TRecord r2) => unifyCons' env r1 r2 | (L'.CRel n1, L'.CRel n2) => if n1 = n2 then () else err CIncompatible | (L'.CNamed n1, L'.CNamed n2) => if n1 = n2 then () else err CIncompatible | (L'.CApp (d1, r1), L'.CApp (d2, r2)) => (unifyCons' env d1 d2; unifyCons' env r1 r2) | (L'.CAbs (x1, k1, c1), L'.CAbs (_, k2, c2)) => (unifyKinds k1 k2; unifyCons' (E.pushCRel env x1 k1) c1 c2) | (L'.CName n1, L'.CName n2) => if n1 = n2 then () else err CIncompatible | (L'.CModProj (n1, ms1, x1), L'.CModProj (n2, ms2, x2)) => if n1 = n2 andalso ms1 = ms2 andalso x1 = x2 then () else err CIncompatible | (L'.CError, _) => () | (_, L'.CError) => () | (L'.CUnif (_, _, ref (SOME c1All)), _) => unifyCons' env c1All c2All | (_, L'.CUnif (_, _, ref (SOME c2All))) => unifyCons' env c1All c2All | (L'.CUnif (k1, _, r1), L'.CUnif (k2, _, r2)) => if r1 = r2 then () else (unifyKinds k1 k2; r1 := SOME c2All) | (L'.CUnif (_, _, r), _) => if occursCon r c2All then err COccursCheckFailed else r := SOME c2All | (_, L'.CUnif (_, _, r)) => if occursCon r c1All then err COccursCheckFailed else r := SOME c1All | (L'.CRecord _, _) => isRecord () | (_, L'.CRecord _) => isRecord () | (L'.CConcat _, _) => isRecord () | (_, L'.CConcat _) => isRecord () | _ => err CIncompatible end and unifyCons env c1 c2 = unifyCons' env c1 c2 handle CUnify' err => raise CUnify (c1, c2, err) | KUnify args => raise CUnify (c1, c2, CKind args) datatype exp_error = UnboundExp of ErrorMsg.span * string | UnboundStrInExp of ErrorMsg.span * string | Unify of L'.exp * L'.con * L'.con * cunify_error | Unif of string * L'.con | WrongForm of string * L'.exp * L'.con fun expError env err = case err of UnboundExp (loc, s) => ErrorMsg.errorAt loc ("Unbound expression variable " ^ s) | UnboundStrInExp (loc, s) => ErrorMsg.errorAt loc ("Unbound structure " ^ s) | Unify (e, c1, c2, uerr) => (ErrorMsg.errorAt (#2 e) "Unification failure"; eprefaces' [("Expression", p_exp env e), ("Have con", p_con env c1), ("Need con", p_con env c2)]; cunifyError env uerr) | Unif (action, c) => (ErrorMsg.errorAt (#2 c) ("Unification variable blocks " ^ action); eprefaces' [("Con", p_con env c)]) | WrongForm (variety, e, t) => (ErrorMsg.errorAt (#2 e) ("Expression is not a " ^ variety); eprefaces' [("Expression", p_exp env e), ("Type", p_con env t)]) fun checkCon env e c1 c2 = unifyCons env c1 c2 handle CUnify (c1, c2, err) => expError env (Unify (e, c1, c2, err)) fun primType env p = let val s = case p of P.Int _ => "int" | P.Float _ => "float" | P.String _ => "string" in case E.lookupC env s of E.NotBound => raise Fail ("Primitive type " ^ s ^ " unbound") | E.Rel _ => raise Fail ("Primitive type " ^ s ^ " bound as relative") | E.Named (n, (L'.KType, _)) => L'.CNamed n | E.Named _ => raise Fail ("Primitive type " ^ s ^ " bound at non-Type kind") end fun typeof env (e, loc) = case e of L'.EPrim p => (primType env p, loc) | L'.ERel n => #2 (E.lookupERel env n) | L'.ENamed n => #2 (E.lookupENamed env n) | L'.EModProj (n, ms, x) => let val (_, sgn) = E.lookupStrNamed env n val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => raise Fail "kindof: Unknown substructure" | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms in case E.projectVal env {sgn = sgn, str = str, field = x} of NONE => raise Fail "typeof: Unknown val in structure" | SOME t => t end | L'.EApp (e1, _) => (case #1 (typeof env e1) of L'.TFun (_, c) => c | _ => raise Fail "typeof: Bad EApp") | L'.EAbs (_, _, ran, _) => ran | L'.ECApp (e1, c) => (case #1 (typeof env e1) of L'.TCFun (_, _, _, c1) => subConInCon (0, c) c1 | _ => raise Fail "typeof: Bad ECApp") | L'.ECAbs (expl, x, k, e1) => (L'.TCFun (expl, x, k, typeof (E.pushCRel env x k) e1), loc) | L'.ERecord xes => (L'.TRecord (L'.CRecord (ktype, map (fn (x, _, t) => (x, t)) xes), loc), loc) | L'.EField (_, _, {field, ...}) => field | L'.EError => cerror fun elabHead env (e as (_, loc)) t = let fun unravel (t, e) = case hnormCon env t of (L'.TCFun (L'.Implicit, x, k, t'), _) => let val u = cunif k in unravel (subConInCon (0, u) t', (L'.ECApp (e, u), loc)) end | _ => (e, t) in unravel (t, e) end fun elabExp env (e, loc) = case e of L.EAnnot (e, t) => let val (e', et) = elabExp env e val (t', _) = elabCon env t in checkCon env e' et t'; (e', t') end | L.EPrim p => ((L'.EPrim p, loc), (primType env p, loc)) | L.EVar ([], s) => (case E.lookupE env s of E.NotBound => (expError env (UnboundExp (loc, s)); (eerror, cerror)) | E.Rel (n, t) => ((L'.ERel n, loc), t) | E.Named (n, t) => ((L'.ENamed n, loc), t)) | L.EVar (m1 :: ms, s) => (case E.lookupStr env m1 of NONE => (expError env (UnboundStrInExp (loc, m1)); (eerror, cerror)) | SOME (n, sgn) => let val (str, sgn) = foldl (fn (m, (str, sgn)) => case E.projectStr env {sgn = sgn, str = str, field = m} of NONE => (conError env (UnboundStrInCon (loc, m)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str, m), loc), sgn)) ((L'.StrVar n, loc), sgn) ms val t = case E.projectVal env {sgn = sgn, str = str, field = s} of NONE => (expError env (UnboundExp (loc, s)); cerror) | SOME t => t in ((L'.EModProj (n, ms, s), loc), t) end) | L.EApp (e1, e2) => let val (e1', t1) = elabExp env e1 val (e1', t1) = elabHead env e1' t1 val (e2', t2) = elabExp env e2 val dom = cunif ktype val ran = cunif ktype val t = (L'.TFun (dom, ran), dummy) in checkCon env e1' t1 t; checkCon env e2' t2 dom; ((L'.EApp (e1', e2'), loc), ran) end | L.EAbs (x, to, e) => let val t' = case to of NONE => cunif ktype | SOME t => let val (t', tk) = elabCon env t in checkKind env t' tk ktype; t' end val (e', et) = elabExp (E.pushERel env x t') e in ((L'.EAbs (x, t', et, e'), loc), (L'.TFun (t', et), loc)) end | L.ECApp (e, c) => let val (e', et) = elabExp env e val (e', et) = elabHead env e' et val (c', ck) = elabCon env c in case #1 (hnormCon env et) of L'.CError => (eerror, cerror) | L'.TCFun (_, _, k, eb) => let val () = checkKind env c' ck k val eb' = subConInCon (0, c') eb handle SynUnif => (expError env (Unif ("substitution", eb)); cerror) in ((L'.ECApp (e', c'), loc), eb') end | L'.CUnif _ => (expError env (Unif ("application", et)); (eerror, cerror)) | _ => (expError env (WrongForm ("constructor function", e', et)); (eerror, cerror)) end | L.ECAbs (expl, x, k, e) => let val expl' = elabExplicitness expl val k' = elabKind k val (e', et) = elabExp (E.pushCRel env x k') e in ((L'.ECAbs (expl', x, k', e'), loc), (L'.TCFun (expl', x, k', et), loc)) end | L.ERecord xes => let val xes' = map (fn (x, e) => let val (x', xk) = elabCon env x val (e', et) = elabExp env e in checkKind env x' xk kname; (x', e', et) end) xes in ((L'.ERecord xes', loc), (L'.TRecord (L'.CRecord (ktype, map (fn (x', _, et) => (x', et)) xes'), loc), loc)) end | L.EField (e, c) => let val (e', et) = elabExp env e val (c', ck) = elabCon env c val ft = cunif ktype val rest = cunif ktype_record in checkKind env c' ck kname; checkCon env e' et (L'.TRecord (L'.CConcat ((L'.CRecord (ktype, [(c', ft)]), loc), rest), loc), loc); ((L'.EField (e', c', {field = ft, rest = rest}), loc), ft) end datatype decl_error = KunifsRemainKind of ErrorMsg.span * L'.kind | KunifsRemainCon of ErrorMsg.span * L'.con | KunifsRemainExp of ErrorMsg.span * L'.exp | CunifsRemainCon of ErrorMsg.span * L'.con | CunifsRemainExp of ErrorMsg.span * L'.exp fun declError env err = case err of KunifsRemainKind (loc, k) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in kind"; eprefaces' [("Kind", p_kind k)]) | KunifsRemainCon (loc, c) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in constructor"; eprefaces' [("Constructor", p_con env c)]) | KunifsRemainExp (loc, e) => (ErrorMsg.errorAt loc "Some kind unification variables are undetermined in expression"; eprefaces' [("Expression", p_exp env e)]) | CunifsRemainCon (loc, c) => (ErrorMsg.errorAt loc "Some constructor unification variables are undetermined in constructor"; eprefaces' [("Constructor", p_con env c)]) | CunifsRemainExp (loc, e) => (ErrorMsg.errorAt loc "Some constructor unification variables are undetermined in expression"; eprefaces' [("Expression", p_exp env e)]) datatype sgn_error = UnboundSgn of ErrorMsg.span * string | UnmatchedSgi of L'.sgn_item | SgiWrongKind of L'.sgn_item * L'.kind * L'.sgn_item * L'.kind * kunify_error | SgiWrongCon of L'.sgn_item * L'.con * L'.sgn_item * L'.con * cunify_error | SgnWrongForm of L'.sgn * L'.sgn | UnWhereable of L'.sgn * string fun sgnError env err = case err of UnboundSgn (loc, s) => ErrorMsg.errorAt loc ("Unbound signature variable " ^ s) | UnmatchedSgi (sgi as (_, loc)) => (ErrorMsg.errorAt loc "Unmatched signature item"; eprefaces' [("Item", p_sgn_item env sgi)]) | SgiWrongKind (sgi1, k1, sgi2, k2, kerr) => (ErrorMsg.errorAt (#2 sgi1) "Kind unification failure in signature matching:"; eprefaces' [("Item 1", p_sgn_item env sgi1), ("Item 2", p_sgn_item env sgi2), ("Kind 1", p_kind k1), ("Kind 2", p_kind k2)]; kunifyError kerr) | SgiWrongCon (sgi1, c1, sgi2, c2, cerr) => (ErrorMsg.errorAt (#2 sgi1) "Constructor unification failure in signature matching:"; eprefaces' [("Item 1", p_sgn_item env sgi1), ("Item 2", p_sgn_item env sgi2), ("Con 1", p_con env c1), ("Con 2", p_con env c2)]; cunifyError env cerr) | SgnWrongForm (sgn1, sgn2) => (ErrorMsg.errorAt (#2 sgn1) "Incompatible signatures:"; eprefaces' [("Sig 1", p_sgn env sgn1), ("Sig 2", p_sgn env sgn2)]) | UnWhereable (sgn, x) => (ErrorMsg.errorAt (#2 sgn) "Unavailable field for 'where'"; eprefaces' [("Signature", p_sgn env sgn), ("Field", PD.string x)]) datatype str_error = UnboundStr of ErrorMsg.span * string | NotFunctor of L'.sgn fun strError env err = case err of UnboundStr (loc, s) => ErrorMsg.errorAt loc ("Unbound structure variable " ^ s) | NotFunctor sgn => (ErrorMsg.errorAt (#2 sgn) "Application of non-functor"; eprefaces' [("Signature", p_sgn env sgn)]) val hnormSgn = E.hnormSgn fun elabSgn_item ((sgi, loc), env) = let in resetKunif (); resetCunif (); case sgi of L.SgiConAbs (x, k) => let val k' = elabKind k val (env', n) = E.pushCNamed env x k' NONE in if ErrorMsg.anyErrors () then () else ( if kunifsInKind k' then declError env (KunifsRemainKind (loc, k')) else () ); ((L'.SgiConAbs (x, n, k'), loc), env') end | L.SgiCon (x, ko, c) => let val k' = case ko of NONE => kunif () | SOME k => elabKind k val (c', ck) = elabCon env c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; if ErrorMsg.anyErrors () then () else ( if kunifsInKind k' then declError env (KunifsRemainKind (loc, k')) else (); if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else () ); ((L'.SgiCon (x, n, k', c'), loc), env') end | L.SgiVal (x, c) => let val (c', ck) = elabCon env c val (env', n) = E.pushENamed env x c' in unifyKinds ck ktype; if ErrorMsg.anyErrors () then () else ( if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else () ); ((L'.SgiVal (x, n, c'), loc), env') end | L.SgiStr (x, sgn) => let val sgn' = elabSgn env sgn val (env', n) = E.pushStrNamed env x sgn' in ((L'.SgiStr (x, n, sgn'), loc), env') end end and elabSgn env (sgn, loc) = case sgn of L.SgnConst sgis => let val (sgis', _) = ListUtil.foldlMap elabSgn_item env sgis in (L'.SgnConst sgis', loc) end | L.SgnVar x => (case E.lookupSgn env x of NONE => (sgnError env (UnboundSgn (loc, x)); (L'.SgnError, loc)) | SOME (n, sgis) => (L'.SgnVar n, loc)) | L.SgnFun (m, dom, ran) => let val dom' = elabSgn env dom val (env', n) = E.pushStrNamed env m dom' val ran' = elabSgn env' ran in (L'.SgnFun (m, n, dom', ran'), loc) end | L.SgnWhere (sgn, x, c) => let val sgn' = elabSgn env sgn val (c', ck) = elabCon env c in case #1 (hnormSgn env sgn') of L'.SgnError => sgnerror | L'.SgnConst sgis => if List.exists (fn (L'.SgiConAbs (x, _, k), _) => (unifyKinds k ck; true) | _ => false) sgis then (L'.SgnWhere (sgn', x, c'), loc) else (sgnError env (UnWhereable (sgn', x)); sgnerror) | _ => (sgnError env (UnWhereable (sgn', x)); sgnerror) end fun sgiOfDecl (d, loc) = case d of L'.DCon (x, n, k, c) => SOME (L'.SgiCon (x, n, k, c), loc) | L'.DVal (x, n, t, _) => SOME (L'.SgiVal (x, n, t), loc) | L'.DSgn _ => NONE | L'.DStr (x, n, sgn, _) => SOME (L'.SgiStr (x, n, sgn), loc) fun subSgn env sgn1 (sgn2 as (_, loc2)) = case (#1 (hnormSgn env sgn1), #1 (hnormSgn env sgn2)) of (L'.SgnError, _) => () | (_, L'.SgnError) => () | (L'.SgnConst sgis1, L'.SgnConst sgis2) => let fun folder (sgi2All as (sgi, _), env) = let fun seek p = let fun seek env ls = case ls of [] => (sgnError env (UnmatchedSgi sgi2All); env) | h :: t => case p h of NONE => seek (E.sgiBinds env h) t | SOME env => env in seek env sgis1 end in case sgi of L'.SgiConAbs (x, n2, k2) => seek (fn sgi1All as (sgi1, _) => let fun found (x', n1, k1, co1) = if x = x' then let val () = unifyKinds k1 k2 handle KUnify (k1, k2, err) => sgnError env (SgiWrongKind (sgi1All, k1, sgi2All, k2, err)) val env = E.pushCNamedAs env x n1 k1 co1 in SOME (if n1 = n2 then env else E.pushCNamedAs env x n2 k2 (SOME (L'.CNamed n1, loc2))) end else NONE in case sgi1 of L'.SgiConAbs (x', n1, k1) => found (x', n1, k1, NONE) | L'.SgiCon (x', n1, k1, c1) => found (x', n1, k1, SOME c1) | _ => NONE end) | L'.SgiCon (x, n2, k2, c2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiCon (x', n1, k1, c1) => if x = x' then let val () = unifyCons env c1 c2 handle CUnify (c1, c2, err) => sgnError env (SgiWrongCon (sgi1All, c1, sgi2All, c2, err)) in SOME (E.pushCNamedAs env x n2 k2 (SOME c2)) end else NONE | _ => NONE) | L'.SgiVal (x, n2, c2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiVal (x', n1, c1) => if x = x' then let val () = unifyCons env c1 c2 handle CUnify (c1, c2, err) => sgnError env (SgiWrongCon (sgi1All, c1, sgi2All, c2, err)) in SOME env end else NONE | _ => NONE) | L'.SgiStr (x, n2, sgn2) => seek (fn sgi1All as (sgi1, _) => case sgi1 of L'.SgiStr (x', n1, sgn1) => if x = x' then (subSgn env sgn1 sgn2; SOME env) else NONE | _ => NONE) (* Add type equations between structures here some day. *) end in ignore (foldl folder env sgis2) end | (L'.SgnFun (m1, n1, dom1, ran1), L'.SgnFun (m2, n2, dom2, ran2)) => let val ran1 = if n1 = n2 then ran1 else subStrInSgn (n1, n2) ran1 in subSgn env dom2 dom1; subSgn (E.pushStrNamedAs env m2 n2 dom2) ran1 ran2 end | _ => sgnError env (SgnWrongForm (sgn1, sgn2)) fun selfify env {str, strs, sgn} = case #1 (hnormSgn env sgn) of L'.SgnError => sgn | L'.SgnVar _ => sgn | L'.SgnConst sgis => (L'.SgnConst (map (fn (L'.SgiConAbs (x, n, k), loc) => (L'.SgiCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc) | (L'.SgiStr (x, n, sgn), loc) => (L'.SgiStr (x, n, selfify env {str = str, strs = strs @ [x], sgn = sgn}), loc) | x => x) sgis), #2 sgn) | L'.SgnFun _ => sgn | L'.SgnWhere _ => sgn fun selfifyAt env {str, sgn} = let fun self (str, _) = case str of L'.StrVar x => SOME (x, []) | L'.StrProj (str, x) => (case self str of NONE => NONE | SOME (m, ms) => SOME (m, ms @ [x])) | _ => NONE in case self str of NONE => sgn | SOME (str, strs) => selfify env {sgn = sgn, str = str, strs = strs} end fun elabDecl ((d, loc), env) = let in resetKunif (); resetCunif (); case d of L.DCon (x, ko, c) => let val k' = case ko of NONE => kunif () | SOME k => elabKind k val (c', ck) = elabCon env c val (env', n) = E.pushCNamed env x k' (SOME c') in checkKind env c' ck k'; if ErrorMsg.anyErrors () then () else ( if kunifsInKind k' then declError env (KunifsRemainKind (loc, k')) else (); if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else () ); ((L'.DCon (x, n, k', c'), loc), env') end | L.DVal (x, co, e) => let val (c', ck) = case co of NONE => (cunif ktype, ktype) | SOME c => elabCon env c val (e', et) = elabExp env e val (env', n) = E.pushENamed env x c' in checkCon env e' et c'; if ErrorMsg.anyErrors () then () else ( if kunifsInCon c' then declError env (KunifsRemainCon (loc, c')) else (); if cunifsInCon c' then declError env (CunifsRemainCon (loc, c')) else (); if kunifsInExp e' then declError env (KunifsRemainExp (loc, e')) else (); if cunifsInExp e' then declError env (CunifsRemainExp (loc, e')) else ()); ((L'.DVal (x, n, c', e'), loc), env') end | L.DSgn (x, sgn) => let val sgn' = elabSgn env sgn val (env', n) = E.pushSgnNamed env x sgn' in ((L'.DSgn (x, n, sgn'), loc), env') end | L.DStr (x, sgno, str) => let val formal = Option.map (elabSgn env) sgno val (str', actual) = elabStr env str val sgn' = case formal of NONE => selfifyAt env {str = str', sgn = actual} | SOME formal => (subSgn env actual formal; formal) val (env', n) = E.pushStrNamed env x sgn' in ((L'.DStr (x, n, sgn', str'), loc), env') end end and elabStr env (str, loc) = case str of L.StrConst ds => let val (ds', env') = ListUtil.foldlMap elabDecl env ds val sgis = List.mapPartial sgiOfDecl ds' in ((L'.StrConst ds', loc), (L'.SgnConst sgis, loc)) end | L.StrVar x => (case E.lookupStr env x of NONE => (strError env (UnboundStr (loc, x)); (strerror, sgnerror)) | SOME (n, sgn) => ((L'.StrVar n, loc), sgn)) | L.StrProj (str, x) => let val (str', sgn) = elabStr env str in case E.projectStr env {str = str', sgn = sgn, field = x} of NONE => (strError env (UnboundStr (loc, x)); (strerror, sgnerror)) | SOME sgn => ((L'.StrProj (str', x), loc), sgn) end | L.StrFun (m, dom, ranO, str) => let val dom' = elabSgn env dom val (env', n) = E.pushStrNamed env m dom' val (str', actual) = elabStr env' str val formal = case ranO of NONE => actual | SOME ran => let val ran' = elabSgn env' ran in subSgn env' actual ran'; ran' end in ((L'.StrFun (m, n, dom', formal, str'), loc), (L'.SgnFun (m, n, dom', formal), loc)) end | L.StrApp (str1, str2) => let val (str1', sgn1) = elabStr env str1 val (str2', sgn2) = elabStr env str2 in case #1 (hnormSgn env sgn1) of L'.SgnError => (strerror, sgnerror) | L'.SgnFun (m, n, dom, ran) => (subSgn env sgn2 dom; case #1 (hnormSgn env ran) of L'.SgnError => (strerror, sgnerror) | L'.SgnConst sgis => ((L'.StrApp (str1', str2'), loc), (L'.SgnConst ((L'.SgiStr (m, n, selfifyAt env {str = str2', sgn = sgn2}), loc) :: sgis), loc)) | _ => raise Fail "Unable to hnormSgn in functor application") | _ => (strError env (NotFunctor sgn1); (strerror, sgnerror)) end val elabFile = ListUtil.foldlMap elabDecl end