#define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include "urweb.h" int uw_backlog = 10; int uw_bufsize = 1024; typedef struct node { int fd; struct node *next; } *node; static node front = NULL, back = NULL; static int empty() { return front == NULL; } static void enqueue(int fd) { node n = malloc(sizeof(struct node)); n->fd = fd; n->next = NULL; if (back) back->next = n; else front = n; back = n; } static int dequeue() { int ret = front->fd; front = front->next; if (!front) back = NULL; return ret; } static pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t queue_cond = PTHREAD_COND_INITIALIZER; #define MAX_RETRIES 5 static int try_rollback(uw_context ctx) { int r = uw_rollback(ctx); if (r) { printf("Error running SQL ROLLBACK\n"); uw_reset(ctx); uw_write(ctx, "HTTP/1.1 500 Internal Server Error\n\r"); uw_write(ctx, "Content-type: text/plain\r\n\r\n"); uw_write(ctx, "Error running SQL ROLLBACK\n"); } return r; } static uw_context new_context() { uw_context ctx = uw_init(); int retries_left = MAX_RETRIES; while (1) { failure_kind fk = uw_begin_init(ctx); if (fk == SUCCESS) { printf("Database connection initialized.\n"); break; } else if (fk == BOUNDED_RETRY) { if (retries_left) { printf("Initialization error triggers bounded retry: %s\n", uw_error_message(ctx)); --retries_left; } else { printf("Fatal initialization error (out of retries): %s\n", uw_error_message(ctx)); uw_free(ctx); return NULL; } } else if (fk == UNLIMITED_RETRY) printf("Initialization error triggers unlimited retry: %s\n", uw_error_message(ctx)); else if (fk == FATAL) { printf("Fatal initialization error: %s\n", uw_error_message(ctx)); uw_free(ctx); return NULL; } else { printf("Unknown uw_begin_init return code!\n"); uw_free(ctx); return NULL; } } return ctx; } #define KEYSIZE 16 #define PASSSIZE 4 #define HASH_ALGORITHM MHASH_SHA256 #define HASH_BLOCKSIZE 32 #define KEYGEN_ALGORITHM KEYGEN_MCRYPT int uw_hash_blocksize = HASH_BLOCKSIZE; static int password[PASSSIZE]; static unsigned char private_key[KEYSIZE]; static void init_crypto() { KEYGEN kg = {{HASH_ALGORITHM, HASH_ALGORITHM}}; int i; assert(mhash_get_block_size(HASH_ALGORITHM) == HASH_BLOCKSIZE); for (i = 0; i < PASSSIZE; ++i) password[i] = rand(); if (mhash_keygen_ext(KEYGEN_ALGORITHM, kg, private_key, sizeof(private_key), (unsigned char*)password, sizeof(password)) < 0) { printf("Key generation failed\n"); exit(1); } } void uw_sign(const char *in, char *out) { MHASH td; td = mhash_hmac_init(HASH_ALGORITHM, private_key, sizeof(private_key), mhash_get_hash_pblock(HASH_ALGORITHM)); mhash(td, in, strlen(in)); if (mhash_hmac_deinit(td, out) < 0) printf("Signing failed"); } static void *worker(void *data) { int me = *(int *)data, retries_left = MAX_RETRIES; uw_context ctx = new_context(); size_t buf_size = 2; char *buf = malloc(buf_size); while (1) { char *back = buf, *s, *post; int sock, dont_close = 0; pthread_mutex_lock(&queue_mutex); while (empty()) pthread_cond_wait(&queue_cond, &queue_mutex); sock = dequeue(); pthread_mutex_unlock(&queue_mutex); printf("Handling connection with thread #%d.\n", me); while (1) { unsigned retries_left = MAX_RETRIES; int r; if (back - buf == buf_size - 1) { char *new_buf; buf_size *= 2; new_buf = realloc(buf, buf_size); back = new_buf + (back - buf); buf = new_buf; } r = recv(sock, back, buf_size - 1 - (back - buf), 0); if (r < 0) { fprintf(stderr, "Recv failed\n"); break; } if (r == 0) { printf("Connection closed.\n"); break; } //printf("Received %d bytes.\n", r); back += r; *back = 0; if (s = strstr(buf, "\r\n\r\n")) { failure_kind fk; int is_post = 0, do_normal_send = 1; char *boundary = NULL; size_t boundary_len; char *cmd, *path, *headers, path_copy[uw_bufsize+1], *inputs, *after_headers; //printf("All: %s\n", buf); s[2] = 0; after_headers = s + 4; if (!(s = strstr(buf, "\r\n"))) { fprintf(stderr, "No newline in buf\n"); break; } *s = 0; headers = s + 2; cmd = s = buf; //printf("Read: %s\n", buf); if (!strsep(&s, " ")) { fprintf(stderr, "No first space in HTTP command\n"); break; } uw_set_headers(ctx, headers); if (!strcmp(cmd, "POST")) { char *clen_s = uw_Basis_requestHeader(ctx, "Content-length"); if (!clen_s) { fprintf(stderr, "No Content-length with POST\n"); goto done; } int clen = atoi(clen_s); if (clen < 0) { fprintf(stderr, "Negative Content-length with POST\n"); goto done; } while (back - after_headers < clen) { if (back - buf == buf_size - 1) { char *new_buf; buf_size *= 2; new_buf = realloc(buf, buf_size); back = new_buf + (back - buf); headers = new_buf + (headers - buf); uw_headers_moved(ctx, headers); after_headers = new_buf + (after_headers - buf); s = new_buf + (s - buf); buf = new_buf; } r = recv(sock, back, buf_size - 1 - (back - buf), 0); if (r < 0) { fprintf(stderr, "Recv failed\n"); goto done; } if (r == 0) { printf("Connection closed.\n"); goto done; } back += r; *back = 0; } is_post = 1; clen_s = uw_Basis_requestHeader(ctx, "Content-type"); if (clen_s && !strncasecmp(clen_s, "multipart/form-data", 19)) { if (strncasecmp(clen_s + 19, "; boundary=", 11)) { fprintf(stderr, "Bad multipart boundary spec"); break; } boundary = clen_s + 28; boundary[0] = '-'; boundary[1] = '-'; boundary_len = strlen(boundary); } } else if (strcmp(cmd, "GET")) { fprintf(stderr, "Not ready for non-GET/POST command: %s\n", cmd); break; } path = s; if (!strsep(&s, " ")) { fprintf(stderr, "No second space in HTTP command\n"); break; } if (!strcmp(path, "/.msgs")) { char *id = uw_Basis_requestHeader(ctx, "UrWeb-Client"); char *pass = uw_Basis_requestHeader(ctx, "UrWeb-Pass"); if (id && pass) { unsigned idn = atoi(id); uw_client_connect(idn, atoi(pass), sock); dont_close = 1; fprintf(stderr, "Processed request for messages by client %u\n\n", idn); } else { fprintf(stderr, "Missing fields in .msgs request: %s, %s\n\n", id, pass); } break; } if (boundary) { char *part = after_headers, *after_sub_headers, *header, *after_header; size_t part_len; part = strstr(part, boundary); if (!part) { fprintf(stderr, "Missing first multipart boundary\n"); break; } part += boundary_len; while (1) { char *name = NULL, *filename = NULL, *type = NULL; if (part[0] == '-' && part[1] == '-') break; if (*part != '\r') { fprintf(stderr, "No \\r after multipart boundary\n"); goto done; } ++part; if (*part != '\n') { fprintf(stderr, "No \\n after multipart boundary\n"); goto done; } ++part; if (!(after_sub_headers = strstr(part, "\r\n\r\n"))) { fprintf(stderr, "Missing end of headers after multipart boundary\n"); goto done; } after_sub_headers[2] = 0; after_sub_headers += 4; for (header = part; after_header = strstr(header, "\r\n"); header = after_header + 2) { char *colon, *after_colon; *after_header = 0; if (!(colon = strchr(header, ':'))) { fprintf(stderr, "Missing colon in multipart sub-header\n"); goto done; } *colon++ = 0; if (*colon++ != ' ') { fprintf(stderr, "No space after colon in multipart sub-header\n"); goto done; } if (!strcasecmp(header, "Content-Disposition")) { if (strncmp(colon, "form-data; ", 11)) { fprintf(stderr, "Multipart data is not \"form-data\"\n"); goto done; } for (colon += 11; after_colon = strchr(colon, '='); colon = after_colon) { char *data; after_colon[0] = 0; if (after_colon[1] != '"') { fprintf(stderr, "Disposition setting is missing initial quote\n"); goto done; } data = after_colon+2; if (!(after_colon = strchr(data, '"'))) { fprintf(stderr, "Disposition setting is missing final quote\n"); goto done; } after_colon[0] = 0; ++after_colon; if (after_colon[0] == ';' && after_colon[1] == ' ') after_colon += 2; if (!strcasecmp(colon, "name")) name = data; else if (!strcasecmp(colon, "filename")) filename = data; } } else if (!strcasecmp(header, "Content-Type")) { type = colon; } } part = memmem(after_sub_headers, back - after_sub_headers, boundary, boundary_len); if (!part) { fprintf(stderr, "Missing boundary after multipart payload\n"); goto done; } part[-2] = 0; part_len = part - after_sub_headers - 2; part[0] = 0; part += boundary_len; if (filename) { uw_Basis_file f = {filename, type, {part_len, after_sub_headers}}; uw_set_file_input(ctx, name, f); } else uw_set_input(ctx, name, after_sub_headers); } } else { if (is_post) inputs = after_headers; else if (inputs = strchr(path, '?')) *inputs++ = 0; if (inputs) { char *name, *value; while (*inputs) { name = inputs; if (inputs = strchr(inputs, '&')) *inputs++ = 0; else inputs = strchr(name, 0); if (value = strchr(name, '=')) { *value++ = 0; uw_set_input(ctx, name, value); } else uw_set_input(ctx, name, ""); } } } printf("Serving URI %s....\n", path); while (1) { uw_write_header(ctx, "HTTP/1.1 200 OK\r\n"); strcpy(path_copy, path); fk = uw_begin(ctx, path_copy); if (fk == SUCCESS || fk == RETURN_BLOB) { uw_commit(ctx); break; } else if (fk == BOUNDED_RETRY) { if (retries_left) { printf("Error triggers bounded retry: %s\n", uw_error_message(ctx)); --retries_left; } else { printf("Fatal error (out of retries): %s\n", uw_error_message(ctx)); try_rollback(ctx); uw_reset_keep_error_message(ctx); uw_write_header(ctx, "HTTP/1.1 500 Internal Server Error\n\r"); uw_write_header(ctx, "Content-type: text/plain\r\n"); uw_write(ctx, "Fatal error (out of retries): "); uw_write(ctx, uw_error_message(ctx)); uw_write(ctx, "\n"); break; } } else if (fk == UNLIMITED_RETRY) printf("Error triggers unlimited retry: %s\n", uw_error_message(ctx)); else if (fk == FATAL) { printf("Fatal error: %s\n", uw_error_message(ctx)); try_rollback(ctx); uw_reset_keep_error_message(ctx); uw_write_header(ctx, "HTTP/1.1 500 Internal Server Error\r\n"); uw_write_header(ctx, "Content-type: text/html\r\n"); uw_write(ctx, "Fatal Error"); uw_write(ctx, "Fatal error: "); uw_write(ctx, uw_error_message(ctx)); uw_write(ctx, "\n"); break; } else { printf("Unknown uw_handle return code!\n"); try_rollback(ctx); uw_reset_keep_request(ctx); uw_write_header(ctx, "HTTP/1.1 500 Internal Server Error\n\r"); uw_write_header(ctx, "Content-type: text/plain\r\n"); uw_write(ctx, "Unknown uw_handle return code!\n"); break; } if (try_rollback(ctx)) break; uw_reset_keep_request(ctx); } uw_send(ctx, sock); printf("Done with client.\n\n"); uw_memstats(ctx); break; } } done: if (!dont_close) close(sock); uw_reset(ctx); } } static void *client_pruner(void *data) { uw_context ctx = new_context(); if (!ctx) exit(1); while (1) { uw_prune_clients(ctx); sleep(5); } } static void help(char *cmd) { printf("Usage: %s [-p ] [-t ]\n", cmd); } static void sigint(int signum) { printf("Exiting....\n"); exit(0); } static void initialize() { uw_context ctx; failure_kind fk; init_crypto(); ctx = new_context(); if (!ctx) exit(1); for (fk = uw_initialize(ctx); fk == UNLIMITED_RETRY; fk = uw_initialize(ctx)) { printf("Unlimited retry during init: %s\n", uw_error_message(ctx)); uw_db_rollback(ctx); uw_reset(ctx); } if (fk != SUCCESS) { printf("Failed to initialize database! %s\n", uw_error_message(ctx)); uw_db_rollback(ctx); exit(1); } uw_free(ctx); } int main(int argc, char *argv[]) { // The skeleton for this function comes from Beej's sockets tutorial. int sockfd; // listen on sock_fd struct sockaddr_in my_addr; struct sockaddr_in their_addr; // connector's address information int sin_size, yes = 1; int uw_port = 8080, nthreads = 1, i, *names, opt; signal(SIGINT, sigint); signal(SIGPIPE, SIG_IGN); while ((opt = getopt(argc, argv, "hp:t:")) != -1) { switch (opt) { case '?': fprintf(stderr, "Unknown command-line option"); help(argv[0]); return 1; case 'h': help(argv[0]); return 0; case 'p': uw_port = atoi(optarg); if (uw_port <= 0) { fprintf(stderr, "Invalid port number\n"); help(argv[0]); return 1; } break; case 't': nthreads = atoi(optarg); if (nthreads <= 0) { fprintf(stderr, "Invalid thread count\n"); help(argv[0]); return 1; } break; default: fprintf(stderr, "Unexpected getopt() behavior\n"); return 1; } } uw_global_init(); initialize(); names = calloc(nthreads, sizeof(int)); sockfd = socket(PF_INET, SOCK_STREAM, 0); // do some error checking! if (sockfd < 0) { fprintf(stderr, "Listener socket creation failed\n"); return 1; } if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) < 0) { fprintf(stderr, "Listener socket option setting failed\n"); return 1; } my_addr.sin_family = AF_INET; // host byte order my_addr.sin_port = htons(uw_port); // short, network byte order my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero); if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr) < 0) { fprintf(stderr, "Listener socket bind failed\n"); return 1; } if (listen(sockfd, uw_backlog) < 0) { fprintf(stderr, "Socket listen failed\n"); return 1; } sin_size = sizeof their_addr; printf("Listening on port %d....\n", uw_port); { pthread_t thread; int name; if (pthread_create(&thread, NULL, client_pruner, &name)) { fprintf(stderr, "Error creating pruner thread\n"); return 1; } } for (i = 0; i < nthreads; ++i) { pthread_t thread; names[i] = i; if (pthread_create(&thread, NULL, worker, &names[i])) { fprintf(stderr, "Error creating worker thread #%d\n", i); return 1; } } while (1) { int new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size); if (new_fd < 0) { fprintf(stderr, "Socket accept failed\n"); return 1; } printf("Accepted connection.\n"); pthread_mutex_lock(&queue_mutex); enqueue(new_fd); pthread_cond_broadcast(&queue_cond); pthread_mutex_unlock(&queue_mutex); } }