summaryrefslogtreecommitdiff
path: root/src/sqlcache.sml
diff options
context:
space:
mode:
Diffstat (limited to 'src/sqlcache.sml')
-rw-r--r--src/sqlcache.sml1047
1 files changed, 1047 insertions, 0 deletions
diff --git a/src/sqlcache.sml b/src/sqlcache.sml
new file mode 100644
index 00000000..f98ff4bb
--- /dev/null
+++ b/src/sqlcache.sml
@@ -0,0 +1,1047 @@
+structure Sqlcache :> SQLCACHE = struct
+
+open Mono
+
+structure IS = IntBinarySet
+structure IM = IntBinaryMap
+structure SK = struct type ord_key = string val compare = String.compare end
+structure SS = BinarySetFn(SK)
+structure SM = BinaryMapFn(SK)
+structure SIMM = MultimapFn(structure KeyMap = SM structure ValSet = IS)
+
+fun iterate f n x = if n < 0
+ then raise Fail "Can't iterate function negative number of times."
+ else if n = 0
+ then x
+ else iterate f (n-1) (f x)
+
+(* Filled in by [addFlushing]. *)
+val ffiInfoRef : {index : int, params : int} list ref = ref []
+
+fun resetFfiInfo () = ffiInfoRef := []
+
+fun getFfiInfo () = !ffiInfoRef
+
+(* Some FFIs have writing as their only effect, which the caching records. *)
+val ffiEffectful =
+ (* ASK: how can this be less hard-coded? *)
+ let
+ val okayWrites = SS.fromList ["htmlifyInt_w",
+ "htmlifyFloat_w",
+ "htmlifyString_w",
+ "htmlifyBool_w",
+ "htmlifyTime_w",
+ "attrifyInt_w",
+ "attrifyFloat_w",
+ "attrifyString_w",
+ "attrifyChar_w",
+ "urlifyInt_w",
+ "urlifyFloat_w",
+ "urlifyString_w",
+ "urlifyBool_w",
+ "urlifyChannel_w"]
+ in
+ (* ASK: is it okay to hardcode Sqlcache functions as effectful? *)
+ fn (m, f) => Settings.isEffectful (m, f)
+ andalso not (m = "Basis" andalso SS.member (okayWrites, f))
+ end
+
+val cache = ref LruCache.cache
+fun setCache c = cache := c
+fun getCache () = !cache
+
+(* Used to have type context for local variables in MonoUtil functions. *)
+val doBind =
+ fn (env, MonoUtil.Exp.RelE (x, t)) => MonoEnv.pushERel env x t NONE
+ | (env, MonoUtil.Exp.NamedE (x, n, t, eo, s)) => MonoEnv.pushENamed env x n t eo s
+ | (env, MonoUtil.Exp.Datatype (x, n, cs)) => MonoEnv.pushDatatype env x n cs
+
+(***********************)
+(* General Combinators *)
+(***********************)
+
+(* From the MLton wiki. *)
+infixr 3 /> fun f /> y = fn x => f (x, y) (* Right section *)
+infixr 3 </ fun x </ f = f x (* Right application *)
+
+(* Option monad. *)
+fun obind (x, f) = Option.mapPartial f x
+fun oguard (b, x) = if b then x else NONE
+
+fun mapFst f (x, y) = (f x, y)
+
+
+(*******************)
+(* Effect Analysis *)
+(*******************)
+
+(* Makes an exception for [EWrite] (which is recorded when caching). *)
+fun effectful (effs : IS.set) =
+ let
+ val isFunction =
+ fn (TFun _, _) => true
+ | _ => false
+ fun doExp (env, e) =
+ case e of
+ EPrim _ => false
+ (* For now: variables of function type might be effectful, but
+ others are fully evaluated and are therefore not effectful. *)
+ | ERel n => isFunction (#2 (MonoEnv.lookupERel env n))
+ | ENamed n => IS.member (effs, n)
+ | EFfi (m, f) => ffiEffectful (m, f)
+ | EFfiApp (m, f, _) => ffiEffectful (m, f)
+ (* These aren't effectful unless a subexpression is. *)
+ | ECon _ => false
+ | ENone _ => false
+ | ESome _ => false
+ | EApp _ => false
+ | EAbs _ => false
+ | EUnop _ => false
+ | EBinop _ => false
+ | ERecord _ => false
+ | EField _ => false
+ | ECase _ => false
+ | EStrcat _ => false
+ (* EWrite is a special exception because we record writes when caching. *)
+ | EWrite _ => false
+ | ESeq _ => false
+ | ELet _ => false
+ | EUnurlify _ => false
+ (* ASK: what should we do about closures? *)
+ (* Everything else is some sort of effect. We could flip this and
+ explicitly list bits of Mono that are effectful, but this is
+ conservatively robust to future changes (however unlikely). *)
+ | _ => true
+ in
+ MonoUtil.Exp.existsB {typ = fn _ => false, exp = doExp, bind = doBind}
+ end
+
+(* TODO: test this. *)
+fun effectfulDecls (decls, _) =
+ let
+ fun doVal ((_, name, _, e, _), effs) =
+ if effectful effs MonoEnv.empty e
+ then IS.add (effs, name)
+ else effs
+ val doDecl =
+ fn ((DVal v, _), effs) => doVal (v, effs)
+ (* Repeat the list of declarations a number of times equal to its size,
+ making sure effectfulness propagates everywhere it should. This is
+ analagous to the Bellman-Ford algorithm. *)
+ | ((DValRec vs, _), effs) =>
+ List.foldl doVal effs (List.concat (List.map (fn _ => vs) vs))
+ (* ASK: any other cases? *)
+ | (_, effs) => effs
+ in
+ List.foldl doDecl IS.empty decls
+ end
+
+
+(*********************************)
+(* Boolean Formula Normalization *)
+(*********************************)
+
+datatype junctionType = Conj | Disj
+
+datatype 'atom formula =
+ Atom of 'atom
+ | Negate of 'atom formula
+ | Combo of junctionType * 'atom formula list
+
+(* Guaranteed to have all negation pushed to the atoms. *)
+datatype 'atom formula' =
+ Atom' of 'atom
+ | Combo' of junctionType * 'atom formula' list
+
+val flipJt = fn Conj => Disj | Disj => Conj
+
+fun concatMap f xs = List.concat (map f xs)
+
+val rec cartesianProduct : 'a list list -> 'a list list =
+ fn [] => [[]]
+ | (xs :: xss) => concatMap (fn ys => concatMap (fn x => [x :: ys]) xs)
+ (cartesianProduct xss)
+
+(* Pushes all negation to the atoms.*)
+fun pushNegate (normalizeAtom : bool * 'atom -> 'atom) (negating : bool) =
+ fn Atom x => Atom' (normalizeAtom (negating, x))
+ | Negate f => pushNegate normalizeAtom (not negating) f
+ | Combo (j, fs) => Combo' (if negating then flipJt j else j,
+ map (pushNegate normalizeAtom negating) fs)
+
+val rec flatten =
+ fn Combo' (_, [f]) => flatten f
+ | Combo' (j, fs) =>
+ Combo' (j, List.foldr (fn (f, acc) =>
+ case f of
+ Combo' (j', fs') =>
+ if j = j' orelse length fs' = 1
+ then fs' @ acc
+ else f :: acc
+ | _ => f :: acc)
+ []
+ (map flatten fs))
+ | f => f
+
+(* [simplify] operates on the desired normal form. E.g., if [junc] is [Disj],
+ consider the list of lists to be a disjunction of conjunctions. *)
+fun normalize' (simplify : 'a list list -> 'a list list)
+ (junc : junctionType) =
+ let
+ fun norm junc =
+ simplify
+ o (fn Atom' x => [[x]]
+ | Combo' (j, fs) =>
+ let
+ val fss = map (norm junc) fs
+ in
+ if j = junc
+ then List.concat fss
+ else map List.concat (cartesianProduct fss)
+ end)
+ in
+ norm junc
+ end
+
+fun normalize simplify normalizeAtom junc =
+ normalize' simplify junc
+ o flatten
+ o pushNegate normalizeAtom false
+
+fun mapFormula mf =
+ fn Atom x => Atom (mf x)
+ | Negate f => Negate (mapFormula mf f)
+ | Combo (j, fs) => Combo (j, map (mapFormula mf) fs)
+
+
+(****************)
+(* SQL Analysis *)
+(****************)
+
+structure CmpKey = struct
+
+ type ord_key = Sql.cmp
+
+ val compare =
+ fn (Sql.Eq, Sql.Eq) => EQUAL
+ | (Sql.Eq, _) => LESS
+ | (_, Sql.Eq) => GREATER
+ | (Sql.Ne, Sql.Ne) => EQUAL
+ | (Sql.Ne, _) => LESS
+ | (_, Sql.Ne) => GREATER
+ | (Sql.Lt, Sql.Lt) => EQUAL
+ | (Sql.Lt, _) => LESS
+ | (_, Sql.Lt) => GREATER
+ | (Sql.Le, Sql.Le) => EQUAL
+ | (Sql.Le, _) => LESS
+ | (_, Sql.Le) => GREATER
+ | (Sql.Gt, Sql.Gt) => EQUAL
+ | (Sql.Gt, _) => LESS
+ | (_, Sql.Gt) => GREATER
+ | (Sql.Ge, Sql.Ge) => EQUAL
+
+end
+
+val rec chooseTwos : 'a list -> ('a * 'a) list =
+ fn [] => []
+ | x :: ys => map (fn y => (x, y)) ys @ chooseTwos ys
+
+fun removeRedundant madeRedundantBy zs =
+ let
+ fun removeRedundant' (xs, ys) =
+ case xs of
+ [] => ys
+ | x :: xs' =>
+ removeRedundant' (xs',
+ if List.exists (fn y => madeRedundantBy (x, y)) (xs' @ ys)
+ then ys
+ else x :: ys)
+ in
+ removeRedundant' (zs, [])
+ end
+
+datatype atomExp =
+ QueryArg of int
+ | DmlRel of int
+ | Prim of Prim.t
+ | Field of string * string
+
+structure AtomExpKey : ORD_KEY = struct
+
+ type ord_key = atomExp
+
+ val compare =
+ fn (QueryArg n1, QueryArg n2) => Int.compare (n1, n2)
+ | (QueryArg _, _) => LESS
+ | (_, QueryArg _) => GREATER
+ | (DmlRel n1, DmlRel n2) => Int.compare (n1, n2)
+ | (DmlRel _, _) => LESS
+ | (_, DmlRel _) => GREATER
+ | (Prim p1, Prim p2) => Prim.compare (p1, p2)
+ | (Prim _, _) => LESS
+ | (_, Prim _) => GREATER
+ | (Field (t1, f1), Field (t2, f2)) =>
+ case String.compare (t1, t2) of
+ EQUAL => String.compare (f1, f2)
+ | ord => ord
+
+end
+
+structure AtomOptionKey = OptionKeyFn(AtomExpKey)
+
+structure UF = UnionFindFn(AtomExpKey)
+
+structure ConflictMaps = struct
+
+ structure TK = TripleKeyFn(structure I = CmpKey
+ structure J = AtomOptionKey
+ structure K = AtomOptionKey)
+ structure TS : ORD_SET = BinarySetFn(TK)
+
+ val toKnownEquality =
+ (* [NONE] here means unkown. Anything that isn't a comparison between two
+ knowns shouldn't be used, and simply dropping unused terms is okay in
+ disjunctive normal form. *)
+ fn (Sql.Eq, SOME e1, SOME e2) => SOME (e1, e2)
+ | _ => NONE
+
+ val equivClasses : (Sql.cmp * atomExp option * atomExp option) list -> atomExp list list =
+ UF.classes
+ o List.foldl UF.union' UF.empty
+ o List.mapPartial toKnownEquality
+
+ fun addToEqs (eqs, n, e) =
+ case IM.find (eqs, n) of
+ (* Comparing to a constant is probably better than comparing to a
+ variable? Checking that existing constants match a new ones is
+ handled by [accumulateEqs]. *)
+ SOME (Prim _) => eqs
+ | _ => IM.insert (eqs, n, e)
+
+ val accumulateEqs =
+ (* [NONE] means we have a contradiction. *)
+ fn (_, NONE) => NONE
+ | ((Prim p1, Prim p2), eqso) =>
+ (case Prim.compare (p1, p2) of
+ EQUAL => eqso
+ | _ => NONE)
+ | ((QueryArg n, Prim p), SOME eqs) => SOME (addToEqs (eqs, n, Prim p))
+ | ((QueryArg n, DmlRel r), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r))
+ | ((Prim p, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, Prim p))
+ | ((DmlRel r, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r))
+ (* TODO: deal with equalities between [DmlRel]s and [Prim]s.
+ This would involve guarding the invalidation with a check for the
+ relevant comparisons. *)
+ | (_, eqso) => eqso
+
+ val eqsOfClass : atomExp list -> atomExp IM.map option =
+ List.foldl accumulateEqs (SOME IM.empty)
+ o chooseTwos
+
+ fun toAtomExps rel (cmp, e1, e2) =
+ let
+ val qa =
+ (* Here [NONE] means unkown. *)
+ fn Sql.SqConst p => SOME (Prim p)
+ | Sql.Field tf => SOME (Field tf)
+ | Sql.Inj (EPrim p, _) => SOME (Prim p)
+ | Sql.Inj (ERel n, _) => SOME (rel n)
+ (* We can't deal with anything else, e.g., CURRENT_TIMESTAMP
+ becomes Sql.Unmodeled, which becomes NONE here. *)
+ | _ => NONE
+ in
+ (cmp, qa e1, qa e2)
+ end
+
+ val negateCmp =
+ fn Sql.Eq => Sql.Ne
+ | Sql.Ne => Sql.Eq
+ | Sql.Lt => Sql.Ge
+ | Sql.Le => Sql.Gt
+ | Sql.Gt => Sql.Le
+ | Sql.Ge => Sql.Lt
+
+ fun normalizeAtom (negating, (cmp, e1, e2)) =
+ (* Restricting to Le/Lt and sorting the expressions in Eq/Ne helps with
+ simplification, where we put the triples in sets. *)
+ case (if negating then negateCmp cmp else cmp) of
+ Sql.Eq => (case AtomOptionKey.compare (e1, e2) of
+ LESS => (Sql.Eq, e2, e1)
+ | _ => (Sql.Eq, e1, e2))
+ | Sql.Ne => (case AtomOptionKey.compare (e1, e2) of
+ LESS => (Sql.Ne, e2, e1)
+ | _ => (Sql.Ne, e1, e2))
+ | Sql.Lt => (Sql.Lt, e1, e2)
+ | Sql.Le => (Sql.Le, e1, e2)
+ | Sql.Gt => (Sql.Lt, e2, e1)
+ | Sql.Ge => (Sql.Le, e2, e1)
+
+ val markQuery : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula ->
+ (Sql.cmp * atomExp option * atomExp option) formula =
+ mapFormula (toAtomExps QueryArg)
+
+ val markDml : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula ->
+ (Sql.cmp * atomExp option * atomExp option) formula =
+ mapFormula (toAtomExps DmlRel)
+
+ (* No eqs should have key conflicts because no variable is in two
+ equivalence classes, so the [#1] could be [#2]. *)
+ val mergeEqs : (atomExp IntBinaryMap.map option list
+ -> atomExp IntBinaryMap.map option) =
+ List.foldr (fn (SOME eqs, SOME acc) => SOME (IM.unionWith #1 (eqs, acc)) | _ => NONE)
+ (SOME IM.empty)
+
+ val simplify =
+ map TS.listItems
+ o removeRedundant (fn (x, y) => TS.isSubset (y, x))
+ o map (fn xs => TS.addList (TS.empty, xs))
+
+ fun dnf (fQuery, fDml) =
+ normalize simplify normalizeAtom Disj (Combo (Conj, [markQuery fQuery, markDml fDml]))
+
+ val conflictMaps = List.mapPartial (mergeEqs o map eqsOfClass o equivClasses) o dnf
+
+end
+
+val conflictMaps = ConflictMaps.conflictMaps
+
+val rec sqexpToFormula =
+ fn Sql.SqTrue => Combo (Conj, [])
+ | Sql.SqFalse => Combo (Disj, [])
+ | Sql.SqNot e => Negate (sqexpToFormula e)
+ | Sql.Binop (Sql.RCmp c, e1, e2) => Atom (c, e1, e2)
+ | Sql.Binop (Sql.RLop l, p1, p2) => Combo (case l of Sql.And => Conj | Sql.Or => Disj,
+ [sqexpToFormula p1, sqexpToFormula p2])
+ (* ASK: any other sqexps that can be props? *)
+ | _ => raise Match
+
+fun renameTables tablePairs =
+ let
+ fun renameString table =
+ case List.find (fn (_, t) => table = t) tablePairs of
+ NONE => table
+ | SOME (realTable, _) => realTable
+ val renameSqexp =
+ fn Sql.Field (table, field) => Sql.Field (renameString table, field)
+ | e => e
+ fun renameAtom (cmp, e1, e2) = (cmp, renameSqexp e1, renameSqexp e2)
+ in
+ mapFormula renameAtom
+ end
+
+val rec queryToFormula =
+ fn Sql.Query1 {Where = NONE, ...} => Combo (Conj, [])
+ | Sql.Query1 {From = tablePairs, Where = SOME e, ...} =>
+ renameTables tablePairs (sqexpToFormula e)
+ | Sql.Union (q1, q2) => Combo (Disj, [queryToFormula q1, queryToFormula q2])
+
+fun valsToFormula (table, vals) =
+ Combo (Conj, map (fn (field, v) => Atom (Sql.Eq, Sql.Field (table, field), v)) vals)
+
+val rec dmlToFormula =
+ fn Sql.Insert (table, vals) => valsToFormula (table, vals)
+ | Sql.Delete (table, wher) => renameTables [(table, "T")] (sqexpToFormula wher)
+ | Sql.Update (table, vals, wher) =>
+ let
+ val fWhere = sqexpToFormula wher
+ val fVals = valsToFormula (table, vals)
+ val modifiedFields = SS.addList (SS.empty, map #1 vals)
+ (* TODO: don't use field name hack. *)
+ val markField =
+ fn e as Sql.Field (t, v) => if SS.member (modifiedFields, v)
+ then Sql.Field (t, v ^ "'")
+ else e
+ | e => e
+ val mark = mapFormula (fn (cmp, e1, e2) => (cmp, markField e1, markField e2))
+ in
+ renameTables [(table, "T")]
+ (Combo (Disj, [Combo (Conj, [fVals, mark fWhere]),
+ Combo (Conj, [mark fVals, fWhere])]))
+ end
+
+val rec tablesQuery =
+ fn Sql.Query1 {From = tablePairs, ...} => SS.fromList (map #1 tablePairs)
+ | Sql.Union (q1, q2) => SS.union (tablesQuery q1, tablesQuery q2)
+
+val tableDml =
+ fn Sql.Insert (tab, _) => tab
+ | Sql.Delete (tab, _) => tab
+ | Sql.Update (tab, _, _) => tab
+
+
+(*************************************)
+(* Program Instrumentation Utilities *)
+(*************************************)
+
+val varName =
+ let
+ val varNumber = ref 0
+ in
+ fn s => (varNumber := !varNumber + 1; s ^ Int.toString (!varNumber))
+ end
+
+val {check, store, flush, ...} = getCache ()
+
+val dummyLoc = ErrorMsg.dummySpan
+
+val dummyTyp = (TRecord [], dummyLoc)
+
+fun stringExp s = (EPrim (Prim.String (Prim.Normal, s)), dummyLoc)
+
+val stringTyp = (TFfi ("Basis", "string"), dummyLoc)
+
+val sequence =
+ fn (exp :: exps) =>
+ let
+ val loc = dummyLoc
+ in
+ List.foldl (fn (e', seq) => ESeq ((seq, loc), (e', loc))) exp exps
+ end
+ | _ => raise Match
+
+(* Always increments negative indices as a hack we use later. *)
+fun incRels inc =
+ MonoUtil.Exp.mapB
+ {typ = fn t' => t',
+ exp = fn bound =>
+ (fn ERel n => ERel (if n >= bound orelse n < 0 then n + inc else n)
+ | e' => e'),
+ bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound}
+ 0
+
+fun fileTopLevelMapfoldB doTopLevelExp (decls, sideInfo) state =
+ let
+ fun doVal env ((x, n, t, exp, s), state) =
+ let
+ val (exp, state) = doTopLevelExp env exp state
+ in
+ ((x, n, t, exp, s), state)
+ end
+ fun doDecl' env (decl', state) =
+ case decl' of
+ DVal v =>
+ let
+ val (v, state) = doVal env (v, state)
+ in
+ (DVal v, state)
+ end
+ | DValRec vs =>
+ let
+ val (vs, state) = ListUtil.foldlMap (doVal env) state vs
+ in
+ (DValRec vs, state)
+ end
+ | _ => (decl', state)
+ fun doDecl (decl as (decl', loc), (env, state)) =
+ let
+ val env = MonoEnv.declBinds env decl
+ val (decl', state) = doDecl' env (decl', state)
+ in
+ ((decl', loc), (env, state))
+ end
+ val (decls, (_, state)) = (ListUtil.foldlMap doDecl (MonoEnv.empty, state) decls)
+ in
+ ((decls, sideInfo), state)
+ end
+
+fun fileAllMapfoldB doExp file start =
+ case MonoUtil.File.mapfoldB
+ {typ = Search.return2,
+ exp = fn env => fn e' => fn s => Search.Continue (doExp env e' s),
+ decl = fn _ => Search.return2,
+ bind = doBind}
+ MonoEnv.empty file start of
+ Search.Continue x => x
+ | Search.Return _ => raise Match
+
+fun fileMap doExp file = #1 (fileAllMapfoldB (fn _ => fn e => fn _ => (doExp e, ())) file ())
+
+(* TODO: make this a bit prettier.... *)
+val simplifySql =
+ let
+ fun factorOutNontrivial text =
+ let
+ val loc = dummyLoc
+ fun strcat (e1, e2) = (EStrcat (e1, e2), loc)
+ val chunks = Sql.chunkify text
+ val (newText, newVariables) =
+ (* Important that this is foldr (to oppose foldl below). *)
+ List.foldr
+ (fn (chunk, (qText, newVars)) =>
+ (* Variable bound to the head of newVars will have the lowest index. *)
+ case chunk of
+ (* EPrim should always be a string in this case. *)
+ Sql.Exp (e as (EPrim _, _)) => (strcat (e, qText), newVars)
+ | Sql.Exp e =>
+ let
+ val n = length newVars
+ in
+ (* This is the (n+1)th new variable, so there are
+ already n new variables bound, so we increment
+ indices by n. *)
+ (strcat ((ERel (~(n+1)), loc), qText), incRels n e :: newVars)
+ end
+ | Sql.String s => (strcat (stringExp s, qText), newVars))
+ (stringExp "", [])
+ chunks
+ fun wrapLets e' =
+ (* Important that this is foldl (to oppose foldr above). *)
+ List.foldl (fn (v, e') => ELet (varName "sqlArg", stringTyp, v, (e', loc)))
+ e'
+ newVariables
+ val numArgs = length newVariables
+ in
+ (newText, wrapLets, numArgs)
+ end
+ fun doExp exp' =
+ let
+ val text = case exp' of
+ EQuery {query = text, ...} => text
+ | EDml (text, _) => text
+ | _ => raise Match
+ val (newText, wrapLets, numArgs) = factorOutNontrivial text
+ val newExp' = case exp' of
+ EQuery q => EQuery {query = newText,
+ exps = #exps q,
+ tables = #tables q,
+ state = #state q,
+ body = #body q,
+ initial = #initial q}
+ | EDml (_, failureMode) => EDml (newText, failureMode)
+ | _ => raise Match
+ in
+ (* Increment once for each new variable just made. This is
+ where we use the negative De Bruijn indices hack. *)
+ (* TODO: please don't use that hack. As anyone could have
+ predicted, it was incomprehensible a year later.... *)
+ wrapLets (#1 (incRels numArgs (newExp', dummyLoc)))
+ end
+ in
+ fileMap (fn exp' => case exp' of
+ EQuery _ => doExp exp'
+ | EDml _ => doExp exp'
+ | _ => exp')
+ end
+
+
+(**********************)
+(* Mono Type Checking *)
+(**********************)
+
+fun typOfExp' (env : MonoEnv.env) : exp' -> typ option =
+ fn EPrim p => SOME (TFfi ("Basis", case p of
+ Prim.Int _ => "int"
+ | Prim.Float _ => "double"
+ | Prim.String _ => "string"
+ | Prim.Char _ => "char"),
+ dummyLoc)
+ | ERel n => SOME (#2 (MonoEnv.lookupERel env n))
+ | ENamed n => SOME (#2 (MonoEnv.lookupENamed env n))
+ (* ASK: okay to make a new [ref] each time? *)
+ | ECon (dk, PConVar nCon, _) =>
+ let
+ val (_, _, nData) = MonoEnv.lookupConstructor env nCon
+ val (_, cs) = MonoEnv.lookupDatatype env nData
+ in
+ SOME (TDatatype (nData, ref (dk, cs)), dummyLoc)
+ end
+ | ECon (_, PConFfi {mod = s, datatyp, ...}, _) => SOME (TFfi (s, datatyp), dummyLoc)
+ | ENone t => SOME (TOption t, dummyLoc)
+ | ESome (t, _) => SOME (TOption t, dummyLoc)
+ | EFfi _ => NONE
+ | EFfiApp _ => NONE
+ | EApp (e1, e2) => (case typOfExp env e1 of
+ SOME (TFun (_, t), _) => SOME t
+ | _ => NONE)
+ | EAbs (_, t1, t2, _) => SOME (TFun (t1, t2), dummyLoc)
+ (* ASK: is this right? *)
+ | EUnop (unop, e) => (case unop of
+ "!" => SOME (TFfi ("Basis", "bool"), dummyLoc)
+ | "-" => typOfExp env e
+ | _ => NONE)
+ (* ASK: how should this (and other "=> NONE" cases) work? *)
+ | EBinop _ => NONE
+ | ERecord fields => SOME (TRecord (map (fn (s, _, t) => (s, t)) fields), dummyLoc)
+ | EField (e, s) => (case typOfExp env e of
+ SOME (TRecord fields, _) =>
+ (case List.find (fn (s', _) => s = s') fields of
+ SOME (_, t) => SOME t
+ | _ => NONE)
+ | _ => NONE)
+ | ECase (_, _, {result, ...}) => SOME result
+ | EStrcat _ => SOME (TFfi ("Basis", "string"), dummyLoc)
+ | EWrite _ => SOME (TRecord [], dummyLoc)
+ | ESeq (_, e) => typOfExp env e
+ | ELet (s, t, e1, e2) => typOfExp (MonoEnv.pushERel env s t (SOME e1)) e2
+ | EClosure _ => NONE
+ | EUnurlify (_, t, _) => SOME t
+ | EQuery {state, ...} => SOME state
+ | _ => NONE
+
+and typOfExp env (e', loc) = typOfExp' env e'
+
+
+(***********)
+(* Caching *)
+(***********)
+
+(*
+
+To get the invalidations for a dml, we need (each <- is list-monad-y):
+ * table <- dml
+ * cache <- table
+ * query <- cache
+ * inval <- (query, dml),
+where inval is a list of query argument indices, so
+ * way to change query args in inval to cache args.
+For now, the last one is just
+ * a map from query arg number to the corresponding free variable (per query)
+ * a map from free variable to cache arg number (per cache).
+Both queries and caches should have IDs.
+
+*)
+
+fun cacheWrap (env, exp, resultTyp, args, state as (_, _, ffiInfo, index)) =
+ let
+ val loc = dummyLoc
+ val rel0 = (ERel 0, loc)
+ in
+ case MonoFooify.urlify env (rel0, resultTyp) of
+ NONE => NONE
+ | SOME urlified =>
+ let
+ (* We ensure before this step that all arguments aren't effectful.
+ by turning them into local variables as needed. *)
+ val argsInc = map (incRels 1) args
+ val check = (check (index, args), loc)
+ val store = (store (index, argsInc, urlified), loc)
+ in
+ SOME ((ECase
+ (check,
+ [((PNone stringTyp, loc),
+ (ELet (varName "q", resultTyp, exp, (ESeq (store, rel0), loc)), loc)),
+ ((PSome (stringTyp, (PVar (varName "hit", stringTyp), loc)), loc),
+ (* Boolean is false because we're not unurlifying from a cookie. *)
+ (EUnurlify (rel0, resultTyp, false), loc))],
+ {disc = (TOption stringTyp, loc), result = resultTyp})),
+ (#1 state,
+ #2 state,
+ {index = index, params = length args} :: ffiInfo,
+ index + 1))
+ end
+ end
+
+val maxFreeVar =
+ MonoUtil.Exp.foldB
+ {typ = #2,
+ exp = fn (bound, ERel n, v) => Int.max (v, n - bound) | (_, _, v) => v,
+ bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound}
+ 0
+ ~1
+
+val freeVars =
+ IS.listItems
+ o MonoUtil.Exp.foldB
+ {typ = #2,
+ exp = fn (bound, ERel n, vars) => if n < bound
+ then vars
+ else IS.add (vars, n - bound)
+ | (_, _, vars) => vars,
+ bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound}
+ 0
+ IS.empty
+
+val expSize = MonoUtil.Exp.fold {typ = #2, exp = fn (_, n) => n+1} 0
+
+type state = (SIMM.multimap
+ * (Sql.query * int) IntBinaryMap.map
+ * {index : int, params : int} list
+ * int)
+
+datatype subexp = Cachable of state -> (exp * state) | Impure of exp
+
+val isImpure =
+ fn Cachable _ => false
+ | Impure _ => true
+
+val runSubexp : subexp * state -> exp * state =
+ fn (Cachable f, state) => f state
+ | (Impure e, state) => (e, state)
+
+(* TODO: pick a number. *)
+val sizeWorthCaching = 5
+
+val worthCaching =
+ fn EQuery _ => true
+ | exp' => expSize (exp', dummyLoc) > sizeWorthCaching
+
+fun cachePure (env, exp', state as (_, _, _, index)) =
+ case (worthCaching exp')
+ </oguard/>
+ typOfExp' env exp' of
+ NONE => NONE
+ | SOME (TFun _, _) => NONE
+ | SOME typ =>
+ (List.foldr (fn (_, NONE) => NONE
+ | ((n, typ), SOME args) =>
+ (MonoFooify.urlify env ((ERel n, dummyLoc), typ))
+ </obind/>
+ (fn arg => SOME (arg :: args)))
+ (SOME [])
+ (map (fn n => (n, #2 (MonoEnv.lookupERel env n)))
+ (ListMergeSort.sort op> (freeVars (exp', dummyLoc)))))
+ </obind/>
+ (fn args => cacheWrap (env, (exp', dummyLoc), typ, args, state))
+
+fun cacheQuery (effs, env, state, q) : (exp' * state) =
+ let
+ val (tableToIndices, indexToQueryNumArgs, ffiInfo, index) = state
+ val {query = queryText, initial, body, ...} = q
+ val numArgs = maxFreeVar queryText + 1
+ (* DEBUG *)
+ (* val () = Print.preface ("sqlcache> ", MonoPrint.p_exp MonoEnv.empty queryText) *)
+ (* We use dummyTyp here. I think this is okay because databases don't
+ store (effectful) functions, but perhaps there's some pathalogical
+ corner case missing.... *)
+ fun safe bound =
+ not
+ o effectful effs
+ (iterate (fn env => MonoEnv.pushERel env "_" dummyTyp NONE)
+ bound
+ env)
+ val {state = resultTyp, ...} = q
+ val args = List.tabulate (numArgs, fn n => (ERel n, dummyLoc))
+ val attempt =
+ (* Ziv misses Haskell's do notation.... *)
+ (safe 0 queryText andalso safe 0 initial andalso safe 2 body)
+ </oguard/>
+ Sql.parse Sql.query queryText
+ </obind/>
+ (fn queryParsed =>
+ (cachePure (env, EQuery q, state))
+ </obind/>
+ (fn (cachedExp, state) =>
+ SOME (cachedExp,
+ (SS.foldr (fn (tab, qi) => SIMM.insert (qi, tab, index))
+ tableToIndices
+ (tablesQuery queryParsed),
+ IM.insert (indexToQueryNumArgs, index, (queryParsed, numArgs)),
+ #3 state,
+ #4 state))))
+ in
+ case attempt of
+ SOME pair => pair
+ | NONE => (EQuery q, state)
+ end
+
+fun cache (effs : IS.set) ((env, exp as (exp', loc)), state) =
+ let
+ fun wrapBindN (f : exp list -> exp') (args : (MonoEnv.env * exp) list) =
+ let
+ val (subexps, state) = ListUtil.foldlMap (cache effs) state args
+ fun mkExp state = mapFst (fn exps => (f exps, loc))
+ (ListUtil.foldlMap runSubexp state subexps)
+ in
+ if List.exists isImpure subexps
+ then mapFst Impure (mkExp state)
+ else (Cachable (fn state =>
+ case cachePure (env, f (map #2 args), state) of
+ NONE => mkExp state
+ | SOME (e', state) => ((e', loc), state)),
+ state)
+ end
+ fun wrapBind1 f arg =
+ wrapBindN (fn [arg] => f arg | _ => raise Match) [arg]
+ fun wrapBind2 f (arg1, arg2) =
+ wrapBindN (fn [arg1, arg2] => f (arg1, arg2) | _ => raise Match) [arg1, arg2]
+ fun wrapN f es = wrapBindN f (map (fn e => (env, e)) es)
+ fun wrap1 f e = wrapBind1 f (env, e)
+ fun wrap2 f (e1, e2) = wrapBind2 f ((env, e1), (env, e2))
+ in
+ case exp' of
+ ECon (dk, pc, SOME e) => wrap1 (fn e => ECon (dk, pc, SOME e)) e
+ | ESome (t, e) => wrap1 (fn e => ESome (t, e)) e
+ | EFfiApp (s1, s2, args) =>
+ if ffiEffectful (s1, s2)
+ then (Impure exp, state)
+ else wrapN (fn es =>
+ EFfiApp (s1, s2, ListPair.map (fn (e, (_, t)) => (e, t)) (es, args)))
+ (map #1 args)
+ | EApp (e1, e2) => wrap2 EApp (e1, e2)
+ | EAbs (s, t1, t2, e) =>
+ wrapBind1 (fn e => EAbs (s, t1, t2, e))
+ (MonoEnv.pushERel env s t1 NONE, e)
+ | EUnop (s, e) => wrap1 (fn e => EUnop (s, e)) e
+ | EBinop (bi, s, e1, e2) => wrap2 (fn (e1, e2) => EBinop (bi, s, e1, e2)) (e1, e2)
+ | ERecord fields =>
+ wrapN (fn es => ERecord (ListPair.map (fn (e, (s, _, t)) => (s, e, t)) (es, fields)))
+ (map #2 fields)
+ | EField (e, s) => wrap1 (fn e => EField (e, s)) e
+ | ECase (e, cases, {disc, result}) =>
+ wrapBindN (fn (e::es) =>
+ ECase (e,
+ (ListPair.map (fn (e, (p, _)) => (p, e)) (es, cases)),
+ {disc = disc, result = result})
+ | _ => raise Match)
+ ((env, e) :: map (fn (p, e) => (MonoEnv.patBinds env p, e)) cases)
+ | EStrcat (e1, e2) => wrap2 EStrcat (e1, e2)
+ (* We record page writes, so they're cachable. *)
+ | EWrite e => wrap1 EWrite e
+ | ESeq (e1, e2) => wrap2 ESeq (e1, e2)
+ | ELet (s, t, e1, e2) =>
+ wrapBind2 (fn (e1, e2) => ELet (s, t, e1, e2))
+ ((env, e1), (MonoEnv.pushERel env s t (SOME e1), e2))
+ (* ASK: | EClosure (n, es) => ? *)
+ | EUnurlify (e, t, b) => wrap1 (fn e => EUnurlify (e, t, b)) e
+ | EQuery q =>
+ let
+ val (exp', state) = cacheQuery (effs, env, state, q)
+ in
+ (Impure (exp', loc), state)
+ end
+ | _ => (if effectful effs env exp
+ then Impure exp
+ else Cachable (fn state =>
+ case cachePure (env, exp', state) of
+ NONE => ((exp', loc), state)
+ | SOME (exp', state) => ((exp', loc), state)),
+ state)
+ end
+
+fun addCaching file =
+ let
+ val effs = effectfulDecls file
+ fun doTopLevelExp env exp state = runSubexp (cache effs ((env, exp), state))
+ in
+ ((fileTopLevelMapfoldB doTopLevelExp file (SIMM.empty, IM.empty, [], 0)), effs)
+ end
+
+
+(************)
+(* Flushing *)
+(************)
+
+structure Invalidations = struct
+
+ val loc = dummyLoc
+
+ val optionAtomExpToExp =
+ fn NONE => (ENone stringTyp, loc)
+ | SOME e => (ESome (stringTyp,
+ (case e of
+ DmlRel n => ERel n
+ | Prim p => EPrim p
+ (* TODO: make new type containing only these two. *)
+ | _ => raise Match,
+ loc)),
+ loc)
+
+ fun eqsToInvalidation numArgs eqs =
+ List.tabulate (numArgs, (fn n => IM.find (eqs, n)))
+
+ (* Tests if [ys] makes [xs] a redundant cache invalidation. [NONE] here
+ represents unknown, which means a wider invalidation. *)
+ val rec madeRedundantBy : atomExp option list * atomExp option list -> bool =
+ fn ([], []) => true
+ | (_ :: xs, NONE :: ys) => madeRedundantBy (xs, ys)
+ | (SOME x :: xs, SOME y :: ys) => (case AtomExpKey.compare (x, y) of
+ EQUAL => madeRedundantBy (xs, ys)
+ | _ => false)
+ | _ => false
+
+ fun eqss (query, dml) = conflictMaps (queryToFormula query, dmlToFormula dml)
+
+ fun invalidations ((query, numArgs), dml) =
+ (map (map optionAtomExpToExp)
+ o removeRedundant madeRedundantBy
+ o map (eqsToInvalidation numArgs)
+ o eqss)
+ (query, dml)
+
+end
+
+val invalidations = Invalidations.invalidations
+
+(* DEBUG *)
+(* val gunk : ((Sql.query * int) * Sql.dml) list ref = ref [] *)
+(* val gunk' : exp list ref = ref [] *)
+
+fun addFlushing ((file, (tableToIndices, indexToQueryNumArgs, ffiInfo, index)), effs) =
+ let
+ val flushes = List.concat
+ o map (fn (i, argss) => map (fn args => flush (i, args)) argss)
+ val doExp =
+ fn dmlExp as EDml (dmlText, failureMode) =>
+ let
+ (* DEBUG *)
+ (* val () = gunk' := origDmlText :: !gunk' *)
+ (* val () = Print.preface ("SQLCACHE: ", (MonoPrint.p_exp MonoEnv.empty origDmlText)) *)
+ val inval =
+ case Sql.parse Sql.dml dmlText of
+ SOME dmlParsed =>
+ SOME (map (fn i => (case IM.find (indexToQueryNumArgs, i) of
+ SOME queryNumArgs =>
+ (* DEBUG *)
+ ((* gunk := (queryNumArgs, dmlParsed) :: !gunk; *)
+ (i, invalidations (queryNumArgs, dmlParsed)))
+ (* TODO: fail more gracefully. *)
+ | NONE => raise Match))
+ (SIMM.findList (tableToIndices, tableDml dmlParsed)))
+ | NONE => NONE
+ in
+ case inval of
+ (* TODO: fail more gracefully. *)
+ NONE => raise Match
+ | SOME invs => sequence (flushes invs @ [dmlExp])
+ end
+ | e' => e'
+ in
+ (* DEBUG *)
+ (* gunk := []; *)
+ ffiInfoRef := ffiInfo;
+ fileMap doExp file
+ end
+
+
+(************************)
+(* Compiler Entry Point *)
+(************************)
+
+val inlineSql =
+ let
+ val doExp =
+ (* TODO: EQuery, too? *)
+ (* ASK: should this live in [MonoOpt]? *)
+ fn EDml ((ECase (disc, cases, {disc = dTyp, ...}), loc), failureMode) =>
+ let
+ val newCases = map (fn (p, e) => (p, (EDml (e, failureMode), loc))) cases
+ in
+ ECase (disc, newCases, {disc = dTyp, result = (TRecord [], loc)})
+ end
+ | e => e
+ in
+ fileMap doExp
+ end
+
+fun insertAfterDatatypes ((decls, sideInfo), newDecls) =
+ let
+ val (datatypes, others) = List.partition (fn (DDatatype _, _) => true | _ => false) decls
+ in
+ (datatypes @ newDecls @ others, sideInfo)
+ end
+
+val go' = addFlushing o addCaching o simplifySql o inlineSql
+
+fun go file =
+ let
+ (* TODO: do something nicer than [Sql] being in one of two modes. *)
+ val () = (resetFfiInfo (); Sql.sqlcacheMode := true)
+ val file = go' file
+ (* Important that this happens after [MonoFooify.urlify] calls! *)
+ val fmDecls = MonoFooify.getNewFmDecls ()
+ val () = Sql.sqlcacheMode := false
+ in
+ insertAfterDatatypes (file, rev fmDecls)
+ end
+
+end