diff options
Diffstat (limited to 'src/coq/Semantics.v')
-rw-r--r-- | src/coq/Semantics.v | 81 |
1 files changed, 75 insertions, 6 deletions
diff --git a/src/coq/Semantics.v b/src/coq/Semantics.v index 19c67a05..2a12df72 100644 --- a/src/coq/Semantics.v +++ b/src/coq/Semantics.v @@ -48,6 +48,14 @@ Fixpoint kDen (k : kind) : Type := | KRecord k1 => row (kDen k1) end. +Fixpoint kDefault (k : kind) : kDen k := + match k return kDen k with + | KType => unit + | KName => defaultName + | KArrow _ k2 => fun _ => kDefault k2 + | KRecord _ => fun _ => None + end. + Fixpoint cDen k (c : con kDen k) {struct c} : kDen k := match c in con _ k return kDen k with | CVar _ x => x @@ -67,7 +75,13 @@ Fixpoint cDen k (c : con kDen k) {struct c} : kDen k := | None => None | Some T => Some (f T) end - | CGuarded _ _ _ _ c => cDen c + | CGuarded _ _ c1 c2 c => + if badName (fun n => match (cDen c1) n, (cDen c2) n with + | Some _, Some _ => false + | _, _ => true + end) + then kDefault _ + else cDen c end. Theorem subs_correct : forall k1 (c1 : con kDen k1) k2 (c2 : _ -> con kDen k2) c2', @@ -87,11 +101,33 @@ Definition disjoint T (r1 r2 : row T) := Definition dvar k (c1 c2 : con kDen (KRecord k)) := disjoint (cDen c1) (cDen c2). +Theorem known_badName : forall T (r1 r2 : row T) T' (v1 v2 : T'), + disjoint r1 r2 + -> (if badName (fun n => match r1 n, r2 n with + | Some _, Some _ => false + | _, _ => true + end) + then v1 + else v2) = v2. + intros; match goal with + | [ |- context[if ?E then _ else _] ] => destruct E + end; firstorder; + match goal with + | [ H : disjoint _ _, x : name |- _ ] => + generalize (H x); + repeat match goal with + | [ |- context[match ?E with None => _ | Some _ => _ end] ] => destruct E + end; tauto || congruence + end. +Qed. + +Hint Rewrite known_badName using solve [ auto ] : Semantics. + Scheme deq_mut := Minimality for deq Sort Prop with disj_mut := Minimality for disj Sort Prop. Ltac deq_disj_correct scm := - let t := repeat progress (simpl; intuition; subst) in + let t := repeat progress (simpl; intuition; subst; autorewrite with Semantics) in let rec use_disjoint' notDone E := match goal with @@ -113,7 +149,7 @@ Ltac deq_disj_correct scm := disjoint (cDen c1) (cDen c2))); t; repeat ((unfold row; apply ext_eq) || (match goal with - | [ H : _ |- _ ] => rewrite H + | [ H : _ |- _ ] => rewrite H; [] | [ H : subs _ _ _ |- _ ] => rewrite <- (subs_correct H) end); t); unfold disjoint; t; @@ -124,8 +160,33 @@ Ltac deq_disj_correct scm := use_disjoint N1; use_disjoint N2; destruct (name_eq_dec N1 N2) | [ _ : context[match cDen ?C ?E with Some _ => _ | None => _ end] |- _ ] => use_disjoint E; destruct (cDen C E) + | [ |- context[if ?E then _ else _] ] => destruct E end; t). +Lemma bool_disjoint : forall T (r1 r2 : row T), + (forall nm : name, + match r1 nm with + | Some _ => match r2 nm with + | Some _ => false + | None => true + end + | None => true + end = true) + -> disjoint r1 r2. + intros; intro; + match goal with + | [ H : _, n : name |- _ ] => generalize (H n) + end; + repeat match goal with + | [ |- context[match ?E with Some _ => _ | None => _ end] ] => destruct E + end; tauto || discriminate. +Qed. + +Implicit Arguments bool_disjoint [T r1 r2]. + +Hint Resolve bool_disjoint. +Hint Unfold dvar. + Theorem deq_correct : forall k (c1 c2 : con kDen k), deq dvar c1 c2 -> cDen c1 = cDen c2. @@ -138,8 +199,6 @@ Theorem disj_correct : forall k (c1 c2 : con kDen (KRecord k)), deq_disj_correct disj_mut. Qed. -Axiom cheat : forall T, T. - Definition tDen (t : con kDen KType) : Set := cDen t. Theorem name_eq_dec_refl : forall n, name_eq_dec n n = left _ (refl_equal n). @@ -166,6 +225,8 @@ Qed. Implicit Arguments cut_disjoint [v r]. +Set Printing All. + Fixpoint eDen t (e : exp dvar tDen t) {struct e} : tDen t := match e in exp _ _ t return tDen t with | Var _ x => x @@ -225,5 +286,13 @@ Fixpoint eDen t (e : exp dvar tDen t) {struct e} : tDen t := | _ => fun x => x end ((eDen e1) n) - | _ => cheat _ + | Guarded _ c1 c2 _ e1 => + match badName (fun n => match (cDen c1) n, (cDen c2) n with + | Some _, Some _ => false + | _, _ => true + end) + as BN return (if BN return Set then _ else _) with + | inleft _ => tt + | inright pf => eDen (e1 (bool_disjoint pf)) + end end. |