diff options
Diffstat (limited to 'doc/manual.tex')
-rw-r--r-- | doc/manual.tex | 38 |
1 files changed, 37 insertions, 1 deletions
diff --git a/doc/manual.tex b/doc/manual.tex index 0bd129cd..2b0f2c57 100644 --- a/doc/manual.tex +++ b/doc/manual.tex @@ -238,7 +238,7 @@ Since there is significant mutual recursion among the judgments, we introduce th \begin{itemize} \item $\Gamma \vdash c :: \kappa$ assigns a kind to a constructor in a context. \item $\Gamma \vdash c \sim c$ proves the disjointness of two record constructors; that is, that they share no field names. We overload the judgment to apply to pairs of field names as well. -\item $\Gamma \vdash c \hookrightarrow \overline{c}$ proves that record constructor $c$ decomposes into set $\overline{c}$ of field names and record constructors. +\item $\Gamma \vdash c \hookrightarrow C$ proves that record constructor $c$ decomposes into set $C$ of field names and record constructors. \item $\Gamma \vdash c \equiv c$ proves the computational equivalence of two constructors. This is often called a \emph{definitional equality} in the world of type theory. \item $\Gamma \vdash e : \tau$ is a standard typing judgment. \item $\Gamma \vdash M : S$ is the module signature checking judgment. @@ -314,4 +314,40 @@ $$\infer{\Gamma \vdash \lambda [c_1 \sim c_2] \Rightarrow c :: \kappa}{ & \Gamma, c_1 \sim c_2 \vdash c :: \kappa }$$ +\subsection{Record Disjointness} + +We will use a keyword $\mt{map}$ as a shorthand, such that, for $f$ of kind $\kappa \to \kappa'$, $\mt{map} \; f$ stands for $\mt{fold} \; (\lambda (x_1 :: \mt{Name}) (x_2 :: \kappa) (x_3 :: \{\kappa'\}) \Rightarrow [x_1 = f \; x_2] \rc x_3) \; []$. + +$$\infer{\Gamma \vdash c_1 \sim c_2}{ + \Gamma \vdash c_1 \hookrightarrow c'_1 + & \Gamma \vdash c_2 \hookrightarrow c'_2 + & \forall c''_1 \in c'_1, c''_2 \in c'_2: \Gamma \vdash c''_1 \sim c''_2 +} +\quad \infer{\Gamma \vdash X \sim X'}{ + X \neq X' +}$$ + +$$\infer{\Gamma \vdash c_1 \sim c_2}{ + c'_1 \sim c'_2 \in \Gamma + & \Gamma \vdash c'_1 \hookrightarrow c''_1 + & \Gamma \vdash c'_2 \hookrightarrow c''_2 + & c_1 \in c''_1 + & c_2 \in c''_2 +}$$ + +$$\infer{\Gamma \vdash c \hookrightarrow \{c\}}{} +\quad \infer{\Gamma \vdash [\overline{c = c'}] \hookrightarrow \{\overline{c}\}}{} +\quad \infer{\Gamma \vdash c_1 \rc c_2 \hookrightarrow C_1 \cup C_2}{ + \Gamma \vdash c_1 \hookrightarrow C_1 + & \Gamma \vdash c_2 \hookrightarrow C_2 +} +\quad \infer{\Gamma \vdash c \hookrightarrow C}{ + \Gamma \vdash c \equiv c' + & \Gamma \vdash c' \hookrightarrow C +} +\quad \infer{\Gamma \vdash \mt{map} \; f \; c \hookrightarrow C}{ + \Gamma \vdash c \hookrightarrow C +}$$ + + \end{document}
\ No newline at end of file |