/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2010 Dave Hooper * * ARM optimisations for ffmpeg's fft (used in fft-ffmpeg.c) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #ifdef CPU_ARM /* Start off with optimised variants of the butterflies that work nicely on arm */ /* 1. where y and a share the same variable/register */ #define BF_OPT(x,y,a,b) {\ y = a + b;\ x = y - (b<<1);\ } /* 2. where y and b share the same variable/register */ #define BF_OPT2(x,y,a,b) {\ x = a - b;\ y = x + (b<<1);\ } /* 3. where y and b share the same variable/register (but y=(-b)) */ #define BF_OPT2_REV(x,y,a,b) {\ x = a + b;\ y = x - (b<<1);\ } /* standard BUTTERFLIES package. Note, we actually manually inline this in all the TRANSFORM macros below anyway */ #define FFT_FFMPEG_INCL_OPTIMISED_BUTTERFLIES #define BUTTERFLIES(a0,a1,a2,a3) {\ {\ BF_OPT(t1, t5, t5, t1);\ BF_OPT(t6, t2, t2, t6);\ BF_OPT(a2.re, a0.re, a0.re, t5);\ BF_OPT(a2.im, a0.im, a0.im, t2);\ BF_OPT(a3.re, a1.re, a1.re, t6);\ BF_OPT(a3.im, a1.im, a1.im, t1);\ }\ } #define FFT_FFMPEG_INCL_OPTIMISED_TRANSFORM static inline FFTComplex* TRANSFORM( FFTComplex* z, int n, FFTSample wre, FFTSample wim ) { register FFTSample t1,t2 asm("r5"),t5 asm("r6"),t6 asm("r7"),r_re asm("r8"),r_im asm("r9"); z += n*2; /* z[o2] */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); XPROD31_R(r_re, r_im, wre, wim, t1,t2); z += n; /* z[o3] */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); XNPROD31_R(r_re, r_im, wre, wim, t5,t6); BF_OPT(t1, t5, t5, t1); BF_OPT(t6, t2, t2, t6); { register FFTSample rt0temp asm("r4"); /*{*/ /* BF_OPT(t1, t5, t5, t1);*/ /* BF_OPT(t6, t2, t2, t6);*/ /* BF_OPT(a2.re, a0.re, a0.re, t5);*/ /* BF_OPT(a2.im, a0.im, a0.im, t2);*/ /* BF_OPT(a3.re, a1.re, a1.re, t6);*/ /* BF_OPT(a3.im, a1.im, a1.im, t1);*/ /*}*/ z -= n*3; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(rt0temp, r_re, r_re, t5); BF_OPT(t2, r_im, r_im, t2); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory" ); z += n; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(t5, r_re, r_re, t6); BF_OPT(t6, r_im, r_im, t1); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* my_z[0] = rt0temp; my_z[1] = t2; */ asm volatile( "stmia %[my_z], {%[rt0temp],%[t2]}\n\t"::[my_z] "r" (z), [rt0temp] "r" (rt0temp), [t2] "r" (t2):"memory"); } z += n; /* my_z[0] = t5; my_z[1] = t6; */ asm volatile( "stmia %[my_z]!, {%[t5],%[t6]}\n\t":[my_z] "+r" (z) : [t5] "r" (t5), [t6] "r" (t6):"memory"); z -= n*3; return(z); } static inline FFTComplex* TRANSFORM_W01( FFTComplex* z, int n, const FFTSample* w ) { register FFTSample t1,t2 asm("r5"),t5 asm("r6"),t6 asm("r7"),r_re asm("r8"),r_im asm("r9"); /* load wre,wim into t5,t6 */ asm volatile( "ldmia %[w], {%[wre], %[wim]}\n\t":[wre] "=r" (t5), [wim] "=r" (t6):[w] "r" (w)); z += n*2; /* z[o2] -- 2n * 2 since complex numbers */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); XPROD31_R(r_re, r_im, t5 /*wre*/, t6 /*wim*/, t1,t2); z += n; /* z[o3] */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); XNPROD31_R(r_re, r_im, t5 /*wre*/, t6 /*wim*/, t5,t6); BF_OPT(t1, t5, t5, t1); BF_OPT(t6, t2, t2, t6); { register FFTSample rt0temp asm("r4"); /*{*/ /* BF_OPT(t1, t5, t5, t1);*/ /* BF_OPT(t6, t2, t2, t6);*/ /* BF_OPT(a2.re, a0.re, a0.re, t5);*/ /* BF_OPT(a2.im, a0.im, a0.im, t2);*/ /* BF_OPT(a3.re, a1.re, a1.re, t6);*/ /* BF_OPT(a3.im, a1.im, a1.im, t1);*/ /*}*/ z -= n*3; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(rt0temp, r_re, r_re, t5); BF_OPT(t2, r_im, r_im, t2); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(t5, r_re, r_re, t6); BF_OPT(t6, r_im, r_im, t1); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* my_z[0] = rt0temp; my_z[1] = t2; */ asm volatile( "stmia %[my_z], {%[rt0temp],%[t2]}\n\t"::[my_z] "r" (z), [rt0temp] "r" (rt0temp), [t2] "r" (t2):"memory"); } z += n; /* my_z[0] = t5; my_z[1] = t6; */ asm volatile( "stmia %[my_z]!, {%[t5],%[t6]}\n\t":[my_z] "+r" (z) : [t5] "r" (t5), [t6] "r" (t6):"memory"); z -= n*3; return(z); } static inline FFTComplex* TRANSFORM_W10( FFTComplex* z, int n, const FFTSample* w ) { register FFTSample t1,t2 asm("r5"),t5 asm("r6"),t6 asm("r7"),r_re asm("r8"),r_im asm("r9"); /* load wim,wre into t5,t6 */ asm volatile( "ldmia %[w], {%[wim], %[wre]}\n\t":[wim] "=r" (t5), [wre] "=r" (t6):[w] "r" (w)); z += n*2; /* z[o2] -- 2n * 2 since complex numbers */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); XPROD31_R(r_re, r_im, t6 /*wim*/, t5 /*wre*/, t1,t2); z += n; /* z[o3] */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); XNPROD31_R(r_re, r_im, t6 /*wim*/, t5 /*wre*/, t5,t6); BF_OPT(t1, t5, t5, t1); BF_OPT(t6, t2, t2, t6); { register FFTSample rt0temp asm("r4"); /*{*/ /* BF_OPT(t1, t5, t5, t1);*/ /* BF_OPT(t6, t2, t2, t6);*/ /* BF_OPT(a2.re, a0.re, a0.re, t5);*/ /* BF_OPT(a2.im, a0.im, a0.im, t2);*/ /* BF_OPT(a3.re, a1.re, a1.re, t6);*/ /* BF_OPT(a3.im, a1.im, a1.im, t1);*/ /*}*/ z -= n*3; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(rt0temp, r_re, r_re, t5); BF_OPT(t2, r_im, r_im, t2); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(t5, r_re, r_re, t6); BF_OPT(t6, r_im, r_im, t1); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* my_z[0] = rt0temp; my_z[1] = t2; */ asm volatile( "stmia %[my_z], {%[rt0temp],%[t2]}\n\t"::[my_z] "r" (z), [rt0temp] "r" (rt0temp), [t2] "r" (t2):"memory"); } z += n; /* my_z[0] = t5; my_z[1] = t6; */ asm volatile( "stmia %[my_z]!, {%[t5],%[t6]}\n\t":[my_z] "+r" (z) : [t5] "r" (t5), [t6] "r" (t6):"memory"); z -= n*3; return(z); } static inline FFTComplex* TRANSFORM_EQUAL( FFTComplex* z, int n ) { register FFTSample t1,t2 asm("r5"),t5 asm("r6"),t6 asm("r7"),r_re asm("r8"),r_im asm("r9"); z += n*2; /* z[o2] -- 2n * 2 since complex numbers */ asm volatile( "ldmia %[my_z], {%[t5],%[t6]}\n\t":[t5] "=r" (t5), [t6] "=r" (t6):[my_z] "r" (z)); z += n; /* z[o3] */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); /**/ /*t2 = MULT32(cPI2_8, t5);*/ /*t1 = MULT31(cPI2_8, t6);*/ /*t6 = MULT31(cPI2_8, r_re);*/ /*t5 = MULT32(cPI2_8, r_im);*/ /*t1 = ( t1 + (t2<<1) );*/ /*t2 = ( t1 - (t2<<2) );*/ /*t6 = ( t6 + (t5<<1) );*/ /*t5 = ( t6 - (t5<<2) );*/ /**/ t2 = MULT31(cPI2_8, t5); t6 = MULT31(cPI2_8, t6); r_re = MULT31(cPI2_8, r_re); t5 = MULT31(cPI2_8, r_im); t1 = ( t6 + t2 ); t2 = ( t6 - t2 ); t6 = ( r_re + t5 ); t5 = ( r_re - t5 ); BF_OPT(t1, t5, t5, t1); BF_OPT(t6, t2, t2, t6); { register FFTSample rt0temp asm("r4"); /*{*/ /* BF_OPT(t1, t5, t5, t1);*/ /* BF_OPT(t6, t2, t2, t6);*/ /* BF_OPT(a2.re, a0.re, a0.re, t5);*/ /* BF_OPT(a2.im, a0.im, a0.im, t2);*/ /* BF_OPT(a3.re, a1.re, a1.re, t6);*/ /* BF_OPT(a3.im, a1.im, a1.im, t1);*/ /*}*/ z -= n*3; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(rt0temp, r_re, r_re, t5); BF_OPT(t2, r_im, r_im, t2); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(t5, r_re, r_re, t6); BF_OPT(t6, r_im, r_im, t1); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* my_z[0] = rt0temp; my_z[1] = t2; */ asm volatile( "stmia %[my_z], {%[rt0temp],%[t2]}\n\t"::[my_z] "r" (z), [rt0temp] "r" (rt0temp), [t2] "r" (t2):"memory"); } z += n; /* my_z[0] = t5; my_z[1] = t6; */ asm volatile( "stmia %[my_z]!, {%[t5],%[t6]}\n\t":[my_z] "+r" (z) : [t5] "r" (t5), [t6] "r" (t6):"memory"); z -= n*3; return(z); } static inline FFTComplex* TRANSFORM_ZERO( FFTComplex* z, int n ) { register FFTSample t1,t2 asm("r5"),t5 asm("r6"),t6 asm("r7"), r_re asm("r8"), r_im asm("r9"); z += n*2; /* z[o2] -- 2n * 2 since complex numbers */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); z += n; /* z[o3] */ asm volatile( "ldmia %[my_z], {%[t5],%[t6]}\n\t":[t5] "=r" (t5), [t6] "=r" (t6):[my_z] "r" (z)); BF_OPT(t1, t5, t5, r_re); BF_OPT(t6, t2, r_im, t6); { register FFTSample rt0temp asm("r4"); /*{*/ /* BF_OPT(t1, t5, t5, t1);*/ /* BF_OPT(t6, t2, t2, t6);*/ /* BF_OPT(a2.re, a0.re, a0.re, t5);*/ /* BF_OPT(a2.im, a0.im, a0.im, t2);*/ /* BF_OPT(a3.re, a1.re, a1.re, t6);*/ /* BF_OPT(a3.im, a1.im, a1.im, t1);*/ /*}*/ z -= n*3; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(rt0temp, r_re, r_re, t5); BF_OPT(t2, r_im, r_im, t2); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* r_re = my_z[0]; r_im = my_z[1]; */ asm volatile( "ldmia %[my_z], {%[r_re],%[r_im]}\n\t":[r_re] "=r" (r_re), [r_im] "=r" (r_im):[my_z] "r" (z)); BF_OPT(t5, r_re, r_re, t6); BF_OPT(t6, r_im, r_im, t1); /* my_z[0] = r_re; my_z[1] = r_im; */ asm volatile( "stmia %[my_z], {%[r_re],%[r_im]}\n\t"::[my_z] "r" (z), [r_re] "r" (r_re), [r_im] "r" (r_im):"memory"); z += n; /* my_z[0] = rt0temp; my_z[1] = t2; */ asm volatile( "stmia %[my_z], {%[rt0temp],%[t2]}\n\t"::[my_z] "r" (z), [rt0temp] "r" (rt0temp), [t2] "r" (t2):"memory"); } z += n; /* my_z[0] = t5; my_z[1] = t6; */ asm volatile( "stmia %[my_z]!, {%[t5],%[t6]}\n\t":[my_z] "+r" (z) : [t5] "r" (t5), [t6] "r" (t6):"memory"); z -= n*3; return(z); } #define FFT_FFMPEG_INCL_OPTIMISED_FFT4 static inline FFTComplex* fft4(FFTComplex * z) { FFTSample temp; /* input[0..7] -> output[0..7] */ /* load r1=z[0],r2=z[1],...,r8=z[7] */ asm volatile( "ldmia %[z], {r1-r8}\n\t" "add r1,r1,r3\n\t" /* r1 :=t1 */ "sub r3,r1,r3, lsl #1\n\t" /* r3 :=t3 */ "sub r7,r7,r5\n\t" /* r10:=t8 */ "add r5,r7,r5, lsl #1\n\t" /* r5 :=t6 */ "add r1,r1,r5\n\t" /* r1 = o[0] */ "sub r5,r1,r5, lsl #1\n\t" /* r5 = o[4] */ "add r2,r2,r4\n\t" /* r2 :=t2 */ "sub r4,r2,r4, lsl #1\n\t" /* r9 :=t4 */ "add %[temp],r6,r8\n\t" /* r10:=t5 */ "sub r6,r6,r8\n\t" /* r6 :=t7 */ "sub r8,r4,r7\n\t" /* r8 = o[7]*/ "add r4,r4,r7\n\t" /* r4 = o[3]*/ "sub r7,r3,r6\n\t" /* r7 = o[6]*/ "add r3,r3,r6\n\t" /* r3 = o[2]*/ "sub r6,r2,%[temp]\n\t" /* r6 = o[5]*/ "add r2,r2,%[temp]\n\t" /* r2 = o[1]*/ "stmia %[z]!, {r1-r8}\n\t" : /* outputs */ [z] "+r" (z), [temp] "=r" (temp) : /* inputs */ : /* clobbers */ "r1","r2","r3","r4","r5","r6","r7","r8","memory" ); return z; } #define FFT_FFMPEG_INCL_OPTIMISED_FFT8 /* The chunk of asm below is equivalent to the following: // first load in z[4].re thru z[7].im into local registers // ... BF_OPT2_REV(z[4].re, z[5].re, z[4].re, z[5].re); // x=a+b; y=x-(b<<1) BF_OPT2_REV(z[4].im, z[5].im, z[4].im, z[5].im); BF_REV (temp, z[7].re, z[6].re, z[7].re); // x=a+b; y=a-b; BF_REV (z[6].re, z[7].im, z[6].im, z[7].im); // save z[7].re and z[7].im as those are complete now // z[5].re and z[5].im are also complete now but save these later on BF(z[6].im, z[4].re, temp, z[4].re); // x=a-b; y=a+b BF_OPT(z[6].re, z[4].im, z[4].im, z[6].re); // y=a+b; x=y-(b<<1) // now load z[2].re and z[2].im // ... BF_OPT(z[6].re, z[2].re, z[2].re, z[6].re); // y=a+b; x=y-(b<<1) BF_OPT(z[6].im, z[2].im, z[2].im, z[6].im); // y=a+b; x=y-(b<<1) // Now save z[6].re and z[6].im, along with z[5].re and z[5].im // for efficiency. Also save z[2].re and z[2].im. // Now load z[0].re and z[0].im // ... BF_OPT(z[4].re, z[0].re, z[0].re, z[4].re); // y=a+b; x=y-(b<<1) BF_OPT(z[4].im, z[0].im, z[0].im, z[4].im); // y=a+b; x=y-(b<<1) // Finally save out z[4].re, z[4].im, z[0].re and z[0].im // ... */ static inline void fft8(FFTComplex * z) { FFTComplex* m4 = fft4(z); { /* note that we increment z_ptr on the final stmia, which leaves z_ptr pointing to z[1].re ready for the Transform step */ register FFTSample temp; asm volatile( /* read in z[4].re thru z[7].im */ "ldmia %[z4_ptr]!, {r1-r8}\n\t" /* (now points one word past &z[7].im) */ "add r1,r1,r3\n\t" "sub r3,r1,r3,lsl #1\n\t" "add r2,r2,r4\n\t" "sub r4,r2,r4,lsl #1\n\t" "add %[temp],r5,r7\n\t" "sub r7,r5,r7\n\t" "add r5,r6,r8\n\t" "sub r8,r6,r8\n\t" "stmdb %[z4_ptr]!, {r7,r8}\n\t" /* write z[7].re,z[7].im straight away */ /* Note, registers r7 & r8 now free */ "sub r6,%[temp],r1\n\t" "add r1,%[temp],r1\n\t" "add r2,r2,r5\n\t" "sub r5,r2,r5,lsl #1\n\t" "add %[temp], %[z_ptr], #16\n\t" /* point to &z[2].re */ "ldmia %[temp],{r7,r8}\n\t" /* load z[2].re and z[2].im */ "add r7,r7,r5\n\t" "sub r5,r7,r5,lsl #1\n\t" "add r8,r8,r6\n\t" "sub r6,r8,r6,lsl #1\n\t" /* write out z[5].re, z[5].im, z[6].re, z[6].im in one go*/ "stmdb %[z4_ptr]!, {r3-r6}\n\t" "stmia %[temp],{r7,r8}\n\t" /* write out z[2].re, z[2].im */ "ldmia %[z_ptr],{r7,r8}\n\t" /* load r[0].re, r[0].im */ "add r7,r7,r1\n\t" "sub r1,r7,r1,lsl #1\n\t" "add r8,r8,r2\n\t" "sub r2,r8,r2,lsl #1\n\t" "stmia %[z_ptr]!,{r7,r8}\n\t" /* write out z[0].re, z[0].im */ "stmdb %[z4_ptr], {r1,r2}\n\t" /* write out z[4].re, z[4].im */ : [z4_ptr] "+r" (m4), [temp] "=r" (temp), [z_ptr] "+r" (z) : : "r1","r2","r3","r4","r5","r6","r7","r8","memory" ); } TRANSFORM_EQUAL(z,2); } #endif // CPU_ARM