/* DeaDBeeF - ultimate music player for GNU/Linux systems with X11 Copyright (C) 2009 Alexey Yakovenko based on apedec from FFMpeg Copyright (c) 2007 Benjamin Zores based upon libdemac from Dave Chapman. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* main changes compared to ffmpeg: demuxer and decoder joined into 1 module no mallocs/reallocs during decoding streaming through fixed ringbuffer (small mem footprint) */ #if HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include "../../deadbeef.h" #define ENABLE_DEBUG 0 #define trace(...) { fprintf(stderr, __VA_ARGS__); } //#define trace(fmt,...) static DB_decoder_t plugin; static DB_functions_t *deadbeef; static float timestart; static float timeend; static int startsample; static int endsample; #define PACKET_BUFFER_SIZE 100000 #define min(x,y) ((x)<(y)?(x):(y)) #define max(x,y) ((x)>(y)?(x):(y)) static inline unsigned int bytestream_get_buffer(const uint8_t **b, uint8_t *dst, unsigned int size) { memcpy(dst, *b, size); (*b) += size; return size; } static inline void bytestream_put_buffer(uint8_t **b, const uint8_t *src, unsigned int size) { memcpy(*b, src, size); (*b) += size; } static inline uint8_t bytestream_get_byte (const uint8_t **ptr) { uint8_t v = *(*ptr); (*ptr)++; return v; } static inline uint32_t bytestream_get_be32 (const uint8_t **ptr) { const uint8_t *tmp = *ptr; uint32_t x = tmp[3] | (tmp[2] << 8) | (tmp[1] << 16) | (tmp[0] << 24); (*ptr) += 4; return x; } #define BLOCKS_PER_LOOP 4608 #define MAX_CHANNELS 2 #define MAX_BYTESPERSAMPLE 3 #define APE_FRAMECODE_MONO_SILENCE 1 #define APE_FRAMECODE_STEREO_SILENCE 3 #define APE_FRAMECODE_PSEUDO_STEREO 4 #define HISTORY_SIZE 512 #define PREDICTOR_ORDER 8 /** Total size of all predictor histories */ #define PREDICTOR_SIZE 50 #define YDELAYA (18 + PREDICTOR_ORDER*4) #define YDELAYB (18 + PREDICTOR_ORDER*3) #define XDELAYA (18 + PREDICTOR_ORDER*2) #define XDELAYB (18 + PREDICTOR_ORDER) #define YADAPTCOEFFSA 18 #define XADAPTCOEFFSA 14 #define YADAPTCOEFFSB 10 #define XADAPTCOEFFSB 5 /** * Possible compression levels * @{ */ enum APECompressionLevel { COMPRESSION_LEVEL_FAST = 1000, COMPRESSION_LEVEL_NORMAL = 2000, COMPRESSION_LEVEL_HIGH = 3000, COMPRESSION_LEVEL_EXTRA_HIGH = 4000, COMPRESSION_LEVEL_INSANE = 5000 }; /** @} */ #define APE_FILTER_LEVELS 3 /** Filter orders depending on compression level */ static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = { { 0, 0, 0 }, { 16, 0, 0 }, { 64, 0, 0 }, { 32, 256, 0 }, { 16, 256, 1280 } }; /** Filter fraction bits depending on compression level */ static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = { { 0, 0, 0 }, { 11, 0, 0 }, { 11, 0, 0 }, { 10, 13, 0 }, { 11, 13, 15 } }; /** Filters applied to the decoded data */ typedef struct APEFilter { int16_t *coeffs; ///< actual coefficients used in filtering int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients int16_t *historybuffer; ///< filter memory int16_t *delay; ///< filtered values int avg; } APEFilter; typedef struct APERice { uint32_t k; uint32_t ksum; } APERice; typedef struct APERangecoder { uint32_t low; ///< low end of interval uint32_t range; ///< length of interval uint32_t help; ///< bytes_to_follow resp. intermediate value unsigned int buffer; ///< buffer for input/output } APERangecoder; /** Filter histories */ typedef struct APEPredictor { int32_t *buf; int32_t lastA[2]; int32_t filterA[2]; int32_t filterB[2]; int32_t coeffsA[2][4]; ///< adaption coefficients int32_t coeffsB[2][5]; ///< adaption coefficients int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; } APEPredictor; /* The earliest and latest file formats supported by this library */ #define APE_MIN_VERSION 3950 #define APE_MAX_VERSION 3990 #define MAC_FORMAT_FLAG_8_BIT 1 // is 8-bit [OBSOLETE] #define MAC_FORMAT_FLAG_CRC 2 // uses the new CRC32 error detection [OBSOLETE] #define MAC_FORMAT_FLAG_HAS_PEAK_LEVEL 4 // uint32 nPeakLevel after the header [OBSOLETE] #define MAC_FORMAT_FLAG_24_BIT 8 // is 24-bit [OBSOLETE] #define MAC_FORMAT_FLAG_HAS_SEEK_ELEMENTS 16 // has the number of seek elements after the peak level #define MAC_FORMAT_FLAG_CREATE_WAV_HEADER 32 // create the wave header on decompression (not stored) #define MAC_SUBFRAME_SIZE 4608 #define APE_EXTRADATA_SIZE 6 typedef struct { int64_t pos; int nblocks; int size; int skip; } APEFrame; /** Decoder context */ typedef struct APEContext { /* Derived fields */ uint32_t junklength; uint32_t firstframe; uint32_t totalsamples; int currentframe; APEFrame *frames; /* Info from Descriptor Block */ char magic[4]; int16_t fileversion; int16_t padding1; uint32_t descriptorlength; uint32_t headerlength; uint32_t seektablelength; uint32_t wavheaderlength; uint32_t audiodatalength; uint32_t audiodatalength_high; uint32_t wavtaillength; uint8_t md5[16]; /* Info from Header Block */ uint16_t compressiontype; uint16_t formatflags; uint32_t blocksperframe; uint32_t finalframeblocks; uint32_t totalframes; uint16_t bps; uint16_t channels; uint32_t samplerate; int samples; ///< samples left to decode in current frame /* Seektable */ uint32_t *seektable; int fset; ///< which filter set to use (calculated from compression level) int flags; ///< global decoder flags uint32_t CRC; ///< frame CRC int frameflags; ///< frame flags int currentframeblocks; ///< samples (per channel) in current frame int blocksdecoded; ///< count of decoded samples in current frame APEPredictor predictor; ///< predictor used for final reconstruction int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory APERangecoder rc; ///< rangecoder used to decode actual values APERice riceX; ///< rice code parameters for the second channel APERice riceY; ///< rice code parameters for the first channel APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction uint8_t *data_end; ///< frame data end const uint8_t *ptr; ///< current position in frame data const uint8_t *last_ptr; uint8_t packet_data[PACKET_BUFFER_SIZE]; int packet_remaining; // number of bytes in packet_data int packet_sizeleft; // number of bytes left unread for current ape frame int samplestoskip; int currentsample; // current sample from beginning of file int error; } APEContext; APEContext ape_ctx; FILE *fp; inline static int read_uint16(FILE *fp, uint16_t* x) { unsigned char tmp[2]; int n; n = fread(tmp, 1, 2, fp); if (n != 2) return -1; *x = tmp[0] | (tmp[1] << 8); return 0; } inline static int read_int16(FILE *fp, int16_t* x) { return read_uint16(fp, (uint16_t*)x); } inline static int read_uint32(FILE *fp, uint32_t* x) { unsigned char tmp[4]; int n; n = fread(tmp, 1, 4, fp); if (n != 4) return -1; *x = tmp[0] | (tmp[1] << 8) | (tmp[2] << 16) | (tmp[3] << 24); return 0; } static void ape_dumpinfo(APEContext * ape_ctx) { #if ENABLE_DEBUG int i; fprintf (stderr, "Descriptor Block:\n\n"); fprintf (stderr, "magic = \"%c%c%c%c\"\n", ape_ctx->magic[0], ape_ctx->magic[1], ape_ctx->magic[2], ape_ctx->magic[3]); fprintf (stderr, "fileversion = %d\n", ape_ctx->fileversion); fprintf (stderr, "descriptorlength = %d\n", ape_ctx->descriptorlength); fprintf (stderr, "headerlength = %d\n", ape_ctx->headerlength); fprintf (stderr, "seektablelength = %d\n", ape_ctx->seektablelength); fprintf (stderr, "wavheaderlength = %d\n", ape_ctx->wavheaderlength); fprintf (stderr, "audiodatalength = %d\n", ape_ctx->audiodatalength); fprintf (stderr, "audiodatalength_high = %d\n", ape_ctx->audiodatalength_high); fprintf (stderr, "wavtaillength = %d\n", ape_ctx->wavtaillength); fprintf (stderr, "md5 = "); for (i = 0; i < 16; i++) fprintf (stderr, "%02x", ape_ctx->md5[i]); fprintf (stderr, "\n"); fprintf (stderr, "\nHeader Block:\n\n"); fprintf (stderr, "compressiontype = %d\n", ape_ctx->compressiontype); fprintf (stderr, "formatflags = %d\n", ape_ctx->formatflags); fprintf (stderr, "blocksperframe = %d\n", ape_ctx->blocksperframe); fprintf (stderr, "finalframeblocks = %d\n", ape_ctx->finalframeblocks); fprintf (stderr, "totalframes = %d\n", ape_ctx->totalframes); fprintf (stderr, "bps = %d\n", ape_ctx->bps); fprintf (stderr, "channels = %d\n", ape_ctx->channels); fprintf (stderr, "samplerate = %d\n", ape_ctx->samplerate); fprintf (stderr, "\nSeektable\n\n"); if ((ape_ctx->seektablelength / sizeof(uint32_t)) != ape_ctx->totalframes) { fprintf (stderr, "No seektable\n"); } else { for (i = 0; i < ape_ctx->seektablelength / sizeof(uint32_t); i++) { if (i < ape_ctx->totalframes - 1) { fprintf (stderr, "%8d %d (%d bytes)\n", i, ape_ctx->seektable[i], ape_ctx->seektable[i + 1] - ape_ctx->seektable[i]); } else { fprintf (stderr, "%8d %d\n", i, ape_ctx->seektable[i]); } } } fprintf (stderr, "\nFrames\n\n"); for (i = 0; i < ape_ctx->totalframes; i++) fprintf (stderr, "%8d %8lld %8d (%d samples)\n", i, ape_ctx->frames[i].pos, ape_ctx->frames[i].size, ape_ctx->frames[i].nblocks); fprintf (stderr, "\nCalculated information:\n\n"); fprintf (stderr, "junklength = %d\n", ape_ctx->junklength); fprintf (stderr, "firstframe = %d\n", ape_ctx->firstframe); fprintf (stderr, "totalsamples = %d\n", ape_ctx->totalsamples); #endif } static int ape_read_header(FILE *fp, APEContext *ape) { int i; int total_blocks; /* TODO: Skip any leading junk such as id3v2 tags */ ape->junklength = 0; if (fread (ape->magic, 1, 4, fp) != 4) { return -1; } if (memcmp (ape->magic, "MAC ", 4)) return -1; if (read_uint16 (fp, &ape->fileversion) < 0) { return -1; } if (ape->fileversion < APE_MIN_VERSION || ape->fileversion > APE_MAX_VERSION) { fprintf (stderr, "Unsupported file version - %d.%02d\n", ape->fileversion / 1000, (ape->fileversion % 1000) / 10); return -1; } if (ape->fileversion >= 3980) { if (read_uint16 (fp, &ape->padding1) < 0) { return -1; } if (read_uint32 (fp, &ape->descriptorlength) < 0) { return -1; } if (read_uint32 (fp, &ape->headerlength) < 0) { return -1; } if (read_uint32 (fp, &ape->seektablelength) < 0) { return -1; } if (read_uint32 (fp, &ape->wavheaderlength) < 0) { return -1; } if (read_uint32 (fp, &ape->audiodatalength) < 0) { return -1; } if (read_uint32 (fp, &ape->audiodatalength_high) < 0) { return -1; } if (read_uint32 (fp, &ape->wavtaillength) < 0) { return -1; } if (fread (ape->md5, 1, 16, fp) != 16) { return -1; } /* Skip any unknown bytes at the end of the descriptor. This is for future compatibility */ if (ape->descriptorlength > 52) { fseek (fp, ape->descriptorlength - 52, SEEK_CUR); } /* Read header data */ if (read_uint16 (fp, &ape->compressiontype) < 0) { return -1; } if (read_uint16 (fp, &ape->formatflags) < 0) { return -1; } if (read_uint32 (fp, &ape->blocksperframe) < 0) { return -1; } if (read_uint32 (fp, &ape->finalframeblocks) < 0) { return -1; } if (read_uint32 (fp, & ape->totalframes) < 0) { return -1; } if (read_uint16 (fp, &ape->bps) < 0) { return -1; } if (read_uint16 (fp, &ape->channels) < 0) { return -1; } if (read_uint32 (fp, &ape->samplerate) < 0) { return -1; } } else { ape->descriptorlength = 0; ape->headerlength = 32; if (read_uint16 (fp, &ape->compressiontype) < 0) { return -1; } if (read_uint16 (fp, &ape->formatflags) < 0) { return -1; } if (read_uint16 (fp, &ape->channels) < 0) { return -1; } if (read_uint32 (fp, &ape->samplerate) < 0) { return -1; } if (read_uint32 (fp, &ape->wavheaderlength) < 0) { return -1; } if (read_uint32 (fp, &ape->wavtaillength) < 0) { return -1; } if (read_uint32 (fp, &ape->totalframes) < 0) { return -1; } if (read_uint32 (fp, &ape->finalframeblocks) < 0) { return -1; } if (ape->formatflags & MAC_FORMAT_FLAG_HAS_PEAK_LEVEL) { fseek(fp, 4, SEEK_CUR); /* Skip the peak level */ ape->headerlength += 4; } if (ape->formatflags & MAC_FORMAT_FLAG_HAS_SEEK_ELEMENTS) { if (read_uint32 (fp, &ape->seektablelength) < 0) { return -1; }; ape->headerlength += 4; ape->seektablelength *= sizeof(int32_t); } else ape->seektablelength = ape->totalframes * sizeof(int32_t); if (ape->formatflags & MAC_FORMAT_FLAG_8_BIT) ape->bps = 8; else if (ape->formatflags & MAC_FORMAT_FLAG_24_BIT) ape->bps = 24; else ape->bps = 16; if (ape->fileversion >= 3950) ape->blocksperframe = 73728 * 4; else if (ape->fileversion >= 3900 || (ape->fileversion >= 3800 && ape->compressiontype >= 4000)) ape->blocksperframe = 73728; else ape->blocksperframe = 9216; /* Skip any stored wav header */ if (!(ape->formatflags & MAC_FORMAT_FLAG_CREATE_WAV_HEADER)) { fseek (fp, ape->wavheaderlength, SEEK_CUR); } } if(ape->totalframes > UINT_MAX / sizeof(APEFrame)){ fprintf (stderr, "Too many frames: %d\n", ape->totalframes); return -1; } ape->frames = malloc(ape->totalframes * sizeof(APEFrame)); if(!ape->frames) return -1; ape->firstframe = ape->junklength + ape->descriptorlength + ape->headerlength + ape->seektablelength + ape->wavheaderlength; ape->currentframe = 0; ape->totalsamples = ape->finalframeblocks; if (ape->totalframes > 1) ape->totalsamples += ape->blocksperframe * (ape->totalframes - 1); if (ape->seektablelength > 0) { ape->seektable = malloc(ape->seektablelength); for (i = 0; i < ape->seektablelength / sizeof(uint32_t); i++) { if (read_uint32 (fp, &ape->seektable[i]) < 0) { return -1; } } } ape->frames[0].pos = ape->firstframe; ape->frames[0].nblocks = ape->blocksperframe; ape->frames[0].skip = 0; for (i = 1; i < ape->totalframes; i++) { ape->frames[i].pos = ape->seektable[i]; //ape->frames[i-1].pos + ape->blocksperframe; ape->frames[i].nblocks = ape->blocksperframe; ape->frames[i - 1].size = ape->frames[i].pos - ape->frames[i - 1].pos; ape->frames[i].skip = (ape->frames[i].pos - ape->frames[0].pos) & 3; } ape->frames[ape->totalframes - 1].size = ape->finalframeblocks * 4; ape->frames[ape->totalframes - 1].nblocks = ape->finalframeblocks; for (i = 0; i < ape->totalframes; i++) { if(ape->frames[i].skip){ ape->frames[i].pos -= ape->frames[i].skip; ape->frames[i].size += ape->frames[i].skip; } ape->frames[i].size = (ape->frames[i].size + 3) & ~3; } ape_dumpinfo(ape); #if ENABLE_DEBUG fprintf (stderr, "Decoding file - v%d.%02d, compression level %d\n", ape->fileversion / 1000, (ape->fileversion % 1000) / 10, ape->compressiontype); #endif total_blocks = (ape->totalframes == 0) ? 0 : ((ape->totalframes - 1) * ape->blocksperframe) + ape->finalframeblocks; return 0; } # define AV_WB32(p, d) do { \ ((uint8_t*)(p))[3] = (d); \ ((uint8_t*)(p))[2] = (d)>>8; \ ((uint8_t*)(p))[1] = (d)>>16; \ ((uint8_t*)(p))[0] = (d)>>24; \ } while(0) #define AV_WL32(p, v) AV_WB32(p, bswap_32(v)) static inline const uint32_t bswap_32(uint32_t x) { x= ((x<<8)&0xFF00FF00) | ((x>>8)&0x00FF00FF); x= (x>>16) | (x<<16); return x; } static int ape_read_packet(FILE *fp, APEContext *ape_ctx) { int ret; int nblocks; APEContext *ape = ape_ctx; uint32_t extra_size = 8; if (feof(fp)) return -1; if (ape->currentframe > ape->totalframes) return -1; // fprintf (stderr, "seeking to %d\n", ape->frames[ape->currentframe].pos); fseek (fp, ape->frames[ape->currentframe].pos, SEEK_SET); /* Calculate how many blocks there are in this frame */ if (ape->currentframe == (ape->totalframes - 1)) nblocks = ape->finalframeblocks; else nblocks = ape->blocksperframe; // if (PACKET_MAX_SIZE < ape->frames[ape->currentframe].size + extra_size) { // return -1; // } // packet_sizeleft = ape->frames[ape->currentframe].size + extra_size; AV_WL32(ape->packet_data , nblocks); AV_WL32(ape->packet_data + 4, ape->frames[ape->currentframe].skip); // packet_sizeleft -= 8; int sz = PACKET_BUFFER_SIZE-8; sz = min (sz, ape->frames[ape->currentframe].size); // fprintf (stderr, "readsize: %d, packetsize: %d\n", sz, ape->frames[ape->currentframe].size); ret = fread (ape->packet_data + extra_size, 1, sz, fp); ape->packet_sizeleft = ape->frames[ape->currentframe].size - sz + 8; ape->packet_remaining = sz+8; ape->currentframe++; return 0; } static void ape_free_ctx (APEContext *ape_ctx) { int i; if (ape_ctx->frames) { free (ape_ctx->frames); ape_ctx->frames = NULL; } if (ape_ctx->seektable) { free (ape_ctx->seektable); ape_ctx->seektable = NULL; } for (i = 0; i < APE_FILTER_LEVELS; i++) { if (ape_ctx->filterbuf) { free (ape_ctx->filterbuf[i]); ape_ctx->filterbuf[i] = NULL; } } } static void ffap_free (void) { ape_free_ctx (&ape_ctx); } #if 0 static int ape_read_seek(AVFormatContext *s, int stream_index, int64_t timestamp, int flags) { AVStream *st = s->streams[stream_index]; APEContext *ape = s->priv_data; int index = av_index_search_timestamp(st, timestamp, flags); if (index < 0) return -1; ape->currentframe = index; return 0; } #endif static int ffap_init(DB_playItem_t *it) { fp = fopen (it->fname, "rb"); if (!fp) { return -1; } memset (&ape_ctx, 0, sizeof (ape_ctx)); ape_read_header (fp, &ape_ctx); int i; if (ape_ctx.bps != 16) { fprintf (stderr, "Only 16-bit samples are supported\n"); return -1; } if (ape_ctx.channels > 2) { fprintf (stderr, "Only mono and stereo is supported\n"); return -1; } #if ENABLE_DEBUG fprintf (stderr, "Compression Level: %d - Flags: %d\n", ape_ctx.compressiontype, ape_ctx.formatflags); #endif if (ape_ctx.compressiontype % 1000 || ape_ctx.compressiontype > COMPRESSION_LEVEL_INSANE) { fprintf (stderr, "Incorrect compression level %d\n", ape_ctx.compressiontype); return -1; } ape_ctx.fset = ape_ctx.compressiontype / 1000 - 1; for (i = 0; i < APE_FILTER_LEVELS; i++) { if (!ape_filter_orders[ape_ctx.fset][i]) break; ape_ctx.filterbuf[i] = malloc((ape_filter_orders[ape_ctx.fset][i] * 3 + HISTORY_SIZE) * 4); } plugin.info.bps = ape_ctx.bps; plugin.info.samplerate = ape_ctx.samplerate; plugin.info.channels = ape_ctx.channels; plugin.info.readpos = 0; if (it->timeend > 0) { startsample = it->startsample; endsample = it->endsample; timestart = it->timestart; timeend = it->timeend; plugin.seek_sample (0); trace ("start: %d/%f, end: %d/%f\n", startsample, timestart, endsample, timeend); } else { timestart = 0; timeend = it->duration; startsample = 0; endsample = ape_ctx.totalsamples-1; } return 0; } /** * @defgroup rangecoder APE range decoder * @{ */ #define CODE_BITS 32 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1)) #define SHIFT_BITS (CODE_BITS - 9) #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1) #define BOTTOM_VALUE (TOP_VALUE >> 8) /** Start the decoder */ static inline void range_start_decoding(APEContext * ctx) { ctx->rc.buffer = bytestream_get_byte(&ctx->ptr); ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS); ctx->rc.range = (uint32_t) 1 << EXTRA_BITS; } /** Perform normalization */ static inline void range_dec_normalize(APEContext * ctx) { while (ctx->rc.range <= BOTTOM_VALUE) { ctx->rc.buffer <<= 8; if(ctx->ptr < ctx->data_end) ctx->rc.buffer += *ctx->ptr; ctx->ptr++; ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF); ctx->rc.range <<= 8; } } /** * Calculate culmulative frequency for next symbol. Does NO update! * @param ctx decoder context * @param tot_f is the total frequency or (code_value)1<rc.help = ctx->rc.range / tot_f; return ctx->rc.low / ctx->rc.help; } /** * Decode value with given size in bits * @param ctx decoder context * @param shift number of bits to decode */ static inline int range_decode_culshift(APEContext * ctx, int shift) { range_dec_normalize(ctx); ctx->rc.help = ctx->rc.range >> shift; return ctx->rc.low / ctx->rc.help; } /** * Update decoding state * @param ctx decoder context * @param sy_f the interval length (frequency of the symbol) * @param lt_f the lower end (frequency sum of < symbols) */ static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f) { ctx->rc.low -= ctx->rc.help * lt_f; ctx->rc.range = ctx->rc.help * sy_f; } /** Decode n bits (n <= 16) without modelling */ static inline int range_decode_bits(APEContext * ctx, int n) { int sym = range_decode_culshift(ctx, n); range_decode_update(ctx, 1, sym); return sym; } #define MODEL_ELEMENTS 64 /** * Fixed probabilities for symbols in Monkey Audio version 3.97 */ static const uint16_t counts_3970[22] = { 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926, 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419, 65450, 65469, 65480, 65487, 65491, 65493, }; /** * Probability ranges for symbols in Monkey Audio version 3.97 */ static const uint16_t counts_diff_3970[21] = { 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756, 1104, 677, 415, 248, 150, 89, 54, 31, 19, 11, 7, 4, 2, }; /** * Fixed probabilities for symbols in Monkey Audio version 3.98 */ static const uint16_t counts_3980[22] = { 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435, 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482, 65485, 65488, 65490, 65491, 65492, 65493, }; /** * Probability ranges for symbols in Monkey Audio version 3.98 */ static const uint16_t counts_diff_3980[21] = { 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536, 261, 119, 65, 31, 19, 10, 6, 3, 3, 2, 1, 1, 1, }; /** * Decode symbol * @param ctx decoder context * @param counts probability range start position * @param counts_diff probability range widths */ static inline int range_get_symbol(APEContext * ctx, const uint16_t counts[], const uint16_t counts_diff[]) { int symbol, cf; cf = range_decode_culshift(ctx, 16); if(cf > 65492){ symbol= cf - 65535 + 63; range_decode_update(ctx, 1, cf); if(cf > 65535) ctx->error=1; return symbol; } /* figure out the symbol inefficiently; a binary search would be much better */ for (symbol = 0; counts[symbol + 1] <= cf; symbol++); range_decode_update(ctx, counts_diff[symbol], counts[symbol]); return symbol; } /** @} */ // group rangecoder static inline void update_rice(APERice *rice, int x) { int lim = rice->k ? (1 << (rice->k + 4)) : 0; rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5); if (rice->ksum < lim) rice->k--; else if (rice->ksum >= (1 << (rice->k + 5))) rice->k++; } static inline int ape_decode_value(APEContext * ctx, APERice *rice) { int x, overflow; if (ctx->fileversion < 3990) { int tmpk; overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970); if (overflow == (MODEL_ELEMENTS - 1)) { tmpk = range_decode_bits(ctx, 5); overflow = 0; } else tmpk = (rice->k < 1) ? 0 : rice->k - 1; if (tmpk <= 16) x = range_decode_bits(ctx, tmpk); else { x = range_decode_bits(ctx, 16); x |= (range_decode_bits(ctx, tmpk - 16) << 16); } x += overflow << tmpk; } else { int base, pivot; pivot = rice->ksum >> 5; if (pivot == 0) pivot = 1; overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980); if (overflow == (MODEL_ELEMENTS - 1)) { overflow = range_decode_bits(ctx, 16) << 16; overflow |= range_decode_bits(ctx, 16); } base = range_decode_culfreq(ctx, pivot); range_decode_update(ctx, 1, base); x = base + overflow * pivot; } update_rice(rice, x); /* Convert to signed */ if (x & 1) return (x >> 1) + 1; else return -(x >> 1); } static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo) { int32_t *decoded0 = ctx->decoded0; int32_t *decoded1 = ctx->decoded1; ctx->blocksdecoded = blockstodecode; if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { /* We are pure silence, just memset the output buffer. */ memset(decoded0, 0, blockstodecode * sizeof(int32_t)); memset(decoded1, 0, blockstodecode * sizeof(int32_t)); } else { while (blockstodecode--) { *decoded0++ = ape_decode_value(ctx, &ctx->riceY); if (stereo) *decoded1++ = ape_decode_value(ctx, &ctx->riceX); } } if (ctx->blocksdecoded == ctx->currentframeblocks) range_dec_normalize(ctx); /* normalize to use up all bytes */ } static void init_entropy_decoder(APEContext * ctx) { /* Read the CRC */ ctx->CRC = bytestream_get_be32(&ctx->ptr); /* Read the frame flags if they exist */ ctx->frameflags = 0; if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) { ctx->CRC &= ~0x80000000; ctx->frameflags = bytestream_get_be32(&ctx->ptr); } /* Keep a count of the blocks decoded in this frame */ ctx->blocksdecoded = 0; /* Initialize the rice structs */ ctx->riceX.k = 10; ctx->riceX.ksum = (1 << ctx->riceX.k) * 16; ctx->riceY.k = 10; ctx->riceY.ksum = (1 << ctx->riceY.k) * 16; /* The first 8 bits of input are ignored. */ ctx->ptr++; range_start_decoding(ctx); } static const int32_t initial_coeffs[4] = { 360, 317, -109, 98 }; static void init_predictor_decoder(APEContext * ctx) { APEPredictor *p = &ctx->predictor; /* Zero the history buffers */ memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t)); p->buf = p->historybuffer; /* Initialize and zero the coefficients */ memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs)); memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs)); memset(p->coeffsB, 0, sizeof(p->coeffsB)); p->filterA[0] = p->filterA[1] = 0; p->filterB[0] = p->filterB[1] = 0; p->lastA[0] = p->lastA[1] = 0; } /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */ static inline int APESIGN(int32_t x) { return (x < 0) - (x > 0); } static int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB) { int32_t predictionA, predictionB; p->buf[delayA] = p->lastA[filter]; p->buf[adaptA] = APESIGN(p->buf[delayA]); p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1]; p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]); predictionA = p->buf[delayA ] * p->coeffsA[filter][0] + p->buf[delayA - 1] * p->coeffsA[filter][1] + p->buf[delayA - 2] * p->coeffsA[filter][2] + p->buf[delayA - 3] * p->coeffsA[filter][3]; /* Apply a scaled first-order filter compression */ p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5); p->buf[adaptB] = APESIGN(p->buf[delayB]); p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1]; p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]); p->filterB[filter] = p->filterA[filter ^ 1]; predictionB = p->buf[delayB ] * p->coeffsB[filter][0] + p->buf[delayB - 1] * p->coeffsB[filter][1] + p->buf[delayB - 2] * p->coeffsB[filter][2] + p->buf[delayB - 3] * p->coeffsB[filter][3] + p->buf[delayB - 4] * p->coeffsB[filter][4]; p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10); p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5); if (!decoded) // no need updating filter coefficients return p->filterA[filter]; if (decoded > 0) { p->coeffsA[filter][0] -= p->buf[adaptA ]; p->coeffsA[filter][1] -= p->buf[adaptA - 1]; p->coeffsA[filter][2] -= p->buf[adaptA - 2]; p->coeffsA[filter][3] -= p->buf[adaptA - 3]; p->coeffsB[filter][0] -= p->buf[adaptB ]; p->coeffsB[filter][1] -= p->buf[adaptB - 1]; p->coeffsB[filter][2] -= p->buf[adaptB - 2]; p->coeffsB[filter][3] -= p->buf[adaptB - 3]; p->coeffsB[filter][4] -= p->buf[adaptB - 4]; } else { p->coeffsA[filter][0] += p->buf[adaptA ]; p->coeffsA[filter][1] += p->buf[adaptA - 1]; p->coeffsA[filter][2] += p->buf[adaptA - 2]; p->coeffsA[filter][3] += p->buf[adaptA - 3]; p->coeffsB[filter][0] += p->buf[adaptB ]; p->coeffsB[filter][1] += p->buf[adaptB - 1]; p->coeffsB[filter][2] += p->buf[adaptB - 2]; p->coeffsB[filter][3] += p->buf[adaptB - 3]; p->coeffsB[filter][4] += p->buf[adaptB - 4]; } return p->filterA[filter]; } static void predictor_decode_stereo(APEContext * ctx, int count) { int32_t predictionA, predictionB; APEPredictor *p = &ctx->predictor; int32_t *decoded0 = ctx->decoded0; int32_t *decoded1 = ctx->decoded1; while (count--) { /* Predictor Y */ predictionA = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB); predictionB = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB); *(decoded0++) = predictionA; *(decoded1++) = predictionB; /* Combined */ p->buf++; /* Have we filled the history buffer? */ if (p->buf == p->historybuffer + HISTORY_SIZE) { memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t)); p->buf = p->historybuffer; } } } static void predictor_decode_mono(APEContext * ctx, int count) { APEPredictor *p = &ctx->predictor; int32_t *decoded0 = ctx->decoded0; int32_t predictionA, currentA, A; currentA = p->lastA[0]; while (count--) { A = *decoded0; p->buf[YDELAYA] = currentA; p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1]; predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] + p->buf[YDELAYA - 1] * p->coeffsA[0][1] + p->buf[YDELAYA - 2] * p->coeffsA[0][2] + p->buf[YDELAYA - 3] * p->coeffsA[0][3]; currentA = A + (predictionA >> 10); p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]); p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]); if (A > 0) { p->coeffsA[0][0] -= p->buf[YADAPTCOEFFSA ]; p->coeffsA[0][1] -= p->buf[YADAPTCOEFFSA - 1]; p->coeffsA[0][2] -= p->buf[YADAPTCOEFFSA - 2]; p->coeffsA[0][3] -= p->buf[YADAPTCOEFFSA - 3]; } else if (A < 0) { p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ]; p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1]; p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2]; p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3]; } p->buf++; /* Have we filled the history buffer? */ if (p->buf == p->historybuffer + HISTORY_SIZE) { memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t)); p->buf = p->historybuffer; } p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5); *(decoded0++) = p->filterA[0]; } p->lastA[0] = currentA; } static void do_init_filter(APEFilter *f, int16_t * buf, int order) { f->coeffs = buf; f->historybuffer = buf + order; f->delay = f->historybuffer + order * 2; f->adaptcoeffs = f->historybuffer + order; memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t)); memset(f->coeffs, 0, order * sizeof(int16_t)); f->avg = 0; } static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order) { do_init_filter(&f[0], buf, order); do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order); } #ifdef HAVE_SSE2 #if ARCH_X86_64 # define REG_a "rax" # define REG_b "rbx" # define REG_c "rcx" # define REG_d "rdx" # define REG_D "rdi" # define REG_S "rsi" # define PTR_SIZE "8" # define REG_SP "rsp" # define REG_BP "rbp" # define REGBP rbp # define REGa rax # define REGb rbx # define REGc rcx # define REGd rdx # define REGSP rsp typedef int64_t x86_reg; #elif ARCH_X86_32 # define REG_a "eax" # define REG_b "ebx" # define REG_c "ecx" # define REG_d "edx" # define REG_D "edi" # define REG_S "esi" # define PTR_SIZE "4" # define REG_SP "esp" # define REG_BP "ebp" # define REGBP ebp # define REGa eax # define REGb ebx # define REGc ecx # define REGd edx # define REGSP esp typedef int32_t x86_reg; #else #warning unknown arch typedef int x86_reg; #endif typedef struct { uint64_t a, b; } xmm_reg; #define DECLARE_ALIGNED(n,t,v) t v __attribute__ ((aligned (n))) #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v) static int32_t scalarproduct_int16_sse2 (int16_t * v1, int16_t * v2, int order, int shift) { int res = 0; DECLARE_ALIGNED_16(xmm_reg, sh); x86_reg o = -(order << 1); v1 += order; v2 += order; sh.a = shift; __asm__ volatile( "pxor %%xmm7, %%xmm7 \n\t" "1: \n\t" "movdqu (%0,%3), %%xmm0 \n\t" "movdqu 16(%0,%3), %%xmm1 \n\t" "pmaddwd (%1,%3), %%xmm0 \n\t" "pmaddwd 16(%1,%3), %%xmm1 \n\t" "paddd %%xmm0, %%xmm7 \n\t" "paddd %%xmm1, %%xmm7 \n\t" "add $32, %3 \n\t" "js 1b \n\t" "movhlps %%xmm7, %%xmm2 \n\t" "paddd %%xmm2, %%xmm7 \n\t" "psrad %4, %%xmm7 \n\t" "pshuflw $0x4E, %%xmm7,%%xmm2 \n\t" "paddd %%xmm2, %%xmm7 \n\t" "movd %%xmm7, %2 \n\t" : "+r"(v1), "+r"(v2), "=r"(res), "+r"(o) : "m"(sh) ); return res; } static void add_int16_sse2(int16_t * v1, int16_t * v2, int order) { x86_reg o = -(order << 1); v1 += order; v2 += order; __asm__ volatile( "1: \n\t" "movdqu (%1,%2), %%xmm0 \n\t" "movdqu 16(%1,%2), %%xmm1 \n\t" "paddw (%0,%2), %%xmm0 \n\t" "paddw 16(%0,%2), %%xmm1 \n\t" "movdqa %%xmm0, (%0,%2) \n\t" "movdqa %%xmm1, 16(%0,%2) \n\t" "add $32, %2 \n\t" "js 1b \n\t" : "+r"(v1), "+r"(v2), "+r"(o) ); } static void sub_int16_sse2(int16_t * v1, int16_t * v2, int order) { x86_reg o = -(order << 1); v1 += order; v2 += order; __asm__ volatile( "1: \n\t" "movdqa (%0,%2), %%xmm0 \n\t" "movdqa 16(%0,%2), %%xmm2 \n\t" "movdqu (%1,%2), %%xmm1 \n\t" "movdqu 16(%1,%2), %%xmm3 \n\t" "psubw %%xmm1, %%xmm0 \n\t" "psubw %%xmm3, %%xmm2 \n\t" "movdqa %%xmm0, (%0,%2) \n\t" "movdqa %%xmm2, 16(%0,%2) \n\t" "add $32, %2 \n\t" "js 1b \n\t" : "+r"(v1), "+r"(v2), "+r"(o) ); } #endif static int32_t scalarproduct_int16_c(int16_t * v1, int16_t * v2, int order, int shift) { int res = 0; while (order--) res += (*v1++ * *v2++) >> shift; return res; } static void add_int16_c (int16_t *v1/*align 16*/, int16_t *v2, int len) { while (len--) { *v1++ += *v2++; } } static void sub_int16_c (int16_t *v1/*align 16*/, int16_t *v2, int len) { while (len--) { *v1++ -= *v2++; } } static int32_t (*scalarproduct_int16)(int16_t * v1, int16_t * v2, int order, int shift); static void (*add_int16) (int16_t *v1/*align 16*/, int16_t *v2, int len); static void (*sub_int16) (int16_t *v1/*align 16*/, int16_t *v2, int len); static inline int16_t clip_int16(int a) { if ((a+32768) & ~65535) return (a>>31) ^ 32767; else return a; } static void bswap_buf(uint32_t *dst, const uint32_t *src, int w){ int i; for(i=0; i+8<=w; i+=8){ dst[i+0]= bswap_32(src[i+0]); dst[i+1]= bswap_32(src[i+1]); dst[i+2]= bswap_32(src[i+2]); dst[i+3]= bswap_32(src[i+3]); dst[i+4]= bswap_32(src[i+4]); dst[i+5]= bswap_32(src[i+5]); dst[i+6]= bswap_32(src[i+6]); dst[i+7]= bswap_32(src[i+7]); } for(;idelay - order, f->coeffs, order, 0) + (1 << (fracbits - 1))) >> fracbits; if (*data < 0) add_int16(f->coeffs, f->adaptcoeffs - order, order); else if (*data > 0) sub_int16(f->coeffs, f->adaptcoeffs - order, order); res += *data; *data++ = res; /* Update the output history */ *f->delay++ = clip_int16(res); if (version < 3980) { /* Version ??? to < 3.98 files (untested) */ f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4; f->adaptcoeffs[-4] >>= 1; f->adaptcoeffs[-8] >>= 1; } else { /* Version 3.98 and later files */ /* Update the adaption coefficients */ absres = (res < 0 ? -res : res); if (absres > (f->avg * 3)) *f->adaptcoeffs = ((res >> 25) & 64) - 32; else if (absres > (f->avg * 4) / 3) *f->adaptcoeffs = ((res >> 26) & 32) - 16; else if (absres > 0) *f->adaptcoeffs = ((res >> 27) & 16) - 8; else *f->adaptcoeffs = 0; f->avg += (absres - f->avg) / 16; f->adaptcoeffs[-1] >>= 1; f->adaptcoeffs[-2] >>= 1; f->adaptcoeffs[-8] >>= 1; } f->adaptcoeffs++; /* Have we filled the history buffer? */ if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) { memmove(f->historybuffer, f->delay - (order * 2), (order * 2) * sizeof(int16_t)); f->delay = f->historybuffer + order * 2; f->adaptcoeffs = f->historybuffer + order; } } } static void apply_filter(APEContext * ctx, APEFilter *f, int32_t * data0, int32_t * data1, int count, int order, int fracbits) { do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits); if (data1) do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits); } static void ape_apply_filters(APEContext * ctx, int32_t * decoded0, int32_t * decoded1, int count) { int i; for (i = 0; i < APE_FILTER_LEVELS; i++) { if (!ape_filter_orders[ctx->fset][i]) break; apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]); } } static void init_frame_decoder(APEContext * ctx) { int i; init_entropy_decoder(ctx); init_predictor_decoder(ctx); for (i = 0; i < APE_FILTER_LEVELS; i++) { if (!ape_filter_orders[ctx->fset][i]) break; init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]); } } static void ape_unpack_mono(APEContext * ctx, int count) { int32_t left; int32_t *decoded0 = ctx->decoded0; int32_t *decoded1 = ctx->decoded1; if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { entropy_decode(ctx, count, 0); /* We are pure silence, so we're done. */ fprintf (stderr, "pure silence mono\n"); return; } entropy_decode(ctx, count, 0); ape_apply_filters(ctx, decoded0, NULL, count); /* Now apply the predictor decoding */ predictor_decode_mono(ctx, count); /* Pseudo-stereo - just copy left channel to right channel */ if (ctx->channels == 2) { while (count--) { left = *decoded0; *(decoded1++) = *(decoded0++) = left; } } } static void ape_unpack_stereo(APEContext * ctx, int count) { int32_t left, right; int32_t *decoded0 = ctx->decoded0; int32_t *decoded1 = ctx->decoded1; if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { /* We are pure silence, so we're done. */ fprintf (stderr, "pure silence stereo\n"); return; } entropy_decode(ctx, count, 1); ape_apply_filters(ctx, decoded0, decoded1, count); /* Now apply the predictor decoding */ predictor_decode_stereo(ctx, count); /* Decorrelate and scale to output depth */ while (count--) { left = *decoded1 - (*decoded0 / 2); right = left + *decoded0; *(decoded0++) = left; *(decoded1++) = right; } } static int ape_decode_frame(APEContext *s, void *data, int *data_size) { int16_t *samples = data; int nblocks; int i, n; int blockstodecode; int bytes_used; /* should not happen but who knows */ if (BLOCKS_PER_LOOP * 2 * s->channels > *data_size) { fprintf (stderr, "Packet size is too big! (max is %d where you have %d)\n", *data_size, BLOCKS_PER_LOOP * 2 * s->channels); return -1; } if (s->packet_remaining < PACKET_BUFFER_SIZE) { // assert (packet_sizeleft >= 0 && packet_remaining >= 0); // if (packet_sizeleft == 0 && packet_remaining == 0) { if (s->samples == 0) { if (s->currentframe == s->totalframes) { return -1; } assert (!s->samples); // fprintf (stderr, "start reading packet %d\n", ape_ctx.currentframe); assert (s->samples == 0); // all samples from prev packet must have been read // start new packet if (ape_read_packet (fp, &ape_ctx) < 0) { fprintf (stderr, "error reading packet\n"); return -1; } bswap_buf((uint32_t*)(s->packet_data), (const uint32_t*)(s->packet_data), s->packet_remaining >> 2); // fprintf (stderr, "packet_sizeleft=%d packet_remaining=%d\n", packet_sizeleft, packet_remaining); s->ptr = s->last_ptr = s->packet_data; nblocks = s->samples = bytestream_get_be32(&s->ptr); //fprintf (stderr, "s->samples=%d (1)\n", s->samples); n = bytestream_get_be32(&s->ptr); if(n < 0 || n > 3){ fprintf (stderr, "Incorrect offset passed\n"); return -1; } s->ptr += n; s->currentframeblocks = nblocks; //buf += 4; if (s->samples <= 0) { *data_size = 0; bytes_used = s->packet_remaining; goto error; } memset(s->decoded0, 0, sizeof(s->decoded0)); memset(s->decoded1, 0, sizeof(s->decoded1)); /* Initialize the frame decoder */ init_frame_decoder(s); } else { int sz = PACKET_BUFFER_SIZE - s->packet_remaining; sz = min (sz, s->packet_sizeleft); sz = sz&~3; uint8_t *p = s->packet_data + s->packet_remaining; int r = fread (p, 1, sz, fp); //if (r != s) { // fprintf (stderr, "unexpected eof while reading ape frame\n"); // return -1; //} bswap_buf((uint32_t*)p, (const uint32_t*)p, r >> 2); s->packet_sizeleft -= r; s->packet_remaining += r; //fprintf (stderr, "read more %d bytes for current packet, sizeleft=%d, packet_remaining=%d\n", r, packet_sizeleft, packet_remaining); } } s->data_end = s->packet_data + s->packet_remaining; if (s->packet_remaining == 0 && !s->samples) { *data_size = 0; return 0; } if (!s->packet_remaining) { fprintf (stderr, "packetbuf is empty!!\n"); *data_size = 0; bytes_used = s->packet_remaining; goto error; } nblocks = s->samples; blockstodecode = min(BLOCKS_PER_LOOP, nblocks); s->error=0; if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO)) ape_unpack_mono(s, blockstodecode); else ape_unpack_stereo(s, blockstodecode); if(s->error || s->ptr >= s->data_end){ s->samples=0; if (s->error) { fprintf (stderr, "Error decoding frame, error=%d\n", s->error); } else { fprintf (stderr, "Error decoding frame, ptr > data_end\n"); } return -1; } int skip = min (s->samplestoskip, blockstodecode); i = skip; for (; i < blockstodecode; i++) { *samples++ = s->decoded0[i]; if(s->channels == 2) { *samples++ = s->decoded1[i]; } } s->samplestoskip -= skip; s->samples -= blockstodecode; *data_size = (blockstodecode - skip) * 2 * s->channels; ape_ctx.currentsample += blockstodecode - skip; bytes_used = s->samples ? s->ptr - s->last_ptr : s->packet_remaining; // shift everything error: if (bytes_used < s->packet_remaining) { memmove (s->packet_data, s->packet_data+bytes_used, s->packet_remaining-bytes_used); } s->packet_remaining -= bytes_used; s->ptr -= bytes_used; s->last_ptr = s->ptr; return bytes_used; } static DB_playItem_t * ffap_insert (DB_playItem_t *after, const char *fname) { APEContext ape_ctx; memset (&ape_ctx, 0, sizeof (ape_ctx)); FILE *fp = fopen (fname, "rb"); if (!fp) { return NULL; } if (ape_read_header (fp, &ape_ctx) < 0) { fprintf (stderr, "failed to read ape header\n"); fclose (fp); ape_free_ctx (&ape_ctx); return NULL; } if ((ape_ctx.fileversion < APE_MIN_VERSION) || (ape_ctx.fileversion > APE_MAX_VERSION)) { fprintf(stderr, "unsupported file version - %.2f\n", ape_ctx.fileversion/1000.0); fclose (fp); ape_free_ctx (&ape_ctx); return NULL; } float duration = ape_ctx.totalsamples / (float)ape_ctx.samplerate; DB_playItem_t *it; it = deadbeef->pl_insert_cue (after, fname, &plugin, "APE", ape_ctx.totalsamples, ape_ctx.samplerate); if (it) { fclose (fp); ape_free_ctx (&ape_ctx); return it; } it = deadbeef->pl_item_alloc (); it->decoder = &plugin; it->fname = strdup (fname); it->filetype = "APE"; it->duration = duration; int v2err = deadbeef->junk_read_id3v2 (it, fp); int v1err = deadbeef->junk_read_id3v1 (it, fp); if (v1err >= 0) { fseek (fp, -128, SEEK_END); } else { fseek (fp, 0, SEEK_END); } int apeerr = deadbeef->junk_read_ape (it, fp); deadbeef->pl_add_meta (it, "title", NULL); after = deadbeef->pl_insert_item (after, it); fclose (fp); ape_free_ctx (&ape_ctx); return after; } static uint8_t g_buffer[BLOCKS_PER_LOOP * 2 * 2 * 2]; static int remaining = 0; static int ffap_read_int16 (char *buffer, int size) { int inits = size; if (plugin.info.readpos >= (timeend - timestart)) { return 0; } while (size > 0) { if (remaining > 0) { int sz = min (size, remaining); memcpy (buffer, g_buffer, sz); buffer += sz; size -= sz; if (remaining > sz) { memmove (g_buffer, g_buffer + sz, remaining-sz); } remaining -= sz; continue; } int s = BLOCKS_PER_LOOP * 2 * 2 * 2; assert (remaining <= s/2); s -= remaining; uint8_t *buf = g_buffer + remaining; int n = ape_decode_frame (&ape_ctx, buf, &s); if (n == -1) { break; } remaining += s; int sz = min (size, remaining); memcpy (buffer, g_buffer, sz); buffer += sz; size -= sz; if (remaining > sz) { memmove (g_buffer, g_buffer + sz, remaining-sz); } remaining -= sz; } plugin.info.readpos = ape_ctx.currentsample / (float)plugin.info.samplerate - timestart; return inits - size; } static int ffap_seek_sample (int sample) { sample += startsample; trace ("seeking to %d/%d\n", sample, ape_ctx.totalsamples); uint32_t newsample = sample; if (newsample > ape_ctx.totalsamples) { trace ("eof\n"); return -1; } int nframe = newsample / ape_ctx.blocksperframe; if (nframe >= ape_ctx.totalframes) { trace ("eof2\n"); return -1; } ape_ctx.currentframe = nframe; ape_ctx.samplestoskip = newsample - nframe * ape_ctx.blocksperframe; // reset decoder ape_ctx.packet_remaining = 0; ape_ctx.samples = 0; ape_ctx.currentsample = newsample; plugin.info.readpos = (float)newsample/ape_ctx.samplerate-timestart; return 0; } static int ffap_seek (float seconds) { seconds += timestart; uint32_t newsample = seconds * plugin.info.samplerate; if (newsample > ape_ctx.totalsamples) { return -1; } int nframe = newsample / ape_ctx.blocksperframe; if (nframe >= ape_ctx.totalframes) { return -1; } ape_ctx.currentframe = nframe; ape_ctx.samplestoskip = newsample - nframe * ape_ctx.blocksperframe; // reset decoder ape_ctx.packet_remaining = 0; ape_ctx.samples = 0; ape_ctx.currentsample = newsample; plugin.info.readpos = (float)newsample / ape_ctx.samplerate - timestart; return 0; } static const char *exts[] = { "ape", NULL }; static const char *filetypes[] = { "APE", NULL }; // define plugin interface static DB_decoder_t plugin = { DB_PLUGIN_SET_API_VERSION .plugin.version_major = 0, .plugin.version_minor = 1, .plugin.type = DB_PLUGIN_DECODER, .plugin.name = "FFAP Monkey's Audio decoder", .plugin.descr = "Based on ffmpeg apedec by Benjamin Zores and rockbox libdemac by Dave Chapman", .plugin.author = "Alexey Yakovenko", .plugin.email = "waker@users.sourceforge.net", .plugin.website = "http://deadbeef.sf.net", .init = ffap_init, .free = ffap_free, .read_int16 = ffap_read_int16, .seek = ffap_seek, .seek_sample = ffap_seek_sample, .insert = ffap_insert, .exts = exts, .id = "ffap", .filetypes = filetypes }; #ifdef HAVE_SSE2 #define FF_MM_MMX 0x0001 ///< standard MMX #define FF_MM_3DNOW 0x0004 ///< AMD 3DNOW #define FF_MM_MMX2 0x0002 ///< SSE integer functions or AMD MMX ext #define FF_MM_SSE 0x0008 ///< SSE functions #define FF_MM_SSE2 0x0010 ///< PIV SSE2 functions #define FF_MM_3DNOWEXT 0x0020 ///< AMD 3DNowExt #define FF_MM_SSE3 0x0040 ///< Prescott SSE3 functions #define FF_MM_SSSE3 0x0080 ///< Conroe SSSE3 functions #define FF_MM_SSE4 0x0100 ///< Penryn SSE4.1 functions #define FF_MM_SSE42 0x0200 ///< Nehalem SSE4.2 functions #define FF_MM_IWMMXT 0x0100 ///< XScale IWMMXT #define FF_MM_ALTIVEC 0x0001 ///< standard AltiVec /* ebx saving is necessary for PIC. gcc seems unable to see it alone */ #define cpuid(index,eax,ebx,ecx,edx)\ __asm__ volatile\ ("mov %%"REG_b", %%"REG_S"\n\t"\ "cpuid\n\t"\ "xchg %%"REG_b", %%"REG_S\ : "=a" (eax), "=S" (ebx),\ "=c" (ecx), "=d" (edx)\ : "0" (index)); /* Function to test if multimedia instructions are supported... */ int mm_support(void) { int rval = 0; int eax, ebx, ecx, edx; int max_std_level, max_ext_level, std_caps=0, ext_caps=0; #if ARCH_X86_32 x86_reg a, c; __asm__ volatile ( /* See if CPUID instruction is supported ... */ /* ... Get copies of EFLAGS into eax and ecx */ "pushfl\n\t" "pop %0\n\t" "mov %0, %1\n\t" /* ... Toggle the ID bit in one copy and store */ /* to the EFLAGS reg */ "xor $0x200000, %0\n\t" "push %0\n\t" "popfl\n\t" /* ... Get the (hopefully modified) EFLAGS */ "pushfl\n\t" "pop %0\n\t" : "=a" (a), "=c" (c) : : "cc" ); if (a == c) return 0; /* CPUID not supported */ #endif cpuid(0, max_std_level, ebx, ecx, edx); if(max_std_level >= 1){ cpuid(1, eax, ebx, ecx, std_caps); if (std_caps & (1<<23)) rval |= FF_MM_MMX; if (std_caps & (1<<25)) rval |= FF_MM_MMX2 #ifdef HAVE_SSE | FF_MM_SSE; if (std_caps & (1<<26)) rval |= FF_MM_SSE2; if (ecx & 1) rval |= FF_MM_SSE3; if (ecx & 0x00000200 ) rval |= FF_MM_SSSE3; if (ecx & 0x00080000 ) rval |= FF_MM_SSE4; if (ecx & 0x00100000 ) rval |= FF_MM_SSE42; #endif ; } cpuid(0x80000000, max_ext_level, ebx, ecx, edx); if(max_ext_level >= 0x80000001){ cpuid(0x80000001, eax, ebx, ecx, ext_caps); if (ext_caps & (1<<31)) rval |= FF_MM_3DNOW; if (ext_caps & (1<<30)) rval |= FF_MM_3DNOWEXT; if (ext_caps & (1<<23)) rval |= FF_MM_MMX; if (ext_caps & (1<<22)) rval |= FF_MM_MMX2; } return rval; } #endif DB_plugin_t * ffap_load (DB_functions_t *api) { // detect sse2 #ifdef HAVE_SSE2 int mm_flags = mm_support (); if (mm_flags & FF_MM_SSE2) { scalarproduct_int16 = scalarproduct_int16_sse2; add_int16 = add_int16_sse2; sub_int16 = sub_int16_sse2; } else { scalarproduct_int16 = scalarproduct_int16_c; add_int16 = add_int16_c; sub_int16 = sub_int16_c; } #else scalarproduct_int16 = scalarproduct_int16_c; add_int16 = add_int16_c; sub_int16 = sub_int16_c; #endif deadbeef = api; return DB_PLUGIN (&plugin); }