/* _______ ____ __ ___ ___ * \ _ \ \ / \ / \ \ / / ' ' ' * | | \ \ | | || | \/ | . . * | | | | | | || ||\ /| | * | | | | | | || || \/ | | ' ' ' * | | | | | | || || | | . . * | |_/ / \ \__// || | | * /_______/ynamic \____/niversal /__\ /____\usic /| . . ibliotheque * / \ * / . \ * resample.inc - Resampling helper template. / / \ \ * | < / \_ * By Bob and entheh. | \/ /\ / * \_ / > / * In order to find a good trade-off between | \ / / * speed and accuracy in this code, some tests | ' / * were carried out regarding the behaviour of \__/ * long long ints with gcc. The following code * was tested: * * int a, b, c; * c = ((long long)a * b) >> 16; * * DJGPP GCC Version 3.0.3 generated the following assembly language code for * the multiplication and scaling, leaving the 32-bit result in EAX. * * movl -8(%ebp), %eax ; read one int into EAX * imull -4(%ebp) ; multiply by the other; result goes in EDX:EAX * shrdl $16, %edx, %eax ; shift EAX right 16, shifting bits in from EDX * * Note that a 32*32->64 multiplication is performed, allowing for high * accuracy. On the Pentium 2 and above, shrdl takes two cycles (generally), * so it is a minor concern when four multiplications are being performed * (the cubic resampler). On the Pentium MMX and earlier, it takes four or * more cycles, so this method is unsuitable for use in the low-quality * resamplers. * * Since "long long" is a gcc-specific extension, we use LONG_LONG instead, * defined in dumb.h. We may investigate later what code MSVC generates, but * if it seems too slow then we suggest you use a good compiler. * * FIXME: these comments are somewhat out of date now. */ void dumb_reset_resampler(DUMB_RESAMPLER *resampler, SRCTYPE *src, int src_channels, long pos, long start, long end, int quality) { int i; resampler->src = src; resampler->pos = pos; resampler->subpos = 0; resampler->start = start; resampler->end = end; resampler->dir = 1; resampler->pickup = NULL; resampler->pickup_data = NULL; if (quality < 0) { resampler->quality = 0; } else if (quality > DUMB_RQ_N_LEVELS - 1) { resampler->quality = DUMB_RQ_N_LEVELS - 1; } else { resampler->quality = quality; } for (i = 0; i < src_channels*3; i++) resampler->X[i] = 0; resampler->overshot = -1; } DUMB_RESAMPLER *dumb_start_resampler(SRCTYPE *src, int src_channels, long pos, long start, long end, int quality) { DUMB_RESAMPLER *resampler = malloc(sizeof(*resampler)); if (!resampler) return NULL; dumb_reset_resampler(resampler, src, src_channels, pos, start, end, quality); return resampler; } #define UPDATE_VOLUME( pvol, vol ) { \ if (pvol) { \ vol##r += vol##d; \ if ((vol##d < 0 && vol##r <= vol##t) || \ (vol##d > 0 && vol##r >= vol##t)) { \ pvol->volume = pvol->target; \ pvol = NULL; \ vol = MULSCV( vol##t, vol##m ); \ } else { \ vol = MULSCV( vol##r, vol##m ); \ } \ } \ } /* Create mono source resampler. */ #define SUFFIX2 _1 #define SRC_CHANNELS 1 #define DIVIDE_BY_SRC_CHANNELS(x) (x) #define COPYSRC(dstarray, dstindex, srcarray, srcindex) (dstarray)[dstindex] = (srcarray)[srcindex] #define COPYSRC2(dstarray, dstindex, condition, srcarray, srcindex) (dstarray)[dstindex] = condition ? (srcarray)[srcindex] : 0 #define MONO_DEST_VOLUME_PARAMETERS DUMB_VOLUME_RAMP_INFO * volume #define MONO_DEST_VOLUME_VARIABLES vol=0, volr=0, vold=0, volt=0, volm=0 #define MONO_DEST_VOLUME_ZEROS 0 #define SET_MONO_DEST_VOLUME_VARIABLES { \ if ( volume ) { \ volr = (int)(volume->volume * 16777216.0); \ vold = (int)(volume->delta * 16777216.0); \ volt = (int)(volume->target * 16777216.0); \ volm = (int)(volume->mix * 16777216.0); \ vol = MULSCV( volr, volm ); \ if ( volr == volt ) volume = NULL; \ } else { \ vol = 0; \ volt = 0; \ } \ } #define RETURN_MONO_DEST_VOLUME_VARIABLES if ( volume ) volume->volume = (float)volr / 16777216.0f #define MONO_DEST_VOLUMES_ARE_ZERO (vol == 0 && volt == 0) #define MONO_DEST_MIX_ALIAS(op, upd, offset) { \ *dst++ op ALIAS(x[offset], vol); \ if ( upd ) UPDATE_VOLUME( volume, vol ); \ } #define STEREO_DEST_MIX_ALIAS(op, upd, offset) { \ int xm = x[offset]; \ *dst++ op ALIAS(xm, lvol); \ *dst++ op ALIAS(xm, rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define MONO_DEST_MIX_LINEAR(op, upd, o0, o1) { \ *dst++ op MULSC(LINEAR(x[o0], x[o1]), vol); \ if ( upd ) UPDATE_VOLUME( volume, vol ); \ } #define STEREO_DEST_MIX_LINEAR(op, upd, o0, o1) { \ int xm = LINEAR(x[o0], x[o1]); \ *dst++ op MULSC(xm, lvol); \ *dst++ op MULSC(xm, rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define MONO_DEST_MIX_CUBIC(op, upd, x0, x3, o0, o1, o2, o3) { \ *dst++ op CUBICVOL(CUBIC(x0[o0], x[o1], x[o2], x3[o3]), vol); \ if ( upd ) UPDATE_VOLUME( volume, vol ); \ } #define STEREO_DEST_MIX_CUBIC(op, upd, x0, x3, o0, o1, o2, o3) { \ int xm = CUBIC(x0[o0], x[o1], x[o2], x3[o3]); \ *dst++ op CUBICVOL(xm, lvol); \ *dst++ op CUBICVOL(xm, rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #include "resamp2.inc" /* Create stereo source resampler. */ #define SUFFIX2 _2 #define SRC_CHANNELS 2 #define DIVIDE_BY_SRC_CHANNELS(x) ((x) >> 1) #define COPYSRC(dstarray, dstindex, srcarray, srcindex) { \ (dstarray)[(dstindex)*2] = (srcarray)[(srcindex)*2]; \ (dstarray)[(dstindex)*2+1] = (srcarray)[(srcindex)*2+1]; \ } #define COPYSRC2(dstarray, dstindex, condition, srcarray, srcindex) { \ if (condition) { \ (dstarray)[(dstindex)*2] = (srcarray)[(srcindex)*2]; \ (dstarray)[(dstindex)*2+1] = (srcarray)[(srcindex)*2+1]; \ } else { \ (dstarray)[(dstindex)*2] = 0; \ (dstarray)[(dstindex)*2+1] = 0; \ } \ } #define MONO_DEST_VOLUME_PARAMETERS DUMB_VOLUME_RAMP_INFO * volume_left, DUMB_VOLUME_RAMP_INFO * volume_right #define MONO_DEST_VOLUME_VARIABLES lvol=0, lvolr=0, lvold=0, lvolt=0, lvolm=0, rvol=0, rvolr=0, rvold=0, rvolt=0, rvolm=0 #define MONO_DEST_VOLUME_ZEROS 0, 0 #define SET_MONO_DEST_VOLUME_VARIABLES { \ if ( volume_left ) { \ lvolr = (int)(volume_left->volume * 16777216.0); \ lvold = (int)(volume_left->delta * 16777216.0); \ lvolt = (int)(volume_left->target * 16777216.0); \ lvolm = (int)(volume_left->mix * 16777216.0); \ lvol = MULSCV( lvolr, lvolm ); \ if ( lvolr == lvolt ) volume_left = NULL; \ } else { \ lvol = 0; \ lvolt = 0; \ } \ if ( volume_right ) { \ rvolr = (int)(volume_right->volume * 16777216.0); \ rvold = (int)(volume_right->delta * 16777216.0); \ rvolt = (int)(volume_right->target * 16777216.0); \ rvolm = (int)(volume_right->mix * 16777216.0); \ rvol = MULSCV( rvolr, rvolm ); \ if ( rvolr == rvolt ) volume_right = NULL; \ } else { \ rvol = 0; \ rvolt = 0; \ } \ } #define RETURN_MONO_DEST_VOLUME_VARIABLES { \ if ( volume_left ) volume_left->volume = (float)lvolr / 16777216.0f; \ if ( volume_right ) volume_right->volume = (float)rvolr / 16777216.0f; \ } #define MONO_DEST_VOLUMES_ARE_ZERO (lvol == 0 && lvolt == 0 && rvol == 0 && rvolt == 0) #define MONO_DEST_MIX_ALIAS(op, upd, offset) { \ *dst++ op ALIAS(x[(offset)*2], lvol) + ALIAS(x[(offset)*2+1], rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define STEREO_DEST_MIX_ALIAS(op, upd, offset) { \ *dst++ op ALIAS(x[(offset)*2], lvol); \ *dst++ op ALIAS(x[(offset)*2+1], rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define MONO_DEST_MIX_LINEAR(op, upd, o0, o1) { \ *dst++ op MULSC(LINEAR(x[(o0)*2], x[(o1)*2]), lvol) + MULSC(LINEAR(x[(o0)*2+1], x[(o1)*2+1]), rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define STEREO_DEST_MIX_LINEAR(op, upd, o0, o1) { \ *dst++ op MULSC(LINEAR(x[(o0)*2], x[(o1)*2]), lvol); \ *dst++ op MULSC(LINEAR(x[(o0)*2+1], x[(o1)*2+1]), rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define MONO_DEST_MIX_CUBIC(op, upd, x0, x3, o0, o1, o2, o3) { \ *dst++ op \ CUBICVOL(CUBIC(x0[(o0)*2], x[(o1)*2], x[(o2)*2], x3[(o3)*2]), lvol) + \ CUBICVOL(CUBIC(x0[(o0)*2+1], x[(o1)*2+1], x[(o2)*2+1], x3[(o3)*2+1]), rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #define STEREO_DEST_MIX_CUBIC(op, upd, x0, x3, o0, o1, o2, o3) { \ *dst++ op CUBICVOL(CUBIC(x0[(o0)*2], x[(o1)*2], x[(o2)*2], x3[(o3)*2]), lvol); \ *dst++ op CUBICVOL(CUBIC(x0[(o0)*2+1], x[(o1)*2+1], x[(o2)*2+1], x3[(o3)*2+1]), rvol); \ if ( upd ) UPDATE_VOLUME( volume_left, lvol ); \ if ( upd ) UPDATE_VOLUME( volume_right, rvol ); \ } #include "resamp2.inc" void dumb_end_resampler(DUMB_RESAMPLER *resampler) { if (resampler) free(resampler); } #undef CUBICVOL #undef CUBIC #undef LINEAR #undef ALIAS #undef SRCBITS #undef SRCTYPE #undef SUFFIX