//////////////////////////////////////////////////////////////////////////////// /// /// Peak detection routine. /// /// The routine detects highest value on an array of values and calculates the /// precise peak location as a mass-center of the 'hump' around the peak value. /// /// Author : Copyright (c) Olli Parviainen /// Author e-mail : oparviai 'at' iki.fi /// SoundTouch WWW: http://www.surina.net/soundtouch /// //////////////////////////////////////////////////////////////////////////////// // // Last changed : $Date: 2009-02-21 18:00:14 +0200 (Sat, 21 Feb 2009) $ // File revision : $Revision: 4 $ // // $Id: PeakFinder.cpp 63 2009-02-21 16:00:14Z oparviai $ // //////////////////////////////////////////////////////////////////////////////// // // License : // // SoundTouch audio processing library // Copyright (c) Olli Parviainen // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //////////////////////////////////////////////////////////////////////////////// #include #include #include "PeakFinder.h" using namespace soundtouch; #define max(x, y) (((x) > (y)) ? (x) : (y)) PeakFinder::PeakFinder() { minPos = maxPos = 0; } // Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding // to direction defined by 'direction' until next 'hump' after minimum value will // begin int PeakFinder::findGround(const float *data, int peakpos, int direction) const { float refvalue; int lowpos; int pos; int climb_count; float delta; climb_count = 0; refvalue = data[peakpos]; lowpos = peakpos; pos = peakpos; while ((pos > minPos) && (pos < maxPos)) { int prevpos; prevpos = pos; pos += direction; // calculate derivate delta = data[pos] - data[prevpos]; if (delta <= 0) { // going downhill, ok if (climb_count) { climb_count --; // decrease climb count } // check if new minimum found if (data[pos] < refvalue) { // new minimum found lowpos = pos; refvalue = data[pos]; } } else { // going uphill, increase climbing counter climb_count ++; if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit } } return lowpos; } // Find offset where the value crosses the given level, when starting from 'peakpos' and // proceeds to direction defined in 'direction' int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const { float peaklevel; int pos; peaklevel = data[peakpos]; assert(peaklevel >= level); pos = peakpos; while ((pos >= minPos) && (pos < maxPos)) { if (data[pos + direction] < level) return pos; // crossing found pos += direction; } return -1; // not found } // Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos' double PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const { int i; float sum; float wsum; sum = 0; wsum = 0; for (i = firstPos; i <= lastPos; i ++) { sum += (float)i * data[i]; wsum += data[i]; } if (wsum < 1e-6) return 0; return sum / wsum; } /// get exact center of peak near given position by calculating local mass of center double PeakFinder::getPeakCenter(const float *data, int peakpos) const { float peakLevel; // peak level int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level float cutLevel; // cutting value float groundLevel; // ground level of the peak int gp1, gp2; // bottom positions of the peak 'hump' // find ground positions. gp1 = findGround(data, peakpos, -1); gp2 = findGround(data, peakpos, 1); groundLevel = max(data[gp1], data[gp2]); peakLevel = data[peakpos]; if (groundLevel < 1e-6) return 0; // ground level too small => detection failed if ((peakLevel / groundLevel) < 1.3) return 0; // peak less than 30% of the ground level => no good peak detected // calculate 70%-level of the peak cutLevel = 0.70f * peakLevel + 0.30f * groundLevel; // find mid-level crossings crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1); crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1); if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak.. // calculate mass center of the peak surroundings return calcMassCenter(data, crosspos1, crosspos2); } double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos) { int i; int peakpos; // position of peak level double highPeak, peak; this->minPos = aminPos; this->maxPos = amaxPos; // find absolute peak peakpos = minPos; peak = data[minPos]; for (i = minPos + 1; i < maxPos; i ++) { if (data[i] > peak) { peak = data[i]; peakpos = i; } } // Calculate exact location of the highest peak mass center highPeak = getPeakCenter(data, peakpos); peak = highPeak; // Now check if the highest peak were in fact harmonic of the true base beat peak // - sometimes the highest peak can be Nth harmonic of the true base peak yet // just a slightly higher than the true base for (i = 2; i < 10; i ++) { double peaktmp, tmp; int i1,i2; peakpos = (int)(highPeak / (double)i + 0.5f); if (peakpos < minPos) break; // calculate mass-center of possible base peak peaktmp = getPeakCenter(data, peakpos); // now compare to highest detected peak i1 = (int)(highPeak + 0.5); i2 = (int)(peaktmp + 0.5); tmp = 2 * (data[i2] - data[i1]) / (data[i2] + data[i1]); if (fabs(tmp) < 0.1) { // The highest peak is harmonic of almost as high base peak, // thus use the base peak instead peak = peaktmp; } } return peak; }