/* * downmix.c * Copyright (C) 2004 Gildas Bazin * Copyright (C) 2000-2003 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * This file is part of libdca, a free DTS Coherent Acoustics stream decoder. * See http://www.videolan.org/developers/libdca.html for updates. * * libdca is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * libdca is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include #include "dca.h" #include "dca_internal.h" #define CONVERT(acmod,output) (((output) << DCA_CHANNEL_BITS) + (acmod)) int dca_downmix_init (int input, int flags, level_t * level, level_t clev, level_t slev) { static uint8_t table[11][10] = { /* DCA_MONO */ {DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO, DCA_MONO}, /* DCA_CHANNEL */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO}, /* DCA_STEREO */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO}, /* DCA_STEREO_SUMDIFF */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO}, /* DCA_STEREO_TOTAL */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO}, /* DCA_3F */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_3F, DCA_3F, DCA_3F, DCA_3F, DCA_3F}, /* DCA_2F1R */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_2F1R, DCA_2F1R, DCA_2F1R, DCA_2F1R, DCA_2F1R}, /* DCA_3F1R */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_3F, DCA_3F1R, DCA_3F1R, DCA_3F1R, DCA_3F1R}, /* DCA_2F2R */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_2F2R, DCA_2F2R, DCA_2F2R, DCA_2F2R}, /* DCA_3F2R */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_3F, DCA_3F2R, DCA_3F2R, DCA_3F2R, DCA_3F2R}, /* DCA_4F2R */ {DCA_MONO, DCA_CHANNEL, DCA_STEREO, DCA_STEREO, DCA_STEREO, DCA_4F2R, DCA_4F2R, DCA_4F2R, DCA_4F2R, DCA_4F2R}, }; int output; output = flags & DCA_CHANNEL_MASK; if (output > DCA_CHANNEL_MAX) return -1; output = table[output][input]; if (output == DCA_STEREO && (input == DCA_DOLBY || (input == DCA_3F && clev == LEVEL (LEVEL_3DB)))) output = DCA_DOLBY; if (flags & DCA_ADJUST_LEVEL) { level_t adjust; switch (CONVERT (input & 7, output)) { case CONVERT (DCA_3F, DCA_MONO): adjust = DIV (LEVEL_3DB, LEVEL (1) + clev); break; case CONVERT (DCA_STEREO, DCA_MONO): case CONVERT (DCA_2F2R, DCA_2F1R): case CONVERT (DCA_3F2R, DCA_3F1R): level_3db: adjust = LEVEL (LEVEL_3DB); break; case CONVERT (DCA_3F2R, DCA_2F1R): if (clev < LEVEL (LEVEL_PLUS3DB - 1)) goto level_3db; /* break thru */ case CONVERT (DCA_3F, DCA_STEREO): case CONVERT (DCA_3F1R, DCA_2F1R): case CONVERT (DCA_3F1R, DCA_2F2R): case CONVERT (DCA_3F2R, DCA_2F2R): adjust = DIV (1, LEVEL (1) + clev); break; case CONVERT (DCA_2F1R, DCA_MONO): adjust = DIV (LEVEL_PLUS3DB, LEVEL (2) + slev); break; case CONVERT (DCA_2F1R, DCA_STEREO): case CONVERT (DCA_3F1R, DCA_3F): adjust = DIV (1, LEVEL (1) + MUL_C (slev, LEVEL_3DB)); break; case CONVERT (DCA_3F1R, DCA_MONO): adjust = DIV (LEVEL_3DB, LEVEL (1) + clev + MUL_C (slev, 0.5)); break; case CONVERT (DCA_3F1R, DCA_STEREO): adjust = DIV (1, LEVEL (1) + clev + MUL_C (slev, LEVEL_3DB)); break; case CONVERT (DCA_2F2R, DCA_MONO): adjust = DIV (LEVEL_3DB, LEVEL (1) + slev); break; case CONVERT (DCA_2F2R, DCA_STEREO): case CONVERT (DCA_3F2R, DCA_3F): adjust = DIV (1, LEVEL (1) + slev); break; case CONVERT (DCA_3F2R, DCA_MONO): adjust = DIV (LEVEL_3DB, LEVEL (1) + clev + slev); break; case CONVERT (DCA_3F2R, DCA_STEREO): adjust = DIV (1, LEVEL (1) + clev + slev); break; case CONVERT (DCA_MONO, DCA_DOLBY): adjust = LEVEL (LEVEL_PLUS3DB); break; case CONVERT (DCA_3F, DCA_DOLBY): case CONVERT (DCA_2F1R, DCA_DOLBY): adjust = LEVEL (1 / (1 + LEVEL_3DB)); break; case CONVERT (DCA_3F1R, DCA_DOLBY): case CONVERT (DCA_2F2R, DCA_DOLBY): adjust = LEVEL (1 / (1 + 2 * LEVEL_3DB)); break; case CONVERT (DCA_3F2R, DCA_DOLBY): adjust = LEVEL (1 / (1 + 3 * LEVEL_3DB)); break; default: return output; } *level = MUL_L (*level, adjust); } return output; } int dca_downmix_coeff (level_t * coeff, int acmod, int output, level_t level, level_t clev, level_t slev) { level_t level_3db; level_3db = MUL_C (level, LEVEL_3DB); switch (CONVERT (acmod, output & DCA_CHANNEL_MASK)) { case CONVERT (DCA_CHANNEL, DCA_CHANNEL): case CONVERT (DCA_MONO, DCA_MONO): case CONVERT (DCA_STEREO, DCA_STEREO): case CONVERT (DCA_3F, DCA_3F): case CONVERT (DCA_2F1R, DCA_2F1R): case CONVERT (DCA_3F1R, DCA_3F1R): case CONVERT (DCA_2F2R, DCA_2F2R): case CONVERT (DCA_3F2R, DCA_3F2R): case CONVERT (DCA_STEREO, DCA_DOLBY): coeff[0] = coeff[1] = coeff[2] = coeff[3] = coeff[4] = level; return 0; case CONVERT (DCA_CHANNEL, DCA_MONO): coeff[0] = coeff[1] = MUL_C (level, LEVEL_6DB); return 3; case CONVERT (DCA_STEREO, DCA_MONO): coeff[0] = coeff[1] = level_3db; return 3; case CONVERT (DCA_3F, DCA_MONO): coeff[0] = coeff[2] = level_3db; coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB); return 7; case CONVERT (DCA_2F1R, DCA_MONO): coeff[0] = coeff[1] = level_3db; coeff[2] = MUL_L (level_3db, slev); return 7; case CONVERT (DCA_2F2R, DCA_MONO): coeff[0] = coeff[1] = level_3db; coeff[2] = coeff[3] = MUL_L (level_3db, slev); return 15; case CONVERT (DCA_3F1R, DCA_MONO): coeff[0] = coeff[2] = level_3db; coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB); coeff[3] = MUL_L (level_3db, slev); return 15; case CONVERT (DCA_3F2R, DCA_MONO): coeff[0] = coeff[2] = level_3db; coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB); coeff[3] = coeff[4] = MUL_L (level_3db, slev); return 31; case CONVERT (DCA_MONO, DCA_DOLBY): coeff[0] = level_3db; return 0; case CONVERT (DCA_3F, DCA_DOLBY): coeff[0] = coeff[2] = coeff[3] = coeff[4] = level; coeff[1] = level_3db; return 7; case CONVERT (DCA_3F, DCA_STEREO): case CONVERT (DCA_3F1R, DCA_2F1R): case CONVERT (DCA_3F2R, DCA_2F2R): coeff[0] = coeff[2] = coeff[3] = coeff[4] = level; coeff[1] = MUL_L (level, clev); return 7; case CONVERT (DCA_2F1R, DCA_DOLBY): coeff[0] = coeff[1] = level; coeff[2] = level_3db; return 7; case CONVERT (DCA_2F1R, DCA_STEREO): coeff[0] = coeff[1] = level; coeff[2] = MUL_L (level_3db, slev); return 7; case CONVERT (DCA_3F1R, DCA_DOLBY): coeff[0] = coeff[2] = level; coeff[1] = coeff[3] = level_3db; return 15; case CONVERT (DCA_3F1R, DCA_STEREO): coeff[0] = coeff[2] = level; coeff[1] = MUL_L (level, clev); coeff[3] = MUL_L (level_3db, slev); return 15; case CONVERT (DCA_2F2R, DCA_DOLBY): coeff[0] = coeff[1] = level; coeff[2] = coeff[3] = level_3db; return 15; case CONVERT (DCA_2F2R, DCA_STEREO): coeff[0] = coeff[1] = level; coeff[2] = coeff[3] = MUL_L (level, slev); return 15; case CONVERT (DCA_3F2R, DCA_DOLBY): coeff[0] = coeff[2] = level; coeff[1] = coeff[3] = coeff[4] = level_3db; return 31; case CONVERT (DCA_3F2R, DCA_2F1R): coeff[0] = coeff[2] = level; coeff[1] = MUL_L (level, clev); coeff[3] = coeff[4] = level_3db; return 31; case CONVERT (DCA_3F2R, DCA_STEREO): coeff[0] = coeff[2] = level; coeff[1] = MUL_L (level, clev); coeff[3] = coeff[4] = MUL_L (level, slev); return 31; case CONVERT (DCA_3F1R, DCA_3F): coeff[0] = coeff[1] = coeff[2] = level; coeff[3] = MUL_L (level_3db, slev); return 13; case CONVERT (DCA_3F2R, DCA_3F): coeff[0] = coeff[1] = coeff[2] = level; coeff[3] = coeff[4] = MUL_L (level, slev); return 29; case CONVERT (DCA_2F2R, DCA_2F1R): coeff[0] = coeff[1] = level; coeff[2] = coeff[3] = level_3db; return 12; case CONVERT (DCA_3F2R, DCA_3F1R): coeff[0] = coeff[1] = coeff[2] = level; coeff[3] = coeff[4] = level_3db; return 24; case CONVERT (DCA_2F1R, DCA_2F2R): coeff[0] = coeff[1] = level; coeff[2] = level_3db; return 0; case CONVERT (DCA_3F1R, DCA_2F2R): coeff[0] = coeff[2] = level; coeff[1] = MUL_L (level, clev); coeff[3] = level_3db; return 7; case CONVERT (DCA_3F1R, DCA_3F2R): coeff[0] = coeff[1] = coeff[2] = level; coeff[3] = level_3db; return 0; } return -1; /* NOTREACHED */ } static void mix2to1 (sample_t * dest, sample_t * src, sample_t bias) { int i; for (i = 0; i < 256; i++) dest[i] += BIAS (src[i]); } static void mix3to1 (sample_t * samples, sample_t bias) { int i; for (i = 0; i < 256; i++) samples[i] += BIAS (samples[i + 256] + samples[i + 512]); } static void mix4to1 (sample_t * samples, sample_t bias) { int i; for (i = 0; i < 256; i++) samples[i] += BIAS (samples[i + 256] + samples[i + 512] + samples[i + 768]); } static void mix5to1 (sample_t * samples, sample_t bias) { int i; for (i = 0; i < 256; i++) samples[i] += BIAS (samples[i + 256] + samples[i + 512] + samples[i + 768] + samples[i + 1024]); } static void mix3to2 (sample_t * samples, sample_t bias) { int i; sample_t common; for (i = 0; i < 256; i++) { common = BIAS (samples[i]); samples[i] = samples[i + 256] + common; samples[i + 256] = samples[i + 512] + common; } } static void mix21to2 (sample_t * left, sample_t * right, sample_t bias) { int i; sample_t common; for (i = 0; i < 256; i++) { common = BIAS (right[i + 256]); left[i] += common; right[i] += common; } } static void mix21toS (sample_t * samples, sample_t bias) { int i; sample_t surround; for (i = 0; i < 256; i++) { surround = samples[i + 512]; samples[i] += BIAS (-surround); samples[i + 256] += BIAS (surround); } } static void mix31to2 (sample_t * samples, sample_t bias) { int i; sample_t common; for (i = 0; i < 256; i++) { common = BIAS (samples[i] + samples[i + 768]); samples[i] = samples[i + 256] + common; samples[i + 256] = samples[i + 512] + common; } } static void mix31toS (sample_t * samples, sample_t bias) { int i; sample_t common, surround; for (i = 0; i < 256; i++) { common = BIAS (samples[i]); surround = samples[i + 768]; samples[i] = samples[i + 256] + common - surround; samples[i + 256] = samples[i + 512] + common + surround; } } static void mix22toS (sample_t * samples, sample_t bias) { int i; sample_t surround; for (i = 0; i < 256; i++) { surround = samples[i + 512] + samples[i + 768]; samples[i] += BIAS (-surround); samples[i + 256] += BIAS (surround); } } static void mix32to2 (sample_t * samples, sample_t bias) { int i; sample_t common; for (i = 0; i < 256; i++) { common = BIAS (samples[i]); samples[i] = common + samples[i + 256] + samples[i + 768]; samples[i + 256] = common + samples[i + 512] + samples[i + 1024]; } } static void mix32toS (sample_t * samples, sample_t bias) { int i; sample_t common, surround; for (i = 0; i < 256; i++) { common = BIAS (samples[i]); surround = samples[i + 768] + samples[i + 1024]; samples[i] = samples[i + 256] + common - surround; samples[i + 256] = samples[i + 512] + common + surround; } } static void move2to1 (sample_t * src, sample_t * dest, sample_t bias) { int i; for (i = 0; i < 256; i++) dest[i] = BIAS (src[i] + src[i + 256]); } static void zero (sample_t * samples) { int i; for (i = 0; i < 256; i++) samples[i] = 0; } void dca_downmix (sample_t * samples, int acmod, int output, sample_t bias, level_t clev, level_t slev) { (void)clev; switch (CONVERT (acmod, output & DCA_CHANNEL_MASK)) { case CONVERT (DCA_CHANNEL, DCA_MONO): case CONVERT (DCA_STEREO, DCA_MONO): mix_2to1: mix2to1 (samples, samples + 256, bias); break; case CONVERT (DCA_2F1R, DCA_MONO): if (slev == 0) goto mix_2to1; case CONVERT (DCA_3F, DCA_MONO): mix_3to1: mix3to1 (samples, bias); break; case CONVERT (DCA_3F1R, DCA_MONO): if (slev == 0) goto mix_3to1; case CONVERT (DCA_2F2R, DCA_MONO): if (slev == 0) goto mix_2to1; mix4to1 (samples, bias); break; case CONVERT (DCA_3F2R, DCA_MONO): if (slev == 0) goto mix_3to1; mix5to1 (samples, bias); break; case CONVERT (DCA_MONO, DCA_DOLBY): memcpy (samples + 256, samples, 256 * sizeof (sample_t)); break; case CONVERT (DCA_3F, DCA_STEREO): case CONVERT (DCA_3F, DCA_DOLBY): mix_3to2: mix3to2 (samples, bias); break; case CONVERT (DCA_2F1R, DCA_STEREO): if (slev == 0) break; mix21to2 (samples, samples + 256, bias); break; case CONVERT (DCA_2F1R, DCA_DOLBY): mix21toS (samples, bias); break; case CONVERT (DCA_3F1R, DCA_STEREO): if (slev == 0) goto mix_3to2; mix31to2 (samples, bias); break; case CONVERT (DCA_3F1R, DCA_DOLBY): mix31toS (samples, bias); break; case CONVERT (DCA_2F2R, DCA_STEREO): if (slev == 0) break; mix2to1 (samples, samples + 512, bias); mix2to1 (samples + 256, samples + 768, bias); break; case CONVERT (DCA_2F2R, DCA_DOLBY): mix22toS (samples, bias); break; case CONVERT (DCA_3F2R, DCA_STEREO): if (slev == 0) goto mix_3to2; mix32to2 (samples, bias); break; case CONVERT (DCA_3F2R, DCA_DOLBY): mix32toS (samples, bias); break; case CONVERT (DCA_3F1R, DCA_3F): if (slev == 0) break; mix21to2 (samples, samples + 512, bias); break; case CONVERT (DCA_3F2R, DCA_3F): if (slev == 0) break; mix2to1 (samples, samples + 768, bias); mix2to1 (samples + 512, samples + 1024, bias); break; case CONVERT (DCA_3F1R, DCA_2F1R): mix3to2 (samples, bias); memcpy (samples + 512, samples + 768, 256 * sizeof (sample_t)); break; case CONVERT (DCA_2F2R, DCA_2F1R): mix2to1 (samples + 512, samples + 768, bias); break; case CONVERT (DCA_3F2R, DCA_2F1R): mix3to2 (samples, bias); move2to1 (samples + 768, samples + 512, bias); break; case CONVERT (DCA_3F2R, DCA_3F1R): mix2to1 (samples + 768, samples + 1024, bias); break; case CONVERT (DCA_2F1R, DCA_2F2R): memcpy (samples + 768, samples + 512, 256 * sizeof (sample_t)); break; case CONVERT (DCA_3F1R, DCA_2F2R): mix3to2 (samples, bias); memcpy (samples + 512, samples + 768, 256 * sizeof (sample_t)); break; case CONVERT (DCA_3F2R, DCA_2F2R): mix3to2 (samples, bias); memcpy (samples + 512, samples + 768, 256 * sizeof (sample_t)); memcpy (samples + 768, samples + 1024, 256 * sizeof (sample_t)); break; case CONVERT (DCA_3F1R, DCA_3F2R): memcpy (samples + 1024, samples + 768, 256 * sizeof (sample_t)); break; } } void dca_upmix (sample_t * samples, int acmod, int output) { switch (CONVERT (acmod, output & DCA_CHANNEL_MASK)) { case CONVERT (DCA_3F2R, DCA_MONO): zero (samples + 1024); case CONVERT (DCA_3F1R, DCA_MONO): case CONVERT (DCA_2F2R, DCA_MONO): zero (samples + 768); case CONVERT (DCA_3F, DCA_MONO): case CONVERT (DCA_2F1R, DCA_MONO): zero (samples + 512); case CONVERT (DCA_CHANNEL, DCA_MONO): case CONVERT (DCA_STEREO, DCA_MONO): zero (samples + 256); break; case CONVERT (DCA_3F2R, DCA_STEREO): case CONVERT (DCA_3F2R, DCA_DOLBY): zero (samples + 1024); case CONVERT (DCA_3F1R, DCA_STEREO): case CONVERT (DCA_3F1R, DCA_DOLBY): zero (samples + 768); case CONVERT (DCA_3F, DCA_STEREO): case CONVERT (DCA_3F, DCA_DOLBY): mix_3to2: memcpy (samples + 512, samples + 256, 256 * sizeof (sample_t)); zero (samples + 256); break; case CONVERT (DCA_2F2R, DCA_STEREO): case CONVERT (DCA_2F2R, DCA_DOLBY): zero (samples + 768); case CONVERT (DCA_2F1R, DCA_STEREO): case CONVERT (DCA_2F1R, DCA_DOLBY): zero (samples + 512); break; case CONVERT (DCA_3F2R, DCA_3F): zero (samples + 1024); case CONVERT (DCA_3F1R, DCA_3F): case CONVERT (DCA_2F2R, DCA_2F1R): zero (samples + 768); break; case CONVERT (DCA_3F2R, DCA_3F1R): zero (samples + 1024); break; case CONVERT (DCA_3F2R, DCA_2F1R): zero (samples + 1024); case CONVERT (DCA_3F1R, DCA_2F1R): mix_31to21: memcpy (samples + 768, samples + 512, 256 * sizeof (sample_t)); goto mix_3to2; case CONVERT (DCA_3F2R, DCA_2F2R): memcpy (samples + 1024, samples + 768, 256 * sizeof (sample_t)); goto mix_31to21; } }