/* Sega/Yamaha YMF292-F (SCSP = Saturn Custom Sound Processor) emulation By ElSemi MAME/M1 conversion and cleanup by R. Belmont Additional code and bugfixes by kingshriek This chip has 32 voices. Each voice can play a sample or be part of an FM construct. Unlike traditional Yamaha FM chips, the base waveform for the FM still comes from the wavetable RAM. ChangeLog: * November 25, 2003 (ES) Fixed buggy timers and envelope overflows. (RB) Improved sample rates other than 44100, multiple chips now works properly. * December 02, 2003 (ES) Added DISDL register support, improves mix. * April 28, 2004 (ES) Corrected envelope rates, added key-rate scaling, added ringbuffer support. * January 8, 2005 (RB) Added ability to specify region offset for RAM. * January 26, 2007 (ES) Added on-board DSP capability * December 16, 2007 (kingshriek) Many EG bug fixes, implemented effects mixer, implemented FM. */ #include #include #include "ao.h" #include "cpuintrf.h" #include "scsp.h" #include "scspdsp.h" #include "sat_hw.h" #define ICLIP16(x) (x<-32768)?-32768:((x>32767)?32767:x) #define SHIFT 12 #define FIX(v) ((UINT32) ((float) (1<udata.data[0x0]>>0x0)&0x1000) #define KEYONB(slot) ((slot->udata.data[0x0]>>0x0)&0x0800) #define SBCTL(slot) ((slot->udata.data[0x0]>>0x9)&0x0003) #define SSCTL(slot) ((slot->udata.data[0x0]>>0x7)&0x0003) #define LPCTL(slot) ((slot->udata.data[0x0]>>0x5)&0x0003) #define PCM8B(slot) ((slot->udata.data[0x0]>>0x0)&0x0010) #define SA(slot) (((slot->udata.data[0x0]&0xF)<<16)|(slot->udata.data[0x1])) #define LSA(slot) (slot->udata.data[0x2]) #define LEA(slot) (slot->udata.data[0x3]) #define D2R(slot) ((slot->udata.data[0x4]>>0xB)&0x001F) #define D1R(slot) ((slot->udata.data[0x4]>>0x6)&0x001F) #define EGHOLD(slot) ((slot->udata.data[0x4]>>0x0)&0x0020) #define AR(slot) ((slot->udata.data[0x4]>>0x0)&0x001F) #define LPSLNK(slot) ((slot->udata.data[0x5]>>0x0)&0x4000) #define KRS(slot) ((slot->udata.data[0x5]>>0xA)&0x000F) #define DL(slot) ((slot->udata.data[0x5]>>0x5)&0x001F) #define RR(slot) ((slot->udata.data[0x5]>>0x0)&0x001F) #define STWINH(slot) ((slot->udata.data[0x6]>>0x0)&0x0200) #define SDIR(slot) ((slot->udata.data[0x6]>>0x0)&0x0100) #define TL(slot) ((slot->udata.data[0x6]>>0x0)&0x00FF) #define MDL(slot) ((slot->udata.data[0x7]>>0xC)&0x000F) #define MDXSL(slot) ((slot->udata.data[0x7]>>0x6)&0x003F) #define MDYSL(slot) ((slot->udata.data[0x7]>>0x0)&0x003F) #define OCT(slot) ((slot->udata.data[0x8]>>0xB)&0x000F) #define FNS(slot) ((slot->udata.data[0x8]>>0x0)&0x03FF) #define LFORE(slot) ((slot->udata.data[0x9]>>0x0)&0x8000) #define LFOF(slot) ((slot->udata.data[0x9]>>0xA)&0x001F) #define PLFOWS(slot) ((slot->udata.data[0x9]>>0x8)&0x0003) #define PLFOS(slot) ((slot->udata.data[0x9]>>0x5)&0x0007) #define ALFOWS(slot) ((slot->udata.data[0x9]>>0x3)&0x0003) #define ALFOS(slot) ((slot->udata.data[0x9]>>0x0)&0x0007) #define ISEL(slot) ((slot->udata.data[0xA]>>0x3)&0x000F) #define IMXL(slot) ((slot->udata.data[0xA]>>0x0)&0x0007) #define DISDL(slot) ((slot->udata.data[0xB]>>0xD)&0x0007) #define DIPAN(slot) ((slot->udata.data[0xB]>>0x8)&0x001F) #define EFSDL(slot) ((slot->udata.data[0xB]>>0x5)&0x0007) #define EFPAN(slot) ((slot->udata.data[0xB]>>0x0)&0x001F) //Envelope times in ms static const double ARTimes[64]={100000/*infinity*/,100000/*infinity*/,8100.0,6900.0,6000.0,4800.0,4000.0,3400.0,3000.0,2400.0,2000.0,1700.0,1500.0, 1200.0,1000.0,860.0,760.0,600.0,500.0,430.0,380.0,300.0,250.0,220.0,190.0,150.0,130.0,110.0,95.0, 76.0,63.0,55.0,47.0,38.0,31.0,27.0,24.0,19.0,15.0,13.0,12.0,9.4,7.9,6.8,6.0,4.7,3.8,3.4,3.0,2.4, 2.0,1.8,1.6,1.3,1.1,0.93,0.85,0.65,0.53,0.44,0.40,0.35,0.0,0.0}; static const double DRTimes[64]={100000/*infinity*/,100000/*infinity*/,118200.0,101300.0,88600.0,70900.0,59100.0,50700.0,44300.0,35500.0,29600.0,25300.0,22200.0,17700.0, 14800.0,12700.0,11100.0,8900.0,7400.0,6300.0,5500.0,4400.0,3700.0,3200.0,2800.0,2200.0,1800.0,1600.0,1400.0,1100.0, 920.0,790.0,690.0,550.0,460.0,390.0,340.0,270.0,230.0,200.0,170.0,140.0,110.0,98.0,85.0,68.0,57.0,49.0,43.0,34.0, 28.0,25.0,22.0,18.0,14.0,12.0,11.0,8.5,7.1,6.1,5.4,4.3,3.6,3.1}; static UINT32 FNS_Table[0x400]; static INT32 EG_TABLE[0x400]; typedef enum {ATTACK,DECAY1,DECAY2,RELEASE} _STATE; struct _EG { int volume; // _STATE state; int step; //step vals int AR; //Attack int D1R; //Decay1 int D2R; //Decay2 int RR; //Release int DL; //Decay level UINT8 EGHOLD; UINT8 LPLINK; }; struct _SLOT { union { UINT16 data[0x10]; //only 0x1a bytes used UINT8 datab[0x20]; } udata; UINT8 active; //this slot is currently playing UINT8 *base; //samples base address UINT32 cur_addr; //current play address (24.8) UINT32 nxt_addr; //next play address UINT32 step; //pitch step (24.8) UINT8 Backwards; //the wave is playing backwards struct _EG EG; //Envelope struct _LFO PLFO; //Phase LFO struct _LFO ALFO; //Amplitude LFO int slot; signed short Prev; //Previous sample (for interpolation) }; #define MEM4B(scsp) ((scsp->udata.data[0]>>0x0)&0x0200) #define DAC18B(scsp) ((scsp->udata.data[0]>>0x0)&0x0100) #define MVOL(scsp) ((scsp->udata.data[0]>>0x0)&0x000F) #define RBL(scsp) ((scsp->udata.data[1]>>0x7)&0x0003) #define RBP(scsp) ((scsp->udata.data[1]>>0x0)&0x003F) #define MOFULL(scsp) ((scsp->udata.data[2]>>0x0)&0x1000) #define MOEMPTY(scsp) ((scsp->udata.data[2]>>0x0)&0x0800) #define MIOVF(scsp) ((scsp->udata.data[2]>>0x0)&0x0400) #define MIFULL(scsp) ((scsp->udata.data[2]>>0x0)&0x0200) #define MIEMPTY(scsp) ((scsp->udata.data[2]>>0x0)&0x0100) #define SCILV0(scsp) ((scsp->udata.data[0x24/2]>>0x0)&0xff) #define SCILV1(scsp) ((scsp->udata.data[0x26/2]>>0x0)&0xff) #define SCILV2(scsp) ((scsp->udata.data[0x28/2]>>0x0)&0xff) #define SCIEX0 0 #define SCIEX1 1 #define SCIEX2 2 #define SCIMID 3 #define SCIDMA 4 #define SCIIRQ 5 #define SCITMA 6 #define SCITMB 7 #define USEDSP struct m68ki_cpu_core_s; struct _SCSP { union { UINT16 data[0x30/2]; UINT8 datab[0x30]; } udata; struct _SLOT Slots[32]; signed short RINGBUF[64]; unsigned char BUFPTR; #if FM_DELAY signed short DELAYBUF[FM_DELAY]; unsigned char DELAYPTR; #endif unsigned char *SCSPRAM; UINT32 SCSPRAM_LENGTH; char Master; void (*Int68kCB)(struct m68ki_cpu_core_s *cpu, int irq); INT32 *buffertmpl, *buffertmpr; UINT32 IrqTimA; UINT32 IrqTimBC; UINT32 IrqMidi; UINT8 MidiOutW,MidiOutR; UINT8 MidiStack[16]; UINT8 MidiW,MidiR; int LPANTABLE[0x10000]; int RPANTABLE[0x10000]; int TimPris[3]; int TimCnt[3]; // DMA stuff UINT32 scsp_dmea; UINT16 scsp_drga; UINT16 scsp_dtlg; int ARTABLE[64], DRTABLE[64]; struct m68ki_cpu_core_s *cpu; struct _SCSPDSP DSP; INT16 *bufferl; INT16 *bufferr; int length; signed short *RBUFDST; //this points to where the sample will be stored in the RingBuf }; static void dma_scsp(struct _SCSP *SCSP); /*SCSP DMA transfer function*/ #define scsp_dgate scsp_regs[0x16/2] & 0x4000 #define scsp_ddir scsp_regs[0x16/2] & 0x2000 #define scsp_dexe scsp_regs[0x16/2] & 0x1000 #define dma_transfer_end ((scsp_regs[0x24/2] & 0x10)>>4)|(((scsp_regs[0x26/2] & 0x10)>>4)<<1)|(((scsp_regs[0x28/2] & 0x10)>>4)<<2) static const float SDLT[8]={-1000000.0,-36.0,-30.0,-24.0,-18.0,-12.0,-6.0,0.0}; static unsigned char DecodeSCI(struct _SCSP *SCSP,unsigned char irq) { unsigned char SCI=0; unsigned char v; v=(SCILV0((SCSP))&(1<udata.data[0x22/2]; if (reset & 0x40) SCSP->Int68kCB(SCSP->cpu, -SCSP->IrqTimA); if (reset & 0x180) SCSP->Int68kCB(SCSP->cpu, -SCSP->IrqTimBC); } static void CheckPendingIRQ(struct _SCSP *SCSP) { UINT32 pend=SCSP->udata.data[0x20/2]; UINT32 en=SCSP->udata.data[0x1e/2]; if(SCSP->MidiW!=SCSP->MidiR) { SCSP->Int68kCB(SCSP->cpu, SCSP->IrqMidi); return; } if(!pend) return; if(pend&0x40) if(en&0x40) { SCSP->Int68kCB(SCSP->cpu, SCSP->IrqTimA); return; } if(pend&0x80) if(en&0x80) { SCSP->Int68kCB(SCSP->cpu, SCSP->IrqTimBC); return; } if(pend&0x100) if(en&0x100) { SCSP->Int68kCB(SCSP->cpu, SCSP->IrqTimBC); return; } SCSP->Int68kCB(SCSP->cpu, 0); } static int Get_AR(struct _SCSP *SCSP,int base,int R) { int Rate=base+(R<<1); if(Rate>63) Rate=63; if(Rate<0) Rate=0; return SCSP->ARTABLE[Rate]; } static int Get_DR(struct _SCSP *SCSP,int base,int R) { int Rate=base+(R<<1); if(Rate>63) Rate=63; if(Rate<0) Rate=0; return SCSP->DRTABLE[Rate]; } static int Get_RR(struct _SCSP *SCSP,int base,int R) { int Rate=base+(R<<1); if(Rate>63) Rate=63; if(Rate<0) Rate=0; return SCSP->DRTABLE[Rate]; } static void Compute_EG(struct _SCSP *SCSP,struct _SLOT *slot) { int octave=OCT(slot); int rate; if(octave&8) octave=octave-16; if(KRS(slot)!=0xf) rate=octave+2*KRS(slot)+((FNS(slot)>>9)&1); else rate=0; //rate=((FNS(slot)>>9)&1); slot->EG.volume=0x17F<EG.AR=Get_AR(SCSP,rate,AR(slot)); slot->EG.D1R=Get_DR(SCSP,rate,D1R(slot)); slot->EG.D2R=Get_DR(SCSP,rate,D2R(slot)); slot->EG.RR=Get_RR(SCSP,rate,RR(slot)); slot->EG.DL=0x1f-DL(slot); slot->EG.EGHOLD=EGHOLD(slot); } static void SCSP_StopSlot(struct _SLOT *slot,int keyoff); static int EG_Update(struct _SLOT *slot) { switch(slot->EG.state) { case ATTACK: slot->EG.volume+=slot->EG.AR; if(slot->EG.volume>=(0x3ff<EG.state=DECAY1; if(slot->EG.D1R>=(1024<EG.state=DECAY2; } slot->EG.volume=0x3ff<EG.EGHOLD) return 0x3ff<<(SHIFT-10); break; case DECAY1: slot->EG.volume-=slot->EG.D1R; if(slot->EG.volume<=0) slot->EG.volume=0; if(slot->EG.volume>>(EG_SHIFT+5)<=slot->EG.DL) slot->EG.state=DECAY2; break; case DECAY2: if(D2R(slot)==0) return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10); slot->EG.volume-=slot->EG.D2R; if(slot->EG.volume<=0) slot->EG.volume=0; break; case RELEASE: slot->EG.volume-=slot->EG.RR; if(slot->EG.volume<=0) { slot->EG.volume=0; SCSP_StopSlot(slot,0); //slot->EG.volume=0x17F<EG.state=ATTACK; } break; default: return 1<EG.volume>>EG_SHIFT)<<(SHIFT-10); } static UINT32 SCSP_Step(struct _SLOT *slot) { int octave=OCT(slot); UINT64 Fn; Fn=(FNS_Table[FNS(slot)]); //24.8 if(octave&8) Fn>>=(16-octave); else Fn<<=octave; return Fn/(44100); } static void Compute_LFO(struct _SLOT *slot) { if(PLFOS(slot)!=0) LFO_ComputeStep(&(slot->PLFO),LFOF(slot),PLFOWS(slot),PLFOS(slot),0); if(ALFOS(slot)!=0) LFO_ComputeStep(&(slot->ALFO),LFOF(slot),ALFOWS(slot),ALFOS(slot),1); } static void SCSP_StartSlot(struct _SCSP *SCSP, struct _SLOT *slot) { UINT32 start_offset; slot->active=1; slot->Backwards=0; slot->cur_addr=0; slot->nxt_addr=1<base=SCSP->SCSPRAM + start_offset; slot->step=SCSP_Step(slot); Compute_EG(SCSP,slot); slot->EG.state=ATTACK; slot->EG.volume=0x17F<Prev=0; Compute_LFO(slot); // printf("StartSlot: SA %x PCM8B %x LPCTL %x ALFOS %x STWINH %x TL %x EFSDL %x\n", SA(slot), PCM8B(slot), LPCTL(slot), ALFOS(slot), STWINH(slot), TL(slot), EFSDL(slot)); // printf(" AR %x D1R %x D2R %x RR %x DL %x KRS %x EGHOLD %x LPSLNK %x\n", AR(slot), D1R(slot), D2R(slot), RR(slot), DL(slot), KRS(slot), EGHOLD(slot), LPSLNK(slot)); } static void SCSP_StopSlot(struct _SLOT *slot,int keyoff) { if(keyoff /*&& slot->EG.state!=RELEASE*/) { slot->EG.state=RELEASE; } else { slot->active=0; } slot->udata.data[0]&=~0x800; } #define log_base_2(n) (log((float) n)/log((float) 2)) static void SCSP_Init(struct _SCSP *SCSP, const struct SCSPinterface *intf) { int i=0; SCSP->IrqTimA = SCSP->IrqTimBC = SCSP->IrqMidi = 0; SCSP->MidiR=SCSP->MidiW=0; SCSP->MidiOutR=SCSP->MidiOutW=0; // get SCSP RAM { memset(SCSP,0,sizeof(*SCSP)); SCSP->cpu = intf->cpu; if (!i) { SCSP->Master=1; } else { SCSP->Master=0; } if (intf->region) { SCSP->SCSPRAM = (unsigned char *)intf->region[0]; SCSP->SCSPRAM_LENGTH = 512*1024; SCSP->DSP.SCSPRAM = (UINT16 *)SCSP->SCSPRAM; SCSP->DSP.SCSPRAM_LENGTH = (512*1024)/2; // SCSP->SCSPRAM += intf->roffset; } } for(i=0;i<0x400;++i) { float fcent=(double) 1200.0*log_base_2((double)(((double) 1024.0+(double)i)/(double)1024.0)); fcent=(double) 44100.0*pow(2.0,fcent/1200.0); FNS_Table[i]=(float) (1<>0x0)&0xff; int iPAN=(i>>0x8)&0x1f; int iSDL=(i>>0xD)&0x07; float TL=1.0; float SegaDB=0; float fSDL=1.0; float PAN=1.0; float LPAN,RPAN; if(iTL&0x01) SegaDB-=0.4; if(iTL&0x02) SegaDB-=0.8; if(iTL&0x04) SegaDB-=1.5; if(iTL&0x08) SegaDB-=3; if(iTL&0x10) SegaDB-=6; if(iTL&0x20) SegaDB-=12; if(iTL&0x40) SegaDB-=24; if(iTL&0x80) SegaDB-=48; TL=pow(10.0,SegaDB/20.0); SegaDB=0; if(iPAN&0x1) SegaDB-=3; if(iPAN&0x2) SegaDB-=6; if(iPAN&0x4) SegaDB-=12; if(iPAN&0x8) SegaDB-=24; if((iPAN&0xf)==0xf) PAN=0.0; else PAN=pow(10.0,SegaDB/20.0); if(iPAN<0x10) { LPAN=PAN; RPAN=1.0; } else { RPAN=PAN; LPAN=1.0; } if(iSDL) fSDL=pow(10.0,(SDLT[iSDL])/20.0); else fSDL=0.0; SCSP->LPANTABLE[i]=FIX((4.0*LPAN*TL*fSDL)); SCSP->RPANTABLE[i]=FIX((4.0*RPAN*TL*fSDL)); } SCSP->ARTABLE[0]=SCSP->DRTABLE[0]=0; //Infinite time SCSP->ARTABLE[1]=SCSP->DRTABLE[1]=0; //Infinite time for(i=2;i<64;++i) { double t,step,scale; t=ARTimes[i]; //In ms if(t!=0.0) { step=(1023*1000.0)/((float) 44100.0f*t); scale=(double) (1<ARTABLE[i]=(int) (step*scale); } else SCSP->ARTABLE[i]=1024<DRTABLE[i]=(int) (step*scale); } // make sure all the slots are off for(i=0;i<32;++i) { SCSP->Slots[i].slot=i; SCSP->Slots[i].active=0; SCSP->Slots[i].base=NULL; } LFO_Init(); SCSP->buffertmpl=(signed int*) malloc(44100*sizeof(signed int)); SCSP->buffertmpr=(signed int*) malloc(44100*sizeof(signed int)); memset(SCSP->buffertmpl,0,44100*sizeof(signed int)); memset(SCSP->buffertmpr,0,44100*sizeof(signed int)); // no "pend" SCSP[0].udata.data[0x20/2] = 0; //SCSP[1].udata.data[0x20/2] = 0; SCSP->TimCnt[0] = 0xffff; SCSP->TimCnt[1] = 0xffff; SCSP->TimCnt[2] = 0xffff; } static void SCSP_UpdateSlotReg(struct _SCSP *SCSP,int s,int r) { struct _SLOT *slot=SCSP->Slots+s; int sl; switch(r&0x3f) { case 0: case 1: if(KEYONEX(slot)) { for(sl=0;sl<32;++sl) { struct _SLOT *s2=SCSP->Slots+sl; { if(KEYONB(s2) && s2->EG.state==RELEASE/*&& !s2->active*/) { SCSP_StartSlot(SCSP, s2); } if(!KEYONB(s2) /*&& s2->active*/) { SCSP_StopSlot(s2,1); } } } slot->udata.data[0]&=~0x1000; } break; case 0x10: case 0x11: slot->step=SCSP_Step(slot); break; case 0xA: case 0xB: slot->EG.RR=Get_RR(SCSP,0,RR(slot)); slot->EG.DL=0x1f-DL(slot); break; case 0x12: case 0x13: Compute_LFO(slot); break; } } static void SCSP_UpdateReg(struct _SCSP *SCSP, int reg) { switch(reg&0x3f) { case 0x2: case 0x3: { unsigned int v=RBL(SCSP); SCSP->DSP.RBP=RBP(SCSP); if(v==0) SCSP->DSP.RBL=8*1024; else if(v==1) SCSP->DSP.RBL=16*1024; if(v==2) SCSP->DSP.RBL=32*1024; if(v==3) SCSP->DSP.RBL=64*1024; } break; case 0x6: case 0x7: SCSP_MidiIn(SCSP, 0, SCSP->udata.data[0x6/2]&0xff, 0); break; case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: break; case 0x18: case 0x19: if(SCSP->Master) { SCSP->TimPris[0]=1<<((SCSP->udata.data[0x18/2]>>8)&0x7); SCSP->TimCnt[0]=(SCSP->udata.data[0x18/2]&0xff)<<8; } break; case 0x1a: case 0x1b: if(SCSP->Master) { SCSP->TimPris[1]=1<<((SCSP->udata.data[0x1A/2]>>8)&0x7); SCSP->TimCnt[1]=(SCSP->udata.data[0x1A/2]&0xff)<<8; } break; case 0x1C: case 0x1D: if(SCSP->Master) { SCSP->TimPris[2]=1<<((SCSP->udata.data[0x1C/2]>>8)&0x7); SCSP->TimCnt[2]=(SCSP->udata.data[0x1C/2]&0xff)<<8; } break; case 0x22: //SCIRE case 0x23: if(SCSP->Master) { SCSP->udata.data[0x20/2]&=~SCSP->udata.data[0x22/2]; ResetInterrupts(SCSP); // behavior from real hardware: if you SCIRE a timer that's expired, // it'll immediately pop up again. ask Sakura Taisen on the Saturn... if (SCSP->TimCnt[0] >= 0xff00) { SCSP->udata.data[0x20/2] |= 0x40; } if (SCSP->TimCnt[1] >= 0xff00) { SCSP->udata.data[0x20/2] |= 0x80; } if (SCSP->TimCnt[2] >= 0xff00) { SCSP->udata.data[0x20/2] |= 0x100; } } break; case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: if(SCSP->Master) { SCSP->IrqTimA=DecodeSCI(SCSP,SCITMA); SCSP->IrqTimBC=DecodeSCI(SCSP,SCITMB); SCSP->IrqMidi=DecodeSCI(SCSP,SCIMID); } break; } } static void SCSP_UpdateSlotRegR(struct _SCSP *SCSP, int slot,int reg) { } static void SCSP_UpdateRegR(struct _SCSP *SCSP, int reg) { switch(reg&0x3f) { case 4: case 5: { unsigned short v=SCSP->udata.data[0x5/2]; v&=0xff00; v|=SCSP->MidiStack[SCSP->MidiR]; SCSP->Int68kCB(SCSP->cpu, 0); // cancel the IRQ if(SCSP->MidiR!=SCSP->MidiW) { ++SCSP->MidiR; SCSP->MidiR&=15; } SCSP->udata.data[0x5/2]=v; } break; case 8: case 9: { unsigned char slot=SCSP->udata.data[0x8/2]>>11; unsigned int CA=SCSP->Slots[slot&0x1f].cur_addr>>(SHIFT+12); SCSP->udata.data[0x8/2]&=~(0x780); SCSP->udata.data[0x8/2]|=CA<<7; } break; } } static void SCSP_w16(struct _SCSP *SCSP,unsigned int addr,unsigned short val) { addr&=0xffff; if(addr<0x400) { int slot=addr/0x20; addr&=0x1f; *((unsigned short *) (SCSP->Slots[slot].udata.datab+(addr))) = val; SCSP_UpdateSlotReg(SCSP,slot,addr&0x1f); } else if(addr<0x600) { if (addr < 0x430) { *((unsigned short *) (SCSP->udata.datab+((addr&0x3f)))) = val; SCSP_UpdateReg(SCSP, addr&0x3f); } } else if(addr<0x700) SCSP->RINGBUF[(addr-0x600)/2]=val; else { //DSP if(addr<0x780) //COEF *((unsigned short *) (SCSP->DSP.COEF+(addr-0x700)/2))=val; else if(addr<0x800) *((unsigned short *) (SCSP->DSP.MADRS+(addr-0x780)/2))=val; else if(addr<0xC00) *((unsigned short *) (SCSP->DSP.MPRO+(addr-0x800)/2))=val; if(addr==0xBF0) { // printf("DSP start\n"); SCSPDSP_Start(&SCSP->DSP); } } } static unsigned short SCSP_r16(struct _SCSP *SCSP, unsigned int addr) { unsigned short v=0; addr&=0xffff; if(addr<0x400) { int slot=addr/0x20; addr&=0x1f; SCSP_UpdateSlotRegR(SCSP, slot,addr&0x1f); v=*((unsigned short *) (SCSP->Slots[slot].udata.datab+(addr))); } else if(addr<0x600) { if (addr < 0x430) { SCSP_UpdateRegR(SCSP, addr&0x3f); v= *((unsigned short *) (SCSP->udata.datab+((addr&0x3f)))); } } else if(addr<0x700) v=SCSP->RINGBUF[(addr-0x600)/2]; return v; } #define REVSIGN(v) ((~v)+1) void SCSP_TimersAddTicks(struct _SCSP *SCSP, int ticks) { if(SCSP->TimCnt[0]<=0xff00) { SCSP->TimCnt[0] += ticks << (8-((SCSP->udata.data[0x18/2]>>8)&0x7)); if (SCSP->TimCnt[0] > 0xFF00) { SCSP->TimCnt[0] = 0xFFFF; SCSP->udata.data[0x20/2]|=0x40; } SCSP->udata.data[0x18/2]&=0xff00; SCSP->udata.data[0x18/2]|=SCSP->TimCnt[0]>>8; } if(SCSP->TimCnt[1]<=0xff00) { SCSP->TimCnt[1] += ticks << (8-((SCSP->udata.data[0x1a/2]>>8)&0x7)); if (SCSP->TimCnt[1] > 0xFF00) { SCSP->TimCnt[1] = 0xFFFF; SCSP->udata.data[0x20/2]|=0x80; } SCSP->udata.data[0x1a/2]&=0xff00; SCSP->udata.data[0x1a/2]|=SCSP->TimCnt[1]>>8; } if(SCSP->TimCnt[2]<=0xff00) { SCSP->TimCnt[2] += ticks << (8-((SCSP->udata.data[0x1c/2]>>8)&0x7)); if (SCSP->TimCnt[2] > 0xFF00) { SCSP->TimCnt[2] = 0xFFFF; SCSP->udata.data[0x20/2]|=0x100; } SCSP->udata.data[0x1c/2]&=0xff00; SCSP->udata.data[0x1c/2]|=SCSP->TimCnt[2]>>8; } } static INLINE INT32 SCSP_UpdateSlot(struct _SCSP *SCSP, struct _SLOT *slot) { INT32 sample; int step=slot->step; UINT32 addr1,addr2,addr_select; // current and next sample addresses UINT32 *addr[2] = {&addr1, &addr2}; // used for linear interpolation UINT32 *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)}; // if(SSCTL(slot)!=0) //no FM or noise yet return 0; if(PLFOS(slot)!=0) { step=step*PLFO_Step(&(slot->PLFO)); step>>=SHIFT; } if(PCM8B(slot)) { addr1=slot->cur_addr>>SHIFT; addr2=slot->nxt_addr>>SHIFT; } else { addr1=(slot->cur_addr>>(SHIFT-1))&0x7fffe; addr2=(slot->nxt_addr>>(SHIFT-1))&0x7fffe; } if(MDL(slot)!=0 || MDXSL(slot)!=0 || MDYSL(slot)!=0) { INT32 smp=(SCSP->RINGBUF[(SCSP->BUFPTR+MDXSL(slot))&63]+SCSP->RINGBUF[(SCSP->BUFPTR+MDYSL(slot))&63])/2; smp<<=0xA; // associate cycle with 1024 smp>>=0x1A-MDL(slot); // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF) if(!PCM8B(slot)) smp<<=1; addr1+=smp; addr2+=smp; } if(PCM8B(slot)) //8 bit signed { INT8 *p1=(signed char *) (SCSP->SCSPRAM+(((SA(slot)+addr1)^1)&0x7FFFF)); INT8 *p2=(signed char *) (SCSP->SCSPRAM+(((SA(slot)+addr2)^1)&0x7FFFF)); //sample=(p[0])<<8; INT32 s; INT32 fpart=slot->cur_addr&((1<>SHIFT); } else //16 bit signed (endianness?) { INT16 *p1=(signed short *) (SCSP->SCSPRAM+((SA(slot)+addr1)&0x7FFFE)); INT16 *p2=(signed short *) (SCSP->SCSPRAM+((SA(slot)+addr2)&0x7FFFE)); //sample=LE16(p[0]); INT32 s; INT32 fpart=slot->cur_addr&((1<>SHIFT); } if(SBCTL(slot)&0x1) sample ^= 0x7FFF; if(SBCTL(slot)&0x2) sample = (INT16)(sample^0x8000); if(slot->Backwards) slot->cur_addr-=step; else slot->cur_addr+=step; slot->nxt_addr=slot->cur_addr+(1<cur_addr>>SHIFT; addr2=slot->nxt_addr>>SHIFT; if(addr1>=LSA(slot) && !(slot->Backwards)) { if(LPSLNK(slot) && slot->EG.state==ATTACK) slot->EG.state = DECAY1; } for (addr_select=0;addr_select<2;addr_select++) { INT32 rem_addr; switch(LPCTL(slot)) { case 0: //no loop if(*addr[addr_select]>=LSA(slot) && *addr[addr_select]>=LEA(slot)) { //slot->active=0; SCSP_StopSlot(slot,0); } break; case 1: //normal loop if(*addr[addr_select]>=LEA(slot)) { rem_addr = *slot_addr[addr_select] - (LEA(slot)<=LSA(slot)) && !(slot->Backwards)) { rem_addr = *slot_addr[addr_select] - (LSA(slot)<Backwards=1; } else if((*addr[addr_select]Backwards) { rem_addr = (LSA(slot)<=LEA(slot)) //reached end, reverse till start { rem_addr = *slot_addr[addr_select] - (LEA(slot)<Backwards=1; } else if((*addr[addr_select]Backwards)//reached start or negative { rem_addr = (LSA(slot)<Backwards=0; } break; } } if(ALFOS(slot)!=0) { sample=sample*ALFO_Step(&(slot->ALFO)); sample>>=SHIFT; } if(slot->EG.state==ATTACK) sample=(sample*EG_Update(slot))>>SHIFT; else sample=(sample*EG_TABLE[EG_Update(slot)>>(SHIFT-10)])>>SHIFT; if(!STWINH(slot)) { unsigned short Enc=((TL(slot))<<0x0)|(0x7<<0xd); *SCSP->RBUFDST=(sample*SCSP->LPANTABLE[Enc])>>(SHIFT+1); } return sample; } static void SCSP_DoMasterSamples(struct _SCSP *SCSP, int nsamples) { INT16 *bufr,*bufl; int sl, s, i; bufr=SCSP->bufferr; bufl=SCSP->bufferl; for(s=0;sRBUFDST=SCSP->DELAYBUF+SCSP->DELAYPTR; #else SCSP->RBUFDST=SCSP->RINGBUF+SCSP->BUFPTR; #endif if(SCSP->Slots[sl].active) { struct _SLOT *slot=SCSP->Slots+sl; unsigned short Enc; signed int sample; sample=SCSP_UpdateSlot(SCSP, slot); Enc=((TL(slot))<<0x0)|((IMXL(slot))<<0xd); SCSPDSP_SetSample(&SCSP->DSP,(sample*SCSP->LPANTABLE[Enc])>>(SHIFT-2),ISEL(slot),IMXL(slot)); Enc=((TL(slot))<<0x0)|((DIPAN(slot))<<0x8)|((DISDL(slot))<<0xd); { smpl+=(sample*SCSP->LPANTABLE[Enc])>>SHIFT; smpr+=(sample*SCSP->RPANTABLE[Enc])>>SHIFT; } } #if FM_DELAY SCSP->RINGBUF[(SCSP->BUFPTR+64-(FM_DELAY-1))&63] = SCSP->DELAYBUF[(SCSP->DELAYPTR+FM_DELAY-(FM_DELAY-1))%FM_DELAY]; #endif ++SCSP->BUFPTR; SCSP->BUFPTR&=63; #if FM_DELAY ++SCSP->DELAYPTR; if(SCSP->DELAYPTR>FM_DELAY-1) SCSP->DELAYPTR=0; #endif } SCSPDSP_Step(&SCSP->DSP); for(i=0;i<16;++i) { struct _SLOT *slot=SCSP->Slots+i; if(EFSDL(slot)) { unsigned short Enc=((EFPAN(slot))<<0x8)|((EFSDL(slot))<<0xd); smpl+=(SCSP->DSP.EFREG[i]*SCSP->LPANTABLE[Enc])>>SHIFT; smpr+=(SCSP->DSP.EFREG[i]*SCSP->RPANTABLE[Enc])>>SHIFT; } } *bufl++ = ICLIP16(smpl>>2); *bufr++ = ICLIP16(smpr>>2); SCSP_TimersAddTicks(SCSP, 1); CheckPendingIRQ(SCSP); } } static void dma_scsp(struct _SCSP *SCSP) { static UINT16 tmp_dma[3], *scsp_regs; scsp_regs = (UINT16 *)SCSP->udata.datab; printf("SCSP: DMA transfer START\n" "DMEA: %04x DRGA: %04x DTLG: %04x\n" "DGATE: %d DDIR: %d\n",SCSP->scsp_dmea,SCSP->scsp_drga,SCSP->scsp_dtlg,scsp_dgate ? 1 : 0,scsp_ddir ? 1 : 0); /* Copy the dma values in a temp storage for resuming later * * (DMA *can't* overwrite his parameters). */ if(!(scsp_ddir)) { tmp_dma[0] = scsp_regs[0x12/2]; tmp_dma[1] = scsp_regs[0x14/2]; tmp_dma[2] = scsp_regs[0x16/2]; } if(scsp_ddir) { for(;SCSP->scsp_dtlg > 0;SCSP->scsp_dtlg-=2) { // program_write_word(SCSP->scsp_dmea, program_read_word(0x100000|SCSP->scsp_drga)); SCSP->scsp_dmea+=2; SCSP->scsp_drga+=2; } } else { for(;SCSP->scsp_dtlg > 0;SCSP->scsp_dtlg-=2) { // program_write_word(0x100000|SCSP->scsp_drga,program_read_word(SCSP->scsp_dmea)); SCSP->scsp_dmea+=2; SCSP->scsp_drga+=2; } } /*Resume the values*/ if(!(scsp_ddir)) { scsp_regs[0x12/2] = tmp_dma[0]; scsp_regs[0x14/2] = tmp_dma[1]; scsp_regs[0x16/2] = tmp_dma[2]; } /*Job done,request a dma end irq*/ // if(scsp_regs[0x1e/2] & 0x10) // cpunum_set_input_line(2,dma_transfer_end,HOLD_LINE); } int SCSP_IRQCB(void *param) { CheckPendingIRQ(param); return -1; } void SCSP_Update(void *param, INT16 **inputs, INT16 **buf, int samples) { struct _SCSP *SCSP = param; SCSP->bufferl = buf[0]; SCSP->bufferr = buf[1]; SCSP->length = samples; SCSP_DoMasterSamples(SCSP, samples); } void *SCSP_Start(const void *config) { const struct SCSPinterface *intf; struct _SCSP *SCSP; SCSP = malloc(sizeof(*SCSP)); memset(SCSP, 0, sizeof(*SCSP)); intf = config; // init the emulation SCSP_Init(SCSP, intf); // set up the IRQ callbacks { SCSP->Int68kCB = intf->irq_callback[0]; // SCSP->stream = stream_create(0, 2, 44100, SCSP, SCSP_Update); } return SCSP; } void SCSP_Exit (void *param) { if (param) { struct _SCSP *SCSP = param; if (SCSP->buffertmpl) { free (SCSP->buffertmpl); } if (SCSP->buffertmpr) { free (SCSP->buffertmpr); } free (param); } } void SCSP_set_ram_base(struct _SCSP *SCSP, int which, void *base) { if (SCSP) { SCSP->SCSPRAM = base; SCSP->DSP.SCSPRAM = base; } } READ16_HANDLER( SCSP_0_r ) { return SCSP_r16(param, offset*2); } WRITE16_HANDLER( SCSP_0_w ) { struct _SCSP *SCSP = param; UINT16 tmp, *scsp_regs; tmp = SCSP_r16(SCSP, offset*2); COMBINE_DATA(&tmp); SCSP_w16(SCSP,offset*2, tmp); scsp_regs = (UINT16 *)SCSP->udata.datab; switch(offset*2) { // check DMA case 0x412: /*DMEA [15:1]*/ /*Sound memory address*/ SCSP->scsp_dmea = (((scsp_regs[0x14/2] & 0xf000)>>12)*0x10000) | (scsp_regs[0x12/2] & 0xfffe); break; case 0x414: /*DMEA [19:16]*/ SCSP->scsp_dmea = (((scsp_regs[0x14/2] & 0xf000)>>12)*0x10000) | (scsp_regs[0x12/2] & 0xfffe); /*DRGA [11:1]*/ /*Register memory address*/ SCSP->scsp_drga = scsp_regs[0x14/2] & 0x0ffe; break; case 0x416: /*DGATE[14]*/ /*DDIR[13]*/ /*if 0 sound_mem -> reg*/ /*if 1 sound_mem <- reg*/ /*DEXE[12]*/ /*starting bit*/ /*DTLG[11:1]*/ /*size of transfer*/ SCSP->scsp_dtlg = scsp_regs[0x16/2] & 0x0ffe; if(scsp_dexe) { dma_scsp(SCSP); scsp_regs[0x16/2]^=0x1000;//disable starting bit } break; //check main cpu IRQ case 0x42a: #if 0 extern UINT32* stv_scu; if(stv_scu && !(stv_scu[40] & 0x40) /*&& scsp_regs[0x42c/2] & 0x20*/)/*Main CPU allow sound irq*/ { cpunum_set_input_line_and_vector(0, 9, HOLD_LINE , 0x46); logerror("SCSP: Main CPU interrupt\n"); } #endif break; case 0x42c: break; case 0x42e: break; } } WRITE16_HANDLER( SCSP_MidiIn ) { struct _SCSP *SCSP = param; SCSP->MidiStack[SCSP->MidiW++]=data; SCSP->MidiW &= 15; } READ16_HANDLER( SCSP_MidiOutR ) { struct _SCSP *SCSP = param; unsigned char val; val=SCSP->MidiStack[SCSP->MidiR++]; SCSP->MidiR&=7; return val; }