summaryrefslogtreecommitdiff
path: root/plugins/ffap/ffap.c
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ffap/ffap.c')
-rw-r--r--plugins/ffap/ffap.c1571
1 files changed, 1571 insertions, 0 deletions
diff --git a/plugins/ffap/ffap.c b/plugins/ffap/ffap.c
new file mode 100644
index 00000000..323f250a
--- /dev/null
+++ b/plugins/ffap/ffap.c
@@ -0,0 +1,1571 @@
+/*
+ DeaDBeeF - ultimate music player for GNU/Linux systems with X11
+ Copyright (C) 2009 Alexey Yakovenko
+ based on apedec from FFMpeg Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
+ based upon libdemac from Dave Chapman.
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ as published by the Free Software Foundation; either version 2
+ of the License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+*/
+#include <stdio.h>
+#include <string.h>
+#include <limits.h>
+#include <stdlib.h>
+#include <assert.h>
+#include "../../deadbeef.h"
+
+#define ENABLE_DEBUG 1
+
+static DB_decoder_t plugin;
+static DB_functions_t *deadbeef;
+
+float timestart;
+float timeend;
+
+#define PACKET_MAX_SIZE 2000000
+uint8_t packet_data[PACKET_MAX_SIZE];
+int packet_size;
+int packet_left;
+
+#define min(x,y) ((x)<(y)?(x):(y))
+#define max(x,y) ((x)>(y)?(x):(y))
+
+static inline unsigned int bytestream_get_buffer(const uint8_t **b, uint8_t *dst, unsigned int size)
+{
+ memcpy(dst, *b, size);
+ (*b) += size;
+ return size;
+}
+
+static inline void bytestream_put_buffer(uint8_t **b, const uint8_t *src, unsigned int size)
+{
+ memcpy(*b, src, size);
+ (*b) += size;
+}
+
+static inline uint8_t bytestream_get_byte (const uint8_t **ptr) {
+ uint8_t v = *(*ptr);
+ (*ptr)++;
+ return v;
+}
+
+static inline uint32_t bytestream_get_be32 (const uint8_t **ptr) {
+ const uint8_t *tmp = *ptr;
+ uint32_t x = tmp[3] | (tmp[2] << 8) | (tmp[1] << 16) | (tmp[0] << 24);
+ (*ptr) += 4;
+ return x;
+}
+
+
+#define BLOCKS_PER_LOOP 4608
+#define MAX_CHANNELS 2
+#define MAX_BYTESPERSAMPLE 3
+
+#define APE_FRAMECODE_MONO_SILENCE 1
+#define APE_FRAMECODE_STEREO_SILENCE 3
+#define APE_FRAMECODE_PSEUDO_STEREO 4
+
+#define HISTORY_SIZE 512
+#define PREDICTOR_ORDER 8
+/** Total size of all predictor histories */
+#define PREDICTOR_SIZE 50
+
+#define YDELAYA (18 + PREDICTOR_ORDER*4)
+#define YDELAYB (18 + PREDICTOR_ORDER*3)
+#define XDELAYA (18 + PREDICTOR_ORDER*2)
+#define XDELAYB (18 + PREDICTOR_ORDER)
+
+#define YADAPTCOEFFSA 18
+#define XADAPTCOEFFSA 14
+#define YADAPTCOEFFSB 10
+#define XADAPTCOEFFSB 5
+
+/**
+ * Possible compression levels
+ * @{
+ */
+enum APECompressionLevel {
+ COMPRESSION_LEVEL_FAST = 1000,
+ COMPRESSION_LEVEL_NORMAL = 2000,
+ COMPRESSION_LEVEL_HIGH = 3000,
+ COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
+ COMPRESSION_LEVEL_INSANE = 5000
+};
+/** @} */
+
+#define APE_FILTER_LEVELS 3
+
+/** Filter orders depending on compression level */
+static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
+ { 0, 0, 0 },
+ { 16, 0, 0 },
+ { 64, 0, 0 },
+ { 32, 256, 0 },
+ { 16, 256, 1280 }
+};
+
+/** Filter fraction bits depending on compression level */
+static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
+ { 0, 0, 0 },
+ { 11, 0, 0 },
+ { 11, 0, 0 },
+ { 10, 13, 0 },
+ { 11, 13, 15 }
+};
+
+
+/** Filters applied to the decoded data */
+typedef struct APEFilter {
+ int16_t *coeffs; ///< actual coefficients used in filtering
+ int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
+ int16_t *historybuffer; ///< filter memory
+ int16_t *delay; ///< filtered values
+
+ int avg;
+} APEFilter;
+
+typedef struct APERice {
+ uint32_t k;
+ uint32_t ksum;
+} APERice;
+
+typedef struct APERangecoder {
+ uint32_t low; ///< low end of interval
+ uint32_t range; ///< length of interval
+ uint32_t help; ///< bytes_to_follow resp. intermediate value
+ unsigned int buffer; ///< buffer for input/output
+} APERangecoder;
+
+/** Filter histories */
+typedef struct APEPredictor {
+ int32_t *buf;
+
+ int32_t lastA[2];
+
+ int32_t filterA[2];
+ int32_t filterB[2];
+
+ int32_t coeffsA[2][4]; ///< adaption coefficients
+ int32_t coeffsB[2][5]; ///< adaption coefficients
+ int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
+} APEPredictor;
+
+/* The earliest and latest file formats supported by this library */
+#define APE_MIN_VERSION 3950
+#define APE_MAX_VERSION 3990
+
+#define MAC_FORMAT_FLAG_8_BIT 1 // is 8-bit [OBSOLETE]
+#define MAC_FORMAT_FLAG_CRC 2 // uses the new CRC32 error detection [OBSOLETE]
+#define MAC_FORMAT_FLAG_HAS_PEAK_LEVEL 4 // uint32 nPeakLevel after the header [OBSOLETE]
+#define MAC_FORMAT_FLAG_24_BIT 8 // is 24-bit [OBSOLETE]
+#define MAC_FORMAT_FLAG_HAS_SEEK_ELEMENTS 16 // has the number of seek elements after the peak level
+#define MAC_FORMAT_FLAG_CREATE_WAV_HEADER 32 // create the wave header on decompression (not stored)
+
+#define MAC_SUBFRAME_SIZE 4608
+
+#define APE_EXTRADATA_SIZE 6
+
+typedef struct {
+ int64_t pos;
+ int nblocks;
+ int size;
+ int skip;
+} APEFrame;
+
+/** Decoder context */
+typedef struct APEContext {
+ /* Derived fields */
+ uint32_t junklength;
+ uint32_t firstframe;
+ uint32_t totalsamples;
+ int currentframe;
+ APEFrame *frames;
+
+ /* Info from Descriptor Block */
+ char magic[4];
+ int16_t fileversion;
+ int16_t padding1;
+ uint32_t descriptorlength;
+ uint32_t headerlength;
+ uint32_t seektablelength;
+ uint32_t wavheaderlength;
+ uint32_t audiodatalength;
+ uint32_t audiodatalength_high;
+ uint32_t wavtaillength;
+ uint8_t md5[16];
+
+ /* Info from Header Block */
+ uint16_t compressiontype;
+ uint16_t formatflags;
+ uint32_t blocksperframe;
+ uint32_t finalframeblocks;
+ uint32_t totalframes;
+ uint16_t bps;
+ uint16_t channels;
+ uint32_t samplerate;
+ int samples; ///< samples left to decode in current frame
+
+ /* Seektable */
+ uint32_t *seektable;
+
+ int fset; ///< which filter set to use (calculated from compression level)
+ int flags; ///< global decoder flags
+
+ uint32_t CRC; ///< frame CRC
+ int frameflags; ///< frame flags
+ int currentframeblocks; ///< samples (per channel) in current frame
+ int blocksdecoded; ///< count of decoded samples in current frame
+ APEPredictor predictor; ///< predictor used for final reconstruction
+
+ int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel
+ int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel
+
+ int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
+
+ APERangecoder rc; ///< rangecoder used to decode actual values
+ APERice riceX; ///< rice code parameters for the second channel
+ APERice riceY; ///< rice code parameters for the first channel
+ APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
+
+ uint8_t *data; ///< current frame data
+ uint8_t *data_end; ///< frame data end
+ const uint8_t *ptr; ///< current position in frame data
+ const uint8_t *last_ptr; ///< position where last 4608-sample block ended
+
+ int error;
+} APEContext;
+
+APEContext ape_ctx;
+FILE *fp;
+
+inline static int
+read_uint16(FILE *fp, uint16_t* x)
+{
+ unsigned char tmp[2];
+ int n;
+
+ n = fread(tmp, 1, 2, fp);
+
+ if (n != 2)
+ return -1;
+
+ *x = tmp[0] | (tmp[1] << 8);
+
+ return 0;
+}
+
+
+inline static int
+read_int16(FILE *fp, int16_t* x)
+{
+ return read_uint16(fp, (uint16_t*)x);
+}
+
+inline static int
+read_uint32(FILE *fp, uint32_t* x)
+{
+ unsigned char tmp[4];
+ int n;
+
+ n = fread(tmp, 1, 4, fp);
+
+ if (n != 4)
+ return -1;
+
+ *x = tmp[0] | (tmp[1] << 8) | (tmp[2] << 16) | (tmp[3] << 24);
+
+ return 0;
+}
+
+static void ape_dumpinfo(APEContext * ape_ctx)
+{
+#if ENABLE_DEBUG
+ int i;
+
+ fprintf (stderr, "Descriptor Block:\n\n");
+ fprintf (stderr, "magic = \"%c%c%c%c\"\n", ape_ctx->magic[0], ape_ctx->magic[1], ape_ctx->magic[2], ape_ctx->magic[3]);
+ fprintf (stderr, "fileversion = %d\n", ape_ctx->fileversion);
+ fprintf (stderr, "descriptorlength = %d\n", ape_ctx->descriptorlength);
+ fprintf (stderr, "headerlength = %d\n", ape_ctx->headerlength);
+ fprintf (stderr, "seektablelength = %d\n", ape_ctx->seektablelength);
+ fprintf (stderr, "wavheaderlength = %d\n", ape_ctx->wavheaderlength);
+ fprintf (stderr, "audiodatalength = %d\n", ape_ctx->audiodatalength);
+ fprintf (stderr, "audiodatalength_high = %d\n", ape_ctx->audiodatalength_high);
+ fprintf (stderr, "wavtaillength = %d\n", ape_ctx->wavtaillength);
+ fprintf (stderr, "md5 = ");
+ for (i = 0; i < 16; i++)
+ fprintf (stderr, "%02x", ape_ctx->md5[i]);
+ fprintf (stderr, "\n");
+
+ fprintf (stderr, "\nHeader Block:\n\n");
+
+ fprintf (stderr, "compressiontype = %d\n", ape_ctx->compressiontype);
+ fprintf (stderr, "formatflags = %d\n", ape_ctx->formatflags);
+ fprintf (stderr, "blocksperframe = %d\n", ape_ctx->blocksperframe);
+ fprintf (stderr, "finalframeblocks = %d\n", ape_ctx->finalframeblocks);
+ fprintf (stderr, "totalframes = %d\n", ape_ctx->totalframes);
+ fprintf (stderr, "bps = %d\n", ape_ctx->bps);
+ fprintf (stderr, "channels = %d\n", ape_ctx->channels);
+ fprintf (stderr, "samplerate = %d\n", ape_ctx->samplerate);
+
+ fprintf (stderr, "\nSeektable\n\n");
+ if ((ape_ctx->seektablelength / sizeof(uint32_t)) != ape_ctx->totalframes) {
+ fprintf (stderr, "No seektable\n");
+ } else {
+ for (i = 0; i < ape_ctx->seektablelength / sizeof(uint32_t); i++) {
+ if (i < ape_ctx->totalframes - 1) {
+ fprintf (stderr, "%8d %d (%d bytes)\n", i, ape_ctx->seektable[i], ape_ctx->seektable[i + 1] - ape_ctx->seektable[i]);
+ } else {
+ fprintf (stderr, "%8d %d\n", i, ape_ctx->seektable[i]);
+ }
+ }
+ }
+
+ fprintf (stderr, "\nFrames\n\n");
+ for (i = 0; i < ape_ctx->totalframes; i++)
+ fprintf (stderr, "%8d %8lld %8d (%d samples)\n", i, ape_ctx->frames[i].pos, ape_ctx->frames[i].size, ape_ctx->frames[i].nblocks);
+
+ fprintf (stderr, "\nCalculated information:\n\n");
+ fprintf (stderr, "junklength = %d\n", ape_ctx->junklength);
+ fprintf (stderr, "firstframe = %d\n", ape_ctx->firstframe);
+ fprintf (stderr, "totalsamples = %d\n", ape_ctx->totalsamples);
+#endif
+}
+
+static int
+ape_read_header(FILE *fp, APEContext *ape)
+{
+ int i;
+ int total_blocks;
+
+ /* TODO: Skip any leading junk such as id3v2 tags */
+ ape->junklength = 0;
+
+ if (fread (ape->magic, 1, 4, fp) != 4) {
+ return -1;
+ }
+ if (memcmp (ape->magic, "MAC ", 4))
+ return -1;
+
+ if (read_uint16 (fp, &ape->fileversion) < 0) {
+ return -1;
+ }
+
+ if (ape->fileversion < APE_MIN_VERSION || ape->fileversion > APE_MAX_VERSION) {
+ fprintf (stderr, "Unsupported file version - %d.%02d\n", ape->fileversion / 1000, (ape->fileversion % 1000) / 10);
+ return -1;
+ }
+
+ if (ape->fileversion >= 3980) {
+ if (read_uint16 (fp, &ape->padding1) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->descriptorlength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->headerlength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->seektablelength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->wavheaderlength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->audiodatalength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->audiodatalength_high) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->wavtaillength) < 0) {
+ return -1;
+ }
+ if (fread (ape->md5, 1, 16, fp) != 16) {
+ return -1;
+ }
+
+ /* Skip any unknown bytes at the end of the descriptor.
+ This is for future compatibility */
+ if (ape->descriptorlength > 52) {
+ fseek (fp, ape->descriptorlength - 52, SEEK_CUR);
+ }
+
+ /* Read header data */
+ if (read_uint16 (fp, &ape->compressiontype) < 0) {
+ return -1;
+ }
+ if (read_uint16 (fp, &ape->formatflags) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->blocksperframe) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->finalframeblocks) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, & ape->totalframes) < 0) {
+ return -1;
+ }
+ if (read_uint16 (fp, &ape->bps) < 0) {
+ return -1;
+ }
+ if (read_uint16 (fp, &ape->channels) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->samplerate) < 0) {
+ return -1;
+ }
+ } else {
+ ape->descriptorlength = 0;
+ ape->headerlength = 32;
+
+ if (read_uint16 (fp, &ape->compressiontype) < 0) {
+ return -1;
+ }
+ if (read_uint16 (fp, &ape->formatflags) < 0) {
+ return -1;
+ }
+ if (read_uint16 (fp, &ape->channels) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->samplerate) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->wavheaderlength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->wavtaillength) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->totalframes) < 0) {
+ return -1;
+ }
+ if (read_uint32 (fp, &ape->finalframeblocks) < 0) {
+ return -1;
+ }
+
+ if (ape->formatflags & MAC_FORMAT_FLAG_HAS_PEAK_LEVEL) {
+ fseek(fp, 4, SEEK_CUR); /* Skip the peak level */
+ ape->headerlength += 4;
+ }
+
+ if (ape->formatflags & MAC_FORMAT_FLAG_HAS_SEEK_ELEMENTS) {
+ if (read_uint32 (fp, &ape->seektablelength) < 0) {
+ return -1;
+ };
+ ape->headerlength += 4;
+ ape->seektablelength *= sizeof(int32_t);
+ } else
+ ape->seektablelength = ape->totalframes * sizeof(int32_t);
+
+ if (ape->formatflags & MAC_FORMAT_FLAG_8_BIT)
+ ape->bps = 8;
+ else if (ape->formatflags & MAC_FORMAT_FLAG_24_BIT)
+ ape->bps = 24;
+ else
+ ape->bps = 16;
+
+ if (ape->fileversion >= 3950)
+ ape->blocksperframe = 73728 * 4;
+ else if (ape->fileversion >= 3900 || (ape->fileversion >= 3800 && ape->compressiontype >= 4000))
+ ape->blocksperframe = 73728;
+ else
+ ape->blocksperframe = 9216;
+
+ /* Skip any stored wav header */
+ if (!(ape->formatflags & MAC_FORMAT_FLAG_CREATE_WAV_HEADER)) {
+ fseek (fp, ape->wavheaderlength, SEEK_CUR);
+ }
+ }
+
+ if(ape->totalframes > UINT_MAX / sizeof(APEFrame)){
+ fprintf (stderr, "Too many frames: %d\n", ape->totalframes);
+ return -1;
+ }
+ ape->frames = malloc(ape->totalframes * sizeof(APEFrame));
+ if(!ape->frames)
+ return -1;
+ ape->firstframe = ape->junklength + ape->descriptorlength + ape->headerlength + ape->seektablelength + ape->wavheaderlength;
+ ape->currentframe = 0;
+
+
+ ape->totalsamples = ape->finalframeblocks;
+ if (ape->totalframes > 1)
+ ape->totalsamples += ape->blocksperframe * (ape->totalframes - 1);
+
+ if (ape->seektablelength > 0) {
+ ape->seektable = malloc(ape->seektablelength);
+ for (i = 0; i < ape->seektablelength / sizeof(uint32_t); i++) {
+ if (read_uint32 (fp, &ape->seektable[i]) < 0) {
+ return -1;
+ }
+ }
+ }
+
+ ape->frames[0].pos = ape->firstframe;
+ ape->frames[0].nblocks = ape->blocksperframe;
+ ape->frames[0].skip = 0;
+ for (i = 1; i < ape->totalframes; i++) {
+ ape->frames[i].pos = ape->seektable[i]; //ape->frames[i-1].pos + ape->blocksperframe;
+ ape->frames[i].nblocks = ape->blocksperframe;
+ ape->frames[i - 1].size = ape->frames[i].pos - ape->frames[i - 1].pos;
+ ape->frames[i].skip = (ape->frames[i].pos - ape->frames[0].pos) & 3;
+ }
+ ape->frames[ape->totalframes - 1].size = ape->finalframeblocks * 4;
+ ape->frames[ape->totalframes - 1].nblocks = ape->finalframeblocks;
+
+ for (i = 0; i < ape->totalframes; i++) {
+ if(ape->frames[i].skip){
+ ape->frames[i].pos -= ape->frames[i].skip;
+ ape->frames[i].size += ape->frames[i].skip;
+ }
+ ape->frames[i].size = (ape->frames[i].size + 3) & ~3;
+ }
+
+
+ ape_dumpinfo(ape);
+
+ fprintf (stderr, "Decoding file - v%d.%02d, compression level %d\n", ape->fileversion / 1000, (ape->fileversion % 1000) / 10, ape->compressiontype);
+
+ total_blocks = (ape->totalframes == 0) ? 0 : ((ape->totalframes - 1) * ape->blocksperframe) + ape->finalframeblocks;
+
+ return 0;
+}
+
+# define AV_WB32(p, d) do { \
+ ((uint8_t*)(p))[3] = (d); \
+ ((uint8_t*)(p))[2] = (d)>>8; \
+ ((uint8_t*)(p))[1] = (d)>>16; \
+ ((uint8_t*)(p))[0] = (d)>>24; \
+ } while(0)
+
+#define AV_WL32(p, v) AV_WB32(p, bswap_32(v))
+
+static inline const uint32_t bswap_32(uint32_t x)
+{
+ x= ((x<<8)&0xFF00FF00) | ((x>>8)&0x00FF00FF);
+ x= (x>>16) | (x<<16);
+ return x;
+}
+
+static int ape_read_packet(FILE *fp, APEContext *ape_ctx)
+{
+ int ret;
+ int nblocks;
+ APEContext *ape = ape_ctx;
+ uint32_t extra_size = 8;
+
+ if (feof(fp))
+ return -1;
+ if (ape->currentframe > ape->totalframes)
+ return -1;
+
+ fseek (fp, ape->frames[ape->currentframe].pos, SEEK_SET);
+
+ /* Calculate how many blocks there are in this frame */
+ if (ape->currentframe == (ape->totalframes - 1))
+ nblocks = ape->finalframeblocks;
+ else
+ nblocks = ape->blocksperframe;
+
+ if (PACKET_MAX_SIZE < ape->frames[ape->currentframe].size + extra_size) {
+ return -1;
+ }
+ packet_size = ape->frames[ape->currentframe].size + extra_size;
+
+ AV_WL32(packet_data , nblocks);
+ AV_WL32(packet_data + 4, ape->frames[ape->currentframe].skip);
+ ret = fread (packet_data+extra_size, 1, ape->frames[ape->currentframe].size, fp);
+
+ /* note: we need to modify the packet size here to handle the last
+ packet */
+ packet_size = ret + extra_size;
+
+ ape->currentframe++;
+
+ return 0;
+}
+
+static void
+ffap_free (void)
+{
+ int i;
+ if (ape_ctx.frames) {
+ free (ape_ctx.frames);
+ ape_ctx.frames = NULL;
+ }
+ if (ape_ctx.seektable) {
+ free (ape_ctx.seektable);
+ ape_ctx.seektable = NULL;
+ }
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (ape_ctx.filterbuf) {
+ free (ape_ctx.filterbuf[i]);
+ }
+ }
+
+}
+
+#if 0
+static int ape_read_seek(AVFormatContext *s, int stream_index, int64_t timestamp, int flags)
+{
+ AVStream *st = s->streams[stream_index];
+ APEContext *ape = s->priv_data;
+ int index = av_index_search_timestamp(st, timestamp, flags);
+
+ if (index < 0)
+ return -1;
+
+ ape->currentframe = index;
+ return 0;
+}
+#endif
+
+static int
+ffap_init(DB_playItem_t *it)
+{
+ fp = fopen (it->fname, "rb");
+ if (!fp) {
+ return -1;
+ }
+ memset (&ape_ctx, 0, sizeof (ape_ctx));
+ ape_read_header (fp, &ape_ctx);
+ int i;
+
+ if (ape_ctx.bps != 16) {
+ fprintf (stderr, "Only 16-bit samples are supported\n");
+ return -1;
+ }
+ if (ape_ctx.channels > 2) {
+ fprintf (stderr, "Only mono and stereo is supported\n");
+ return -1;
+ }
+
+ fprintf (stderr, "Compression Level: %d - Flags: %d\n", ape_ctx.compressiontype, ape_ctx.formatflags);
+ if (ape_ctx.compressiontype % 1000 || ape_ctx.compressiontype > COMPRESSION_LEVEL_INSANE) {
+ fprintf (stderr, "Incorrect compression level %d\n", ape_ctx.compressiontype);
+ return -1;
+ }
+ ape_ctx.fset = ape_ctx.compressiontype / 1000 - 1;
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (!ape_filter_orders[ape_ctx.fset][i])
+ break;
+ ape_ctx.filterbuf[i] = malloc((ape_filter_orders[ape_ctx.fset][i] * 3 + HISTORY_SIZE) * 4);
+ }
+
+ plugin.info.bps = ape_ctx.bps;
+ plugin.info.samplerate = ape_ctx.samplerate;
+ plugin.info.channels = ape_ctx.channels;
+ plugin.info.readpos = 0;
+ if (it->timeend > 0) {
+ timestart = it->timestart;
+ timeend = it->timeend;
+ plugin.seek (0);
+ }
+ else {
+ timestart = 0;
+ timeend = it->duration;
+ }
+ return 0;
+}
+
+/**
+ * @defgroup rangecoder APE range decoder
+ * @{
+ */
+
+#define CODE_BITS 32
+#define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
+#define SHIFT_BITS (CODE_BITS - 9)
+#define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
+#define BOTTOM_VALUE (TOP_VALUE >> 8)
+
+/** Start the decoder */
+static inline void range_start_decoding(APEContext * ctx)
+{
+ ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
+ ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
+ ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
+}
+
+/** Perform normalization */
+static inline void range_dec_normalize(APEContext * ctx)
+{
+ while (ctx->rc.range <= BOTTOM_VALUE) {
+ ctx->rc.buffer <<= 8;
+ if(ctx->ptr < ctx->data_end)
+ ctx->rc.buffer += *ctx->ptr;
+ ctx->ptr++;
+ ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
+ ctx->rc.range <<= 8;
+ }
+}
+
+/**
+ * Calculate culmulative frequency for next symbol. Does NO update!
+ * @param ctx decoder context
+ * @param tot_f is the total frequency or (code_value)1<<shift
+ * @return the culmulative frequency
+ */
+static inline int range_decode_culfreq(APEContext * ctx, int tot_f)
+{
+ range_dec_normalize(ctx);
+ ctx->rc.help = ctx->rc.range / tot_f;
+ return ctx->rc.low / ctx->rc.help;
+}
+
+/**
+ * Decode value with given size in bits
+ * @param ctx decoder context
+ * @param shift number of bits to decode
+ */
+static inline int range_decode_culshift(APEContext * ctx, int shift)
+{
+ range_dec_normalize(ctx);
+ ctx->rc.help = ctx->rc.range >> shift;
+ return ctx->rc.low / ctx->rc.help;
+}
+
+
+/**
+ * Update decoding state
+ * @param ctx decoder context
+ * @param sy_f the interval length (frequency of the symbol)
+ * @param lt_f the lower end (frequency sum of < symbols)
+ */
+static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f)
+{
+ ctx->rc.low -= ctx->rc.help * lt_f;
+ ctx->rc.range = ctx->rc.help * sy_f;
+}
+
+/** Decode n bits (n <= 16) without modelling */
+static inline int range_decode_bits(APEContext * ctx, int n)
+{
+ int sym = range_decode_culshift(ctx, n);
+ range_decode_update(ctx, 1, sym);
+ return sym;
+}
+
+
+#define MODEL_ELEMENTS 64
+
+/**
+ * Fixed probabilities for symbols in Monkey Audio version 3.97
+ */
+static const uint16_t counts_3970[22] = {
+ 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
+ 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
+ 65450, 65469, 65480, 65487, 65491, 65493,
+};
+
+/**
+ * Probability ranges for symbols in Monkey Audio version 3.97
+ */
+static const uint16_t counts_diff_3970[21] = {
+ 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
+ 1104, 677, 415, 248, 150, 89, 54, 31,
+ 19, 11, 7, 4, 2,
+};
+
+/**
+ * Fixed probabilities for symbols in Monkey Audio version 3.98
+ */
+static const uint16_t counts_3980[22] = {
+ 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
+ 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
+ 65485, 65488, 65490, 65491, 65492, 65493,
+};
+
+/**
+ * Probability ranges for symbols in Monkey Audio version 3.98
+ */
+static const uint16_t counts_diff_3980[21] = {
+ 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
+ 261, 119, 65, 31, 19, 10, 6, 3,
+ 3, 2, 1, 1, 1,
+};
+
+/**
+ * Decode symbol
+ * @param ctx decoder context
+ * @param counts probability range start position
+ * @param counts_diff probability range widths
+ */
+static inline int range_get_symbol(APEContext * ctx,
+ const uint16_t counts[],
+ const uint16_t counts_diff[])
+{
+ int symbol, cf;
+
+ cf = range_decode_culshift(ctx, 16);
+
+ if(cf > 65492){
+ symbol= cf - 65535 + 63;
+ range_decode_update(ctx, 1, cf);
+ if(cf > 65535)
+ ctx->error=1;
+ return symbol;
+ }
+ /* figure out the symbol inefficiently; a binary search would be much better */
+ for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
+
+ range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
+
+ return symbol;
+}
+/** @} */ // group rangecoder
+
+static inline void update_rice(APERice *rice, int x)
+{
+ int lim = rice->k ? (1 << (rice->k + 4)) : 0;
+ rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
+
+ if (rice->ksum < lim)
+ rice->k--;
+ else if (rice->ksum >= (1 << (rice->k + 5)))
+ rice->k++;
+}
+
+static inline int ape_decode_value(APEContext * ctx, APERice *rice)
+{
+ int x, overflow;
+
+ if (ctx->fileversion < 3990) {
+ int tmpk;
+
+ overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
+
+ if (overflow == (MODEL_ELEMENTS - 1)) {
+ tmpk = range_decode_bits(ctx, 5);
+ overflow = 0;
+ } else
+ tmpk = (rice->k < 1) ? 0 : rice->k - 1;
+
+ if (tmpk <= 16)
+ x = range_decode_bits(ctx, tmpk);
+ else {
+ x = range_decode_bits(ctx, 16);
+ x |= (range_decode_bits(ctx, tmpk - 16) << 16);
+ }
+ x += overflow << tmpk;
+ } else {
+ int base, pivot;
+
+ pivot = rice->ksum >> 5;
+ if (pivot == 0)
+ pivot = 1;
+
+ overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
+
+ if (overflow == (MODEL_ELEMENTS - 1)) {
+ overflow = range_decode_bits(ctx, 16) << 16;
+ overflow |= range_decode_bits(ctx, 16);
+ }
+
+ base = range_decode_culfreq(ctx, pivot);
+ range_decode_update(ctx, 1, base);
+
+ x = base + overflow * pivot;
+ }
+
+ update_rice(rice, x);
+
+ /* Convert to signed */
+ if (x & 1)
+ return (x >> 1) + 1;
+ else
+ return -(x >> 1);
+}
+
+static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo)
+{
+ int32_t *decoded0 = ctx->decoded0;
+ int32_t *decoded1 = ctx->decoded1;
+
+ ctx->blocksdecoded = blockstodecode;
+
+ if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
+ /* We are pure silence, just memset the output buffer. */
+ memset(decoded0, 0, blockstodecode * sizeof(int32_t));
+ memset(decoded1, 0, blockstodecode * sizeof(int32_t));
+ } else {
+ while (blockstodecode--) {
+ *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
+ if (stereo)
+ *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
+ }
+ }
+
+ if (ctx->blocksdecoded == ctx->currentframeblocks)
+ range_dec_normalize(ctx); /* normalize to use up all bytes */
+}
+
+static void init_entropy_decoder(APEContext * ctx)
+{
+ /* Read the CRC */
+ ctx->CRC = bytestream_get_be32(&ctx->ptr);
+
+ /* Read the frame flags if they exist */
+ ctx->frameflags = 0;
+ if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
+ ctx->CRC &= ~0x80000000;
+
+ ctx->frameflags = bytestream_get_be32(&ctx->ptr);
+ }
+
+ /* Keep a count of the blocks decoded in this frame */
+ ctx->blocksdecoded = 0;
+
+ /* Initialize the rice structs */
+ ctx->riceX.k = 10;
+ ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
+ ctx->riceY.k = 10;
+ ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
+
+ /* The first 8 bits of input are ignored. */
+ ctx->ptr++;
+
+ range_start_decoding(ctx);
+}
+
+static const int32_t initial_coeffs[4] = {
+ 360, 317, -109, 98
+};
+
+static void init_predictor_decoder(APEContext * ctx)
+{
+ APEPredictor *p = &ctx->predictor;
+
+ /* Zero the history buffers */
+ memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
+ p->buf = p->historybuffer;
+
+ /* Initialize and zero the coefficients */
+ memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
+ memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
+ memset(p->coeffsB, 0, sizeof(p->coeffsB));
+
+ p->filterA[0] = p->filterA[1] = 0;
+ p->filterB[0] = p->filterB[1] = 0;
+ p->lastA[0] = p->lastA[1] = 0;
+}
+
+/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
+static inline int APESIGN(int32_t x) {
+ return (x < 0) - (x > 0);
+}
+
+static int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
+{
+ int32_t predictionA, predictionB;
+
+ p->buf[delayA] = p->lastA[filter];
+ p->buf[adaptA] = APESIGN(p->buf[delayA]);
+ p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
+ p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
+
+ predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
+ p->buf[delayA - 1] * p->coeffsA[filter][1] +
+ p->buf[delayA - 2] * p->coeffsA[filter][2] +
+ p->buf[delayA - 3] * p->coeffsA[filter][3];
+
+ /* Apply a scaled first-order filter compression */
+ p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
+ p->buf[adaptB] = APESIGN(p->buf[delayB]);
+ p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
+ p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
+ p->filterB[filter] = p->filterA[filter ^ 1];
+
+ predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
+ p->buf[delayB - 1] * p->coeffsB[filter][1] +
+ p->buf[delayB - 2] * p->coeffsB[filter][2] +
+ p->buf[delayB - 3] * p->coeffsB[filter][3] +
+ p->buf[delayB - 4] * p->coeffsB[filter][4];
+
+ p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
+ p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
+
+ if (!decoded) // no need updating filter coefficients
+ return p->filterA[filter];
+
+ if (decoded > 0) {
+ p->coeffsA[filter][0] -= p->buf[adaptA ];
+ p->coeffsA[filter][1] -= p->buf[adaptA - 1];
+ p->coeffsA[filter][2] -= p->buf[adaptA - 2];
+ p->coeffsA[filter][3] -= p->buf[adaptA - 3];
+
+ p->coeffsB[filter][0] -= p->buf[adaptB ];
+ p->coeffsB[filter][1] -= p->buf[adaptB - 1];
+ p->coeffsB[filter][2] -= p->buf[adaptB - 2];
+ p->coeffsB[filter][3] -= p->buf[adaptB - 3];
+ p->coeffsB[filter][4] -= p->buf[adaptB - 4];
+ } else {
+ p->coeffsA[filter][0] += p->buf[adaptA ];
+ p->coeffsA[filter][1] += p->buf[adaptA - 1];
+ p->coeffsA[filter][2] += p->buf[adaptA - 2];
+ p->coeffsA[filter][3] += p->buf[adaptA - 3];
+
+ p->coeffsB[filter][0] += p->buf[adaptB ];
+ p->coeffsB[filter][1] += p->buf[adaptB - 1];
+ p->coeffsB[filter][2] += p->buf[adaptB - 2];
+ p->coeffsB[filter][3] += p->buf[adaptB - 3];
+ p->coeffsB[filter][4] += p->buf[adaptB - 4];
+ }
+ return p->filterA[filter];
+}
+
+static void predictor_decode_stereo(APEContext * ctx, int count)
+{
+ int32_t predictionA, predictionB;
+ APEPredictor *p = &ctx->predictor;
+ int32_t *decoded0 = ctx->decoded0;
+ int32_t *decoded1 = ctx->decoded1;
+
+ while (count--) {
+ /* Predictor Y */
+ predictionA = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
+ predictionB = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
+ *(decoded0++) = predictionA;
+ *(decoded1++) = predictionB;
+
+ /* Combined */
+ p->buf++;
+
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
+ p->buf = p->historybuffer;
+ }
+ }
+}
+
+static void predictor_decode_mono(APEContext * ctx, int count)
+{
+ APEPredictor *p = &ctx->predictor;
+ int32_t *decoded0 = ctx->decoded0;
+ int32_t predictionA, currentA, A;
+
+ currentA = p->lastA[0];
+
+ while (count--) {
+ A = *decoded0;
+
+ p->buf[YDELAYA] = currentA;
+ p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
+
+ predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
+ p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
+ p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
+ p->buf[YDELAYA - 3] * p->coeffsA[0][3];
+
+ currentA = A + (predictionA >> 10);
+
+ p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
+ p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
+
+ if (A > 0) {
+ p->coeffsA[0][0] -= p->buf[YADAPTCOEFFSA ];
+ p->coeffsA[0][1] -= p->buf[YADAPTCOEFFSA - 1];
+ p->coeffsA[0][2] -= p->buf[YADAPTCOEFFSA - 2];
+ p->coeffsA[0][3] -= p->buf[YADAPTCOEFFSA - 3];
+ } else if (A < 0) {
+ p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ];
+ p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1];
+ p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2];
+ p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3];
+ }
+
+ p->buf++;
+
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
+ p->buf = p->historybuffer;
+ }
+
+ p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
+ *(decoded0++) = p->filterA[0];
+ }
+
+ p->lastA[0] = currentA;
+}
+
+static void do_init_filter(APEFilter *f, int16_t * buf, int order)
+{
+ f->coeffs = buf;
+ f->historybuffer = buf + order;
+ f->delay = f->historybuffer + order * 2;
+ f->adaptcoeffs = f->historybuffer + order;
+
+ memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
+ memset(f->coeffs, 0, order * sizeof(int16_t));
+ f->avg = 0;
+}
+
+static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order)
+{
+ do_init_filter(&f[0], buf, order);
+ do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
+}
+
+typedef int64_t x86_reg;
+typedef struct { uint64_t a, b; } xmm_reg;
+#define DECLARE_ALIGNED(n,t,v) t v __attribute__ ((aligned (n)))
+#define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
+static int32_t scalarproduct_int16 (int16_t * v1, int16_t * v2, int order, int shift)
+{
+ int res = 0;
+ DECLARE_ALIGNED_16(xmm_reg, sh);
+ x86_reg o = -(order << 1);
+
+ v1 += order;
+ v2 += order;
+ sh.a = shift;
+ __asm__ volatile(
+ "pxor %%xmm7, %%xmm7 \n\t"
+ "1: \n\t"
+ "movdqu (%0,%3), %%xmm0 \n\t"
+ "movdqu 16(%0,%3), %%xmm1 \n\t"
+ "pmaddwd (%1,%3), %%xmm0 \n\t"
+ "pmaddwd 16(%1,%3), %%xmm1 \n\t"
+ "paddd %%xmm0, %%xmm7 \n\t"
+ "paddd %%xmm1, %%xmm7 \n\t"
+ "add $32, %3 \n\t"
+ "js 1b \n\t"
+ "movhlps %%xmm7, %%xmm2 \n\t"
+ "paddd %%xmm2, %%xmm7 \n\t"
+ "psrad %4, %%xmm7 \n\t"
+ "pshuflw $0x4E, %%xmm7,%%xmm2 \n\t"
+ "paddd %%xmm2, %%xmm7 \n\t"
+ "movd %%xmm7, %2 \n\t"
+ : "+r"(v1), "+r"(v2), "=r"(res), "+r"(o)
+ : "m"(sh)
+ );
+ return res;
+}
+
+static inline void
+add_int16 (int16_t *v1/*align 16*/, int16_t *v2, int len) {
+ int i;
+ while (len--) {
+ *v1++ += *v2++;
+ }
+}
+
+static inline void
+sub_int16 (int16_t *v1/*align 16*/, int16_t *v2, int len) {
+ int i;
+ while (len--) {
+ *v1++ -= *v2++;
+ }
+}
+
+static inline int16_t clip_int16(int a)
+{
+ if ((a+32768) & ~65535) return (a>>31) ^ 32767;
+ else return a;
+}
+
+static void bswap_buf(uint32_t *dst, const uint32_t *src, int w){
+ int i;
+
+ for(i=0; i+8<=w; i+=8){
+ dst[i+0]= bswap_32(src[i+0]);
+ dst[i+1]= bswap_32(src[i+1]);
+ dst[i+2]= bswap_32(src[i+2]);
+ dst[i+3]= bswap_32(src[i+3]);
+ dst[i+4]= bswap_32(src[i+4]);
+ dst[i+5]= bswap_32(src[i+5]);
+ dst[i+6]= bswap_32(src[i+6]);
+ dst[i+7]= bswap_32(src[i+7]);
+ }
+ for(;i<w; i++){
+ dst[i+0]= bswap_32(src[i+0]);
+ }
+}
+
+
+static inline void do_apply_filter(APEContext * ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
+{
+ int res;
+ int absres;
+
+ while (count--) {
+ /* round fixedpoint scalar product */
+ res = (scalarproduct_int16(f->delay - order, f->coeffs, order, 0) + (1 << (fracbits - 1))) >> fracbits;
+
+
+ if (*data < 0)
+ add_int16(f->coeffs, f->adaptcoeffs - order, order);
+ else if (*data > 0)
+ sub_int16(f->coeffs, f->adaptcoeffs - order, order);
+
+ res += *data;
+
+ *data++ = res;
+
+ /* Update the output history */
+ *f->delay++ = clip_int16(res);
+
+ if (version < 3980) {
+ /* Version ??? to < 3.98 files (untested) */
+ f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
+ f->adaptcoeffs[-4] >>= 1;
+ f->adaptcoeffs[-8] >>= 1;
+ } else {
+ /* Version 3.98 and later files */
+
+ /* Update the adaption coefficients */
+ absres = (res < 0 ? -res : res);
+
+ if (absres > (f->avg * 3))
+ *f->adaptcoeffs = ((res >> 25) & 64) - 32;
+ else if (absres > (f->avg * 4) / 3)
+ *f->adaptcoeffs = ((res >> 26) & 32) - 16;
+ else if (absres > 0)
+ *f->adaptcoeffs = ((res >> 27) & 16) - 8;
+ else
+ *f->adaptcoeffs = 0;
+
+ f->avg += (absres - f->avg) / 16;
+
+ f->adaptcoeffs[-1] >>= 1;
+ f->adaptcoeffs[-2] >>= 1;
+ f->adaptcoeffs[-8] >>= 1;
+ }
+
+ f->adaptcoeffs++;
+
+ /* Have we filled the history buffer? */
+ if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
+ memmove(f->historybuffer, f->delay - (order * 2),
+ (order * 2) * sizeof(int16_t));
+ f->delay = f->historybuffer + order * 2;
+ f->adaptcoeffs = f->historybuffer + order;
+ }
+ }
+}
+
+static void apply_filter(APEContext * ctx, APEFilter *f,
+ int32_t * data0, int32_t * data1,
+ int count, int order, int fracbits)
+{
+ do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
+ if (data1)
+ do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
+}
+
+static void ape_apply_filters(APEContext * ctx, int32_t * decoded0,
+ int32_t * decoded1, int count)
+{
+ int i;
+
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (!ape_filter_orders[ctx->fset][i])
+ break;
+ apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]);
+ }
+}
+
+static void init_frame_decoder(APEContext * ctx)
+{
+ int i;
+ init_entropy_decoder(ctx);
+ init_predictor_decoder(ctx);
+
+ for (i = 0; i < APE_FILTER_LEVELS; i++) {
+ if (!ape_filter_orders[ctx->fset][i])
+ break;
+ init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]);
+ }
+}
+
+static void ape_unpack_mono(APEContext * ctx, int count)
+{
+ int32_t left;
+ int32_t *decoded0 = ctx->decoded0;
+ int32_t *decoded1 = ctx->decoded1;
+
+ if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
+ entropy_decode(ctx, count, 0);
+ /* We are pure silence, so we're done. */
+ fprintf (stderr, "pure silence mono\n");
+ return;
+ }
+
+ entropy_decode(ctx, count, 0);
+ ape_apply_filters(ctx, decoded0, NULL, count);
+
+ /* Now apply the predictor decoding */
+ predictor_decode_mono(ctx, count);
+
+ /* Pseudo-stereo - just copy left channel to right channel */
+ if (ctx->channels == 2) {
+ while (count--) {
+ left = *decoded0;
+ *(decoded1++) = *(decoded0++) = left;
+ }
+ }
+}
+
+static void ape_unpack_stereo(APEContext * ctx, int count)
+{
+ int32_t left, right;
+ int32_t *decoded0 = ctx->decoded0;
+ int32_t *decoded1 = ctx->decoded1;
+
+ if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
+ /* We are pure silence, so we're done. */
+ fprintf (stderr, "pure silence stereo\n");
+ return;
+ }
+
+ entropy_decode(ctx, count, 1);
+ ape_apply_filters(ctx, decoded0, decoded1, count);
+
+ /* Now apply the predictor decoding */
+ predictor_decode_stereo(ctx, count);
+
+ /* Decorrelate and scale to output depth */
+ while (count--) {
+ left = *decoded1 - (*decoded0 / 2);
+ right = left + *decoded0;
+
+ *(decoded0++) = left;
+ *(decoded1++) = right;
+ }
+}
+
+static int
+ape_decode_frame(APEContext *s,
+ void *data, int *data_size,
+ uint8_t *pdata, int psize)
+{
+ const uint8_t *buf = pdata;
+ int buf_size = psize;
+ int16_t *samples = data;
+ int nblocks;
+ int i, n;
+ int blockstodecode;
+ int bytes_used;
+
+ if (buf_size == 0 && !s->samples) {
+ *data_size = 0;
+ return 0;
+ }
+
+ /* should not happen but who knows */
+ if (BLOCKS_PER_LOOP * 2 * s->channels > *data_size) {
+ fprintf (stderr, "Packet size is too big! (max is %d where you have %d)\n", *data_size, BLOCKS_PER_LOOP * 2 * s->channels);
+ return -1;
+ }
+
+ if(!s->samples){
+ s->data = realloc(s->data, (buf_size + 3) & ~3);
+ bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
+ s->ptr = s->last_ptr = s->data;
+ s->data_end = s->data + buf_size;
+
+ nblocks = s->samples = bytestream_get_be32(&s->ptr);
+ n = bytestream_get_be32(&s->ptr);
+ if(n < 0 || n > 3){
+ fprintf (stderr, "Incorrect offset passed\n");
+ s->data = NULL;
+ return -1;
+ }
+ s->ptr += n;
+
+ s->currentframeblocks = nblocks;
+ buf += 4;
+ if (s->samples <= 0) {
+ *data_size = 0;
+ return buf_size;
+ }
+
+ memset(s->decoded0, 0, sizeof(s->decoded0));
+ memset(s->decoded1, 0, sizeof(s->decoded1));
+
+ /* Initialize the frame decoder */
+ init_frame_decoder(s);
+ }
+
+ if (!s->data) {
+ *data_size = 0;
+ return buf_size;
+ }
+
+ nblocks = s->samples;
+ blockstodecode = min(BLOCKS_PER_LOOP, nblocks);
+
+ s->error=0;
+
+ if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
+ ape_unpack_mono(s, blockstodecode);
+ else
+ ape_unpack_stereo(s, blockstodecode);
+
+ if(s->error || s->ptr > s->data_end){
+ s->samples=0;
+ if (s->error) {
+ fprintf (stderr, "Error decoding frame, error=%d\n", s->error);
+ }
+ else {
+ fprintf (stderr, "Error decoding frame, ptr > data_end\n");
+ }
+ return -1;
+ }
+
+ for (i = 0; i < blockstodecode; i++) {
+ *samples++ = s->decoded0[i];
+ if(s->channels == 2) {
+ *samples++ = s->decoded1[i];
+ }
+ }
+
+ s->samples -= blockstodecode;
+
+ *data_size = blockstodecode * 2 * s->channels;
+ bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size;
+ s->last_ptr = s->ptr;
+ return bytes_used;
+}
+
+static DB_playItem_t *
+ffap_insert (DB_playItem_t *after, const char *fname) {
+ APEContext ape_ctx;
+ FILE *fp = fopen (fname, "rb");
+ if (!fp) {
+ return NULL;
+ }
+ if (ape_read_header (fp, &ape_ctx) < 0) {
+ fprintf (stderr, "failed to read ape header\n");
+ fclose (fp);
+ return NULL;
+ }
+ if ((ape_ctx.fileversion < APE_MIN_VERSION) || (ape_ctx.fileversion > APE_MAX_VERSION)) {
+ fprintf(stderr, "unsupported file version - %.2f\n", ape_ctx.fileversion/1000.0);
+ fclose (fp);
+ return NULL;
+ }
+
+ float duration = ape_ctx.totalsamples / (float)ape_ctx.samplerate;
+ DB_playItem_t *it;
+ it = deadbeef->pl_insert_cue (after, fname, &plugin, "APE", duration);
+ if (it) {
+ fclose (fp);
+ return it;
+ }
+
+ it = deadbeef->pl_item_alloc ();
+ it->decoder = &plugin;
+ it->fname = strdup (fname);
+ it->filetype = "APE";
+ it->duration = duration;
+
+ int v2err = deadbeef->junk_read_id3v2 (it, fp);
+ int v1err = deadbeef->junk_read_id3v1 (it, fp);
+ if (v1err >= 0) {
+ fseek (fp, -128, SEEK_END);
+ }
+ else {
+ fseek (fp, 0, SEEK_END);
+ }
+ int apeerr = deadbeef->junk_read_ape (it, fp);
+ deadbeef->pl_add_meta (it, "title", NULL);
+ after = deadbeef->pl_insert_item (after, it);
+
+ fclose (fp);
+ return after;
+}
+
+static uint8_t g_buffer[BLOCKS_PER_LOOP * 2 * 2 * 2];
+static int remaining = 0;
+
+static int
+ffap_read_int16 (char *buffer, int size) {
+ int inits = size;
+ while (size > 0) {
+ if (remaining > 0) {
+ int sz = min (size, remaining);
+ memcpy (buffer, g_buffer, sz);
+ buffer += sz;
+ size -= sz;
+ if (remaining > sz) {
+ memmove (g_buffer, g_buffer + sz, remaining-sz);
+ }
+ remaining -= sz;
+ continue;
+ }
+ if (packet_left <= 0) {
+ if (ape_read_packet (fp, &ape_ctx) < 0) {
+ return -1;
+ }
+ packet_left = packet_size;
+ }
+ int s = BLOCKS_PER_LOOP * 2 * 2 * 2;
+ assert (remaining <= s/2);
+ s -= remaining;
+ uint8_t *buf = g_buffer + remaining;
+ int n = ape_decode_frame (&ape_ctx, buf, &s, packet_data, packet_size);
+ remaining += s;
+
+ int sz = min (size, remaining);
+ memcpy (buffer, g_buffer, sz);
+ buffer += sz;
+ size -= sz;
+ if (remaining > sz) {
+ memmove (g_buffer, g_buffer + sz, remaining-sz);
+ }
+ remaining -= sz;
+ packet_left -= n;
+ }
+ plugin.info.readpos = ape_ctx.blocksdecoded / (float)plugin.info.samplerate - timestart;
+ return inits - size;
+}
+
+static int
+ffap_seek (float sec) {
+ return 0;
+}
+
+static const char *exts[] = { "ape", NULL };
+static const char *filetypes[] = { "APE", NULL };
+// define plugin interface
+static DB_decoder_t plugin = {
+ DB_PLUGIN_SET_API_VERSION
+ .plugin.version_major = 0,
+ .plugin.version_minor = 1,
+ .plugin.type = DB_PLUGIN_DECODER,
+ .plugin.name = "FFAP Monkey's Audio decoder",
+ .plugin.descr = "Based on ffmpeg apedec by Benjamin Zores",
+ .plugin.author = "Alexey Yakovenko",
+ .plugin.email = "waker@users.sourceforge.net",
+ .plugin.website = "http://deadbeef.sf.net",
+ .init = ffap_init,
+ .free = ffap_free,
+ .read_int16 = ffap_read_int16,
+ .seek = ffap_seek,
+ .insert = ffap_insert,
+ .exts = exts,
+ .id = "ffap",
+ .filetypes = filetypes
+};
+
+DB_plugin_t *
+ffap_load (DB_functions_t *api) {
+ deadbeef = api;
+ return DB_PLUGIN (&plugin);
+}