1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
|
module Analyzer
open Ast
open Getters
open AstUtils
open CodeGen
open DafnyModelUtils
open DafnyPrinter
open FixpointSolver
open MethodUnifier
open Modularizer
open Options
open PipelineUtils
open PrintUtils
open Resolver
open TypeChecker
open Utils
open Microsoft.Boogie
let Rename suffix vars =
vars |> List.map (function Var(nm,tp,old) -> nm, Var(nm + suffix, tp, old))
let ReplaceName substMap nm =
match Map.tryFind nm substMap with
| Some(Var(name,_,_)) -> name
| None -> nm
let rec Substitute substMap = function
| IdLiteral(s) -> IdLiteral(ReplaceName substMap s)
| Dot(e,f) -> Dot(Substitute substMap e, ReplaceName substMap f)
| UnaryExpr(op,e) -> UnaryExpr(op, Substitute substMap e)
| BinaryExpr(n,op,e0,e1) -> BinaryExpr(n, op, Substitute substMap e0, Substitute substMap e1)
| SelectExpr(e0,e1) -> SelectExpr(Substitute substMap e0, Substitute substMap e1)
| UpdateExpr(e0,e1,e2) -> UpdateExpr(Substitute substMap e0, Substitute substMap e1, Substitute substMap e2)
| SequenceExpr(ee) -> SequenceExpr(List.map (Substitute substMap) ee)
| SeqLength(e) -> SeqLength(Substitute substMap e)
| ForallExpr(vv,e) -> ForallExpr(vv, Substitute substMap e)
| expr -> expr
let GenMethodAnalysisCode comp m assertion genOld =
let methodName = GetMethodName m
let signature = GetMethodSig m
let ppre,ppost = GetMethodPrePost m
let pre = Desugar ppre
let post = Desugar ppost |> RewriteOldExpr
let ghostPre = GetMethodGhostPrecondition m |> Desugar
//let sigStr = PrintSig signature
let sigVarsDecl =
match signature with
| Sig(ins,outs) -> ins @ outs |> List.fold (fun acc vd -> acc + (sprintf " var %s;" (PrintVarDecl vd)) + newline) ""
" method " + methodName + "()" + newline +
" modifies this;" + newline +
" {" + newline +
// print signature as local variables
sigVarsDecl +
" // assume precondition" + newline +
" assume " + (PrintExpr 0 pre) + ";" + newline +
" // assume ghost precondition" + newline +
" assume " + (PrintExpr 0 ghostPre) + ";" + newline +
" // assume invariant and postcondition" + newline +
" assume Valid();" + newline +
(if genOld then " assume Valid_old();" + newline else "") +
" assume " + (PrintExpr 0 post) + ";" + newline +
" // assume user defined invariant again because assuming Valid() doesn't always work" + newline +
(GetInvariantsAsList comp |> PrintSep newline (fun e -> " assume " + (PrintExpr 0 e) + ";")) + newline +
// if the following assert fails, the model hints at what code to generate; if the verification succeeds, an implementation would be infeasible
" // assert false to search for a model satisfying the assumed constraints" + newline +
" assert " + (PrintExpr 0 assertion) + ";" + newline +
" }" + newline
let rec MethodAnalysisPrinter onlyForThese assertion genOld comp =
let cname = GetComponentName comp
match onlyForThese with
| (c,m) :: rest when GetComponentName c = cname ->
match m with
| Method(_) ->
(GenMethodAnalysisCode c m assertion genOld) + newline +
(MethodAnalysisPrinter rest assertion genOld comp)
| _ -> ""
| _ :: rest -> MethodAnalysisPrinter rest assertion genOld comp
| [] -> ""
// =========================================================================
/// For a given constant "objRefName" (which is an object, something like
/// "gensym32"), finds a path of field references from "this" (e.g. something
/// like "this.next.next").
///
/// Implements a backtracking search over the heap entries to find that
/// path. It starts from the given object, and follows the backpointers
/// until it reaches the root ("this")
// =========================================================================
// let objRef2ExprCache = new System.Collections.Generic.Dictionary<string, Expr>()
let GetObjRefExpr objRefName (heapInst: HeapInstance) =
let rec __GetObjRefExpr objRefName visited =
if Set.contains objRefName visited then
None
else
let newVisited = Set.add objRefName visited
match objRefName with
| "this" -> Some(ObjLiteral("this"))
| _ ->
let rec __fff lst =
match lst with
| ((o,var),_) :: rest ->
match __GetObjRefExpr o.name newVisited with
| Some(expr) -> Some(Dot(expr, GetExtVarName var))
| None -> __fff rest
| [] -> None
let backPointers = heapInst.concreteValues |> List.choose (function
FieldAssignment (x,l) ->
if l = ObjLiteral(objRefName) then Some(x,l) else None
|_ -> None)
__fff backPointers
(* --- function body starts here --- *)
__GetObjRefExpr objRefName (Set.empty)
// THIS DOESN'T WORK BECAUSE THE CACHE HAS TO BE PURGED AFTER EVERY METHOD
// if objRef2ExprCache.ContainsKey(objRefName) then
// Some(objRef2ExprCache.[objRefName])
// else
// let res = __GetObjRefExpr objRefName (Set.empty)
// match res with
// | Some(e) -> objRef2ExprCache.Add(objRefName, e)
// | None -> ()
// res
// =============================================================================
/// Returns an expression that combines the post-condition of a given method with
/// invariants for all objects present on the heap
// =============================================================================
let GetHeapExpr prog mthd heapInst includePreState =
// get expressions to evaluate:
// - add post (and pre?) conditions
// - go through all objects on the heap and assert their invariants
let pre,post = GetMethodPrePost mthd
let prepostExpr = post //TODO: do we need the "pre" here as well?
let heapObjs = heapInst.assignments |> List.fold (fun acc asgn ->
match asgn with
| FieldAssignment((o,_),_) -> acc |> Set.add o
| _ -> acc) Set.empty
heapObjs |> Set.fold (fun acc o ->
let receiverOpt = GetObjRefExpr o.name heapInst
let receiver = Utils.ExtractOption receiverOpt
let objComp = FindComponent prog (GetTypeShortName o.objType) |> Utils.ExtractOption
let objInvs = GetInvariantsAsList objComp
let objInvsUpdated = objInvs |> List.map (ChangeThisReceiver receiver)
let objInvFinal = objInvsUpdated |> List.fold BinaryAnd TrueLiteral
let objAllInvs =
if includePreState then
let objInvPre = MakeOld objInvFinal
BinaryAnd objInvFinal objInvPre
else
objInvFinal
BinaryAnd prepostExpr objAllInvs
) prepostExpr
let IsUnmodConcrOnly prog (comp,meth) expr =
let isConstr = IsModifiableObj (ThisObj comp) (comp,meth)
let rec __IsUnmodOnly args expr =
let __IsUnmodOnlyLst elist =
elist |> List.fold (fun acc e -> acc && (__IsUnmodOnly args e)) true
match expr with
| IntLiteral(_)
| BoolLiteral(_)
| BoxLiteral(_)
| Star
| VarDeclExpr(_)
| ObjLiteral(_) -> true
| VarLiteral(id) -> args |> List.exists (fun var -> GetExtVarName var = id)
| IdLiteral("null") | IdLiteral("this") -> true
| IdLiteral(id) ->
not (isConstr || IsAbstractField comp id)
| Dot(e, fldName) -> //if isConstr then false else __IsUnmodOnlyLst [e]
if isConstr then
false
else
// assume it is unmodifiable, because it is a method, so just check if it's concrete
let lhsType = InferType prog comp (MethodArgChecker prog meth) e |> Utils.ExtractOptionMsg (sprintf "Inference failed for %s" (PrintExpr 0 e))
IsConcreteField lhsType fldName
| AssertExpr(e)
| AssumeExpr(e)
| SeqLength(e)
| LCIntervalExpr(e)
| MethodOutSelect(e,_)
| OldExpr(e)
| UnaryExpr(_,e) -> __IsUnmodOnlyLst [e]
| SelectExpr(e1, e2)
| BinaryExpr(_,_,e1,e2) -> __IsUnmodOnlyLst [e1; e2]
| IteExpr(e3, e1, e2)
| UpdateExpr(e1, e2, e3) -> __IsUnmodOnlyLst [e1; e2; e3]
| SequenceExpr(exprs) | SetExpr(exprs) -> __IsUnmodOnlyLst exprs
| MethodCall(rcv,_,_,aparams) -> __IsUnmodOnlyLst (rcv :: aparams)
| ForallExpr(vars,e) -> __IsUnmodOnly (args @ vars) e
(* --- function body starts here --- *)
__IsUnmodOnly (GetMethodInArgs meth) expr
let AddUnif indent e v unifMap =
let idt = Indent indent
let builder = new CascadingBuilder<_>(unifMap)
builder {
let! notAlreadyAdded = Map.tryFind e unifMap |> Utils.IsNoneOption |> Utils.BoolToOption
Logger.DebugLine (idt + " - adding unification " + (PrintExpr 0 e) + " <--> " + (PrintConst v))
return Map.add e v unifMap
}
//TODO: unifications should probably by "Expr <--> Expr" instead of "Expr <--> Const"
let rec GetUnifications prog indent (comp,meth) heapInst unifs expr =
let idt = Indent indent
// - first looks if the give expression talks only about method arguments (args)
// - then it tries to evaluate it to a constant
// - if all of these succeed, it adds a unification rule e <--> val(e) to the given unifMap map
let __AddUnif e unifsAcc =
if IsConstExpr e then
unifsAcc
else
let builder = new CascadingBuilder<_>(unifsAcc)
builder {
let! argsOnly = IsUnmodConcrOnly prog (comp,meth) e |> Utils.BoolToOption
let! v = try Some(EvalFull heapInst e |> Expr2Const) with ex -> None
return AddUnif indent e v unifsAcc
}
(* --- function body starts here --- *)
AstUtils.DescendExpr2 __AddUnif expr unifs
// =======================================================
/// Returns a map (Expr |--> Const) containing unifications
/// found for the given method wrt to heapInst.
///
/// The list of potential unifications include:
/// (1) arg-value pairs for all method arguments,
/// (2) field-value pairs for all unmodifiable fields,
/// (3) expr-value pairs where expr are unmodifiable
/// expressions found in the spec.
// =======================================================
let GetUnificationsForMethod indent prog comp m heapInst =
let idt = Indent indent
let rec GetArgValueUnifications args =
match args with
| var :: rest ->
let name = GetExtVarName var
match Map.tryFind name heapInst.methodArgs with
| Some(c) ->
GetArgValueUnifications rest |> AddUnif indent (VarLiteral(name)) c
| None -> failwith ("couldn't find value for argument " + name)
| [] -> Map.empty
let rec GetFldValueUnifications unifs =
heapInst.assignments |> List.fold (fun acc asgn ->
match asgn with
| FieldAssignment((obj,var), fldVal) ->
try
let vname = GetExtVarName var
let comp = obj.objType |> FindComponentForType prog |> Utils.ExtractOption
if IsConcreteField comp vname then
let path = GetObjRefExpr obj.name heapInst |> Utils.ExtractOption
let c = Expr2Const fldVal
AddUnif indent (Dot(path, vname)) c acc
else
acc
with
| ex ->
Logger.WarnLine ("[WARN]: error during getting field value unifications: " + ex.Message)
acc
| _ -> acc
) unifs
(* --- function body starts here --- *)
let unifs = GetArgValueUnifications (GetMethodInArgs m)
let unifs =
//TODO: it should really read the "modifies" clause and figure out modifiable fields from there
if not (IsConstructor m) then
GetFldValueUnifications unifs
else
unifs
GetUnifications prog indent (comp,m) heapInst unifs (GetMethodPrePost m |> fun x -> BinaryAnd (fst x) (snd x))
// =======================================================
/// Applies given unifications onto a given heapInstance
///
/// If "conservative" is true, applies only those that
/// can be verified to hold, otherwise applies all of them
// =======================================================
let rec ApplyUnifications indent prog comp mthd unifs heapInst conservative =
let idt = Indent indent
///
let __CheckUnif o f e idx =
if not conservative || not Options.CONFIG.checkUnifications then
true
else
let lhs = if o = NoObj then
VarLiteral(GetVarName f)
else
let objRefExpr = GetObjRefExpr o.name heapInst |> Utils.ExtractOptionMsg ("Couldn't find a path from 'this' to " + o.name)
let fldName = GetVarName f
Dot(objRefExpr, fldName)
let assertionExpr = match GetVarType f with
| Some(SeqType(_)) when not (idx = -1) -> BinaryEq (SelectExpr(lhs, IntLiteral(idx))) e
| Some(SetType(_)) when not (idx = -1) -> BinaryIn e lhs
| _ -> BinaryEq lhs e
// check if the assertion follows and if so update the env
let genOld = false
let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter [comp,mthd] assertionExpr genOld) true genOld
Logger.Debug (idt + " - checking assertion: " + (PrintExpr 0 assertionExpr) + " ... ")
let ok = CheckDafnyProgram code ("unif_" + (GetMethodFullName comp mthd))
if ok then
Logger.DebugLine " HOLDS"
else
Logger.DebugLine " DOESN'T HOLD"
ok
///
let __Apply (o,f) c e value=
if value = Const2Expr c then
if __CheckUnif o f e -1 then
// change the value to expression
//Logger.TraceLine (sprintf "%s - applied: %s.%s --> %s" idt (PrintConst o) (GetVarName f) (PrintExpr 0 e) )
e
else
value
else
let rec __UnifyOverLst lst cnt =
match lst with
| lstElem :: rest when lstElem = Const2Expr c ->
if __CheckUnif o f e cnt then
//Logger.TraceLine (sprintf "%s - applied: %s.%s[%d] --> %s" idt (PrintConst o) (GetVarName f) cnt (PrintExpr 0 e) )
e :: __UnifyOverLst rest (cnt+1)
else
lstElem :: __UnifyOverLst rest (cnt+1)
| lstElem :: rest ->
lstElem :: __UnifyOverLst rest (cnt+1)
| [] -> []
// see if it's a list, then try to match its elements, otherwise leave it as is
match value with
| SequenceExpr(elist) ->
let newExprList = __UnifyOverLst elist 0
SequenceExpr(newExprList)
| SetExpr(elist) ->
let newExprList = __UnifyOverLst elist 0
SetExpr(newExprList)
| _ ->
value
(* --- function body starts here --- *)
match unifs with
| (e,c) :: rest ->
let heapInst = ApplyUnifications indent prog comp mthd rest heapInst conservative
let newHeap = heapInst.assignments|> List.fold (fun acc asgn ->
match asgn with
| FieldAssignment((o,f),value) when heapInst.modifiableObjs |> Set.contains o ->
let e2 = __Apply (o,f) c e value
acc @ [FieldAssignment((o,f),e2)]
| _ -> acc @ [asgn]
) []
let newRetVals = heapInst.methodRetVals |> Map.fold (fun acc key value ->
let e2 = __Apply (NoObj,Var(key, None, false)) c e value
acc |> Map.add key e2
) Map.empty
{heapInst with assignments = newHeap; methodRetVals = newRetVals}
| [] -> heapInst
// ====================================================================================
/// Returns whether the code synthesized for the given method can be verified with Dafny
// ====================================================================================
let VerifySolution prog solutions genRepr =
// print the solution to file and try to verify it with Dafny
//let prog = Program(solutions |> Utils.MapKeys |> Map.ofList |> Utils.MapKeys)
let code = PrintImplCode prog solutions genRepr false
CheckDafnyProgram code dafnyVerifySuffix
let rec DiscoverAliasing exprList heapInst =
match exprList with
| e1 :: rest ->
let eqExpr = rest |> List.fold (fun acc e ->
if EvalFull heapInst (BinaryEq e1 e) = TrueLiteral then
BinaryAnd acc (BinaryEq e1 e)
else
acc
) TrueLiteral
BinaryAnd eqExpr (DiscoverAliasing rest heapInst)
| [] -> TrueLiteral
//
let DontResolveUnmodifiableStuff prog comp meth expr =
let methodArgs = GetMethodInArgs meth
let __IsMethodArg argName = methodArgs |> List.exists (fun var -> GetExtVarName var = argName)
let isMod = IsModifiableObj (ThisObj comp) (comp,meth)
match expr with
| VarLiteral(id) when __IsMethodArg id -> false
| IdLiteral(id) when id = "this" || id = "null" -> true
| IdLiteral(id) | Dot(_, id) ->
// this must be a field, so resolve it only if modifiable
isMod
| _ -> true
/// Descends down a given expression and returns bunch of sub-expressions that all evaluate to true
let FindClauses trueOnly resolverFunc heapInst expr =
let MyFun expr acc =
try
match expr with
// skip binary logical operators because we want to find smallest sub-expressions
| BinaryExpr(_,op,_,_) when IsLogicalOp op -> acc
| _ ->
let exprEval = Eval heapInst resolverFunc expr
match exprEval with
| _ when exprEval = TrueLiteral -> acc
| _ ->
let exprAllResolved = EvalFull heapInst expr
match exprAllResolved with
| BoolLiteral(true) -> acc @ (exprEval |> SplitIntoConjunts)
| BoolLiteral(false) -> acc //if trueOnly then acc else acc @ (UnaryNot exprEval |> SplitIntoConjunts)
| _ -> acc
with
| _ -> acc
(* --- function body starts here --- *)
DescendExpr2 MyFun expr []
/// Descends down a given expression and returns all sub-expressions that evaluate to TrueLiteral
let FindTrueClauses resolverFunc heapInst expr =
FindClauses true resolverFunc heapInst expr
/// Returns a list of boolean expressions obtained by combining (in some way)
/// the two given list of conditions conditions
let GetAllPossibleConditions specConds argConds aliasingConds =
let __Conjoin lst = lst |> List.fold (fun acc e -> BinaryAnd acc e) TrueLiteral
let __Preproc lst = lst |> List.map SplitIntoConjunts |> List.concat |> Utils.ListDeduplicate
// 0. aliasing conditions
// 1. conjunction of spec conditions
// 2. individual arg conditions
// 3. conjunction of arg conditions
// 4. individual spec conditions
let aliasing = aliasingConds |> __Preproc
let specIndi = specConds |> __Preproc
let specConj = [__Conjoin specIndi]
let argsIndi = argConds |> __Preproc
let argsConj = [__Conjoin argsIndi]
let allConds = aliasing @ specConj @ argsIndi @ specIndi @ argsConj
allConds |> List.filter (fun e -> not (e = TrueLiteral))
|> Utils.ListDeduplicate
// check whther a given solution (in the form of heapInst) verifies assuming a given guard
let rec CheckGuard prog comp m candCond indent idt heapInst callGraph =
let rec __MinGuard guard idx m2 sol =
let conjs = SplitIntoConjunts guard
let len = List.length conjs
if idx >= 0 && idx < len && len > 1 then
let guard' = conjs |> Utils.ListRemoveIdx (len - idx - 1) |> List.fold BinaryAnd TrueLiteral
match CheckGuard prog comp m guard' indent idt heapInst callGraph with
| Some(x) -> x
| None -> __MinGuard guard (idx+1) m2 sol
else
guard, m2, sol
let m2 = AddPrecondition m candCond
let sol = MakeModular (indent+2) prog comp m2 candCond heapInst callGraph
Logger.Info (idt + " - verifying partial solution ... ")
let verified =
if Options.CONFIG.verifyPartialSolutions then
VerifySolution prog sol Options.CONFIG.genRepr
else
true
if verified then
if Options.CONFIG.verifyPartialSolutions then Logger.InfoLine "VERIFIED" else Logger.InfoLine "SKIPPED"
if Options.CONFIG.minimizeGuards then
Logger.InfoLine(idt + " - minimizing guard ... " + (PrintExpr 0 candCond))
Some(__MinGuard candCond 0 m2 sol)
else
Some(candCond,m2,sol)
else
Logger.InfoLine ("NOT VERIFIED")
None
// iteratively tries to remove conjunts and check whether the solutions still verifies
//let MinimizeGuard guard prog comp m heapInst callGraph indent =
// ============================================================================
/// Attempts to synthesize the initialization code for the given constructor "m"
///
/// Returns a (heap,env,ctx) tuple
// ============================================================================
let rec AnalyzeConstructor indent prog comp m callGraph =
let idt = Indent indent
let TryFindAndVerify m =
match TryFindExistingAndConvertToSolution indent comp m TrueLiteral callGraph with
| Some(sol) ->
if VerifySolution prog sol Options.CONFIG.genRepr then
Logger.InfoLine (idt + " ~~~ VERIFIED ~~~")
Some(sol)
else
Logger.InfoLine (idt + " !!! NOT VERIFIED !!!")
None
| None -> None
(* --- function body starts here --- *)
Logger.InfoLine (idt + "[*] Analyzing constructor")
Logger.InfoLine (idt + "------------------------------------------")
Logger.InfoLine (Printer.PrintMethodSignFull (indent + 4) comp m)
Logger.InfoLine (idt + "------------------------------------------")
match TryFindAndVerify m with
| Some(sol) -> sol
| None ->
let methodName = GetMethodName m
let pre,post = GetMethodPrePost m
// generate Dafny code for analysis first
let genOld = true
let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter [comp,m] FalseLiteral genOld) true genOld
Logger.Info (idt + " - searching for an instance ...")
let models = RunDafnyProgram code (dafnyScratchSuffix + "_" + (GetMethodFullName comp m))
if models.Count = 0 then
// no models means that the "assert false" was verified, which means that the spec is inconsistent
Logger.WarnLine (idt + " !!! SPEC IS INCONSISTENT !!!")
Map.empty
else
if models.Count > 1 then
Logger.WarnLine " FAILED "
failwith "internal error (more than one model for a single constructor analysis)"
Logger.InfoLine " OK "
let model = models.[0]
let hModel = ReadFieldValuesFromModel model prog comp m
let heapInst = ResolveModel hModel (comp,m)
let unifs = GetUnificationsForMethod indent prog comp m heapInst |> Map.toList
let heapInst = ApplyUnifications indent prog comp m unifs heapInst true
// split into method calls
let sol = MakeModular indent prog comp m TrueLiteral heapInst callGraph |> FixSolution comp m
if Options.CONFIG.verifySolutions then
Logger.InfoLine (idt + " - verifying synthesized solution ... ")
let verified = VerifySolution prog sol Options.CONFIG.genRepr
Logger.Info (idt + " ")
if verified then
Logger.InfoLine "~~~ VERIFIED ~~~"
sol
else
Logger.InfoLine "!!! NOT VERIFIED !!!"
if Options.CONFIG.inferConditionals then
TryRecursion (indent + 4) prog comp m unifs heapInst callGraph
else
sol
else
sol
and TryRecursion indent prog comp m unifs heapInst callGraph =
let idt = Indent indent
/// checks whether an expression is ok, meaning
/// - only immediate concrete fields of the "this" object are used,
/// - no recursion on the same object with the same parameters
let __IsOk hInst expr =
let compName = GetComponentName comp
let methName = GetMethodName m
let myVisitor =
fun expr acc ->
if not acc then
false
else
match expr with
| Dot(discr, fldName) ->
let obj = EvalFull heapInst discr
match obj with
| ObjLiteral(id) when id = "this" ->
try
let fname = RenameFromOld fldName
IsConcreteField (InferType prog comp (MethodArgChecker prog m) discr |> Utils.ExtractOption) fname
with
| _ -> false
| ObjLiteral(id) -> false
| _ -> failwithf "Didn't expect the discriminator of a Dot to not be ObjLiteral"
| MethodCall(receiver, cn, mn, elst) when receiver = ThisLiteral && cn = compName && mn = methName ->
elst |> List.exists (function VarLiteral(_) -> false | _ -> true)
| _ -> true
DescendExpr2 myVisitor expr true
/// Finds all modifiable fields in a given hInst, and checks if an "ok"
/// expression exists for each one of them.
///
/// Returns all possible combinations of "ok" solutions (these are not verified yet).
let __GetAllAssignments hInst premises =
let rec __IterVars vars =
match vars with
| lhs :: [] ->
let lhsOptions = premises |> Set.toList
|> List.choose (function
| BinaryExpr(_,"=",l,r) -> if l = lhs then Some(r) elif r = lhs then Some(l) else None
| _ -> None)
|> List.filter (__IsOk hInst)
|> List.map (fun e -> [lhs,e])
lhsOptions
| lhs :: rest ->
let lhsOptions = __IterVars [lhs]
if List.isEmpty lhsOptions then
List.empty
else
let restOptions = __IterVars rest
Utils.ListCombine (fun t1 t2 -> t1 @ t2) lhsOptions restOptions
| [] -> List.empty
let stmts = ConvertToStatements hInst true
let modVars = stmts |> List.choose (function
| Assign(lhs,_) -> Some(lhs)
| _ -> None)
__IterVars modVars
/// Print a given list of assignments
let rec __PrintSol indent s =
let idt = Indent indent
match s with
| (l,r) :: [] ->
sprintf "%s%s := %s" idt (PrintExpr 0 l) (PrintExpr 0 r)
| (l,r) :: rest ->
let str = __PrintSol indent [l,r]
str + newline + (__PrintSol indent rest)
| [] -> ""
/// Returns a given method's postcondition where
/// - all input variables are renamed so that their names start with "$" and
/// (so that the unifier know that it's ok to try to unify those variables)
/// - all output variables are rewritten as $this.<method_name>(<args>)["<out_var_name>"]
/// (so that it is clear that they are results of a method call)
let __GetMethodPostTemplate comp m =
let compName = GetComponentName comp
let methName = GetMethodName m
let ins = GetMethodInArgs m
let outs = GetMethodOutArgs m
let post = GetMethodPrePost m |> snd
post |> RewriteWithCtx (fun ctx e ->
match e with
| VarLiteral(id) when not (IsInVarList ctx id) ->
if IsInVarList outs id then
let mcall = MethodCall(ThisLiteral, compName, methName, ins |> List.map (function var -> VarLiteral("$" + (GetExtVarName var))))
let outSel = MethodOutSelect(mcall, id)
Some(outSel)
else
Some(VarLiteral("$" + id))
| _ -> None) []
|> ChangeThisReceiver (VarLiteral("$this"))
/// Merges ...
let __MergeSolutions hInst s =
let __FindRhs lhs = s |> List.choose (fun (l,r) -> if l = lhs then Some(r) else None) |> Utils.ListToOption
let rec __FixAssignments asgs =
match asgs with
| asg :: rest ->
let newAsg =
match asg with
| FieldAssignment((obj,var) as discr,valExpr) ->
let objPath = GetObjRefExpr obj.name hInst |> Utils.ExtractOption
let lhs = Dot(objPath, GetExtVarName var)
match __FindRhs lhs with
| Some(rhs) -> FieldAssignment(discr,rhs)
| None -> asg
| _ -> asg
newAsg :: (__FixAssignments rest)
| [] -> []
let rec __FixRetValues retVals =
match retVals with
| (varName,varExpr) :: rest ->
let lhs = VarLiteral(varName)
let newVarExpr =
match __FindRhs lhs with
| Some(rhs) -> rhs
| None -> varExpr
__FixRetValues rest |> Map.add varName newVarExpr
| [] -> Map.empty
if s = [] then
hInst
else
// fix assignments
let newAsgs = __FixAssignments hInst.assignments
// fix return values
let newRetVals = __FixRetValues (hInst.methodRetVals |> Map.toList)
{hInst with assignments = newAsgs;
methodRetVals = newRetVals}
/// For a given heap instance and a list of possible solutions, it iterates
/// trough all of them and returns whichever verifies first.
let rec __IterSolutions hInst premises wrongSol sList =
match sList with
| s :: rest ->
Logger.InfoLine (idt + "Candidate solution:")
Logger.InfoLine (__PrintSol (indent + 4) s)
let hInst' = __MergeSolutions hInst s
let sol = Utils.MapSingleton (comp,m) [TrueLiteral, hInst']
if not (hInst' = hInst) && VerifySolution prog sol Options.CONFIG.genRepr then
Logger.InfoLine (idt + " ~~~ VERIFIED ~~~")
sol
else
Logger.InfoLine (idt + " !!! NOT VERIFIED !!!")
match TryInferConditionals indent prog comp m unifs hInst' callGraph premises with
| Some(candCond,solThis) ->
let m' = AddPrecondition m (UnaryNot(candCond))
let solRest = AnalyzeConstructor (indent + 2) prog comp m' callGraph
MergeSolutions solThis solRest |> FixSolution comp m
| None ->
__IterSolutions hInst premises wrongSol rest
| [] -> wrongSol
(* --- function body starts here --- *)
let loggerFunc = fun e -> Logger.TraceLine (sprintf "%s --> %s" idt (PrintExpr 0 e))
//TODO
let expandOnlyModVarsFunc = fun e ->
true
// let __CheckExpr l =
// //TODO: FIX THIS!!!!!
// match l with
// | VarLiteral(vname) -> GetMethodOutArgs m |> List.exists (fun var -> GetVarName var = vname)
// | IdLiteral(_) -> true
// | Dot(_,_) -> true
// | _ -> false
// match e with
// | BinaryExpr(_,"=",l,_) ->
// //TODO: it should really check both lhs and rhs
// __CheckExpr l
// | BinaryExpr(_,op,l,_) when IsRelationalOp op ->
// __CheckExpr l
// | _ -> __CheckExpr e
let wrongSol = Utils.MapSingleton (comp,m) [TrueLiteral, heapInst]
let heapInst = ApplyUnifications indent prog comp m unifs heapInst false
let methodArgs = GetMethodInArgs m
let heapExpr = GetHeapExpr prog m heapInst true
//Logger.TraceLine (PrintExpr 0 heapExpr)
// find set of premises (don't resolve anything)
let premises = heapExpr |> FindClauses false (fun e -> false) heapInst
Logger.TraceLine (sprintf "%s Premises:" idt)
premises |> List.iter loggerFunc
// add only recursive call for now
let post = __GetMethodPostTemplate comp m
let premiseSet = premises |> Set.ofList |> Set.add post
let closedPremises = ComputeClosure heapInst expandOnlyModVarsFunc premiseSet
Logger.TraceLine (idt + "Closed premises with methods")
closedPremises |> Set.iter loggerFunc
let s = __GetAllAssignments heapInst closedPremises
if s = [] then
// have at least one empty sol so that the original heapInst is not missed
__IterSolutions heapInst closedPremises wrongSol [[]]
else
__IterSolutions heapInst closedPremises wrongSol s
and TryInferConditionals indent prog comp m unifs heapInst callGraph premises =
let idt = Indent indent
let loggerFunc = fun e -> Logger.TraceLine (sprintf "%s --> %s" idt (PrintExpr 0 e))
let methodArgs = GetMethodInArgs m
/// Iterates through a given list of boolean conditions and checks
/// which one suffices. If it finds such a condition, it returns
/// the following three things:
/// - the condition itself
/// - the method with this condition added to its preconditions
/// - a solution
/// Otherwise returns None.
let rec __TryOutConditions heapInst candidateConditions =
let idt = Indent indent
match candidateConditions with
| [] ->
Logger.InfoLine (sprintf "%s - no more interesting pre-conditions" idt)
None
| candCond :: rest ->
Logger.InfoLine (sprintf "%s ________________________" idt)
Logger.InfoLine (sprintf "%s candidate pre-condition: %s" idt (PrintExpr 0 candCond))
Logger.InfoLine (sprintf "%s ------------------------" idt)
let idt = idt + " "
match CheckGuard prog comp m candCond indent idt heapInst callGraph with
| Some(guard, m2, sol) -> Some(guard, m2, sol)
| None -> __TryOutConditions heapInst rest
if IsSolution1stLevelOnly heapInst then
// try to find a non-recursive solution
Logger.InfoLine (idt + "Strengthening the pre-condition")
let expr = GetHeapExpr prog m heapInst false
let specConds1 = expr |> FindTrueClauses (DontResolveUnmodifiableStuff prog comp m) heapInst
let specConds2 = premises |> Set.toList
let isConstFunc = fun e -> try
EvalNone heapInst e |> Expr2Const |> ignore
true
with
| _ -> false
let unmodConcrFunc = IsUnmodConcrOnly prog (comp,m)
let is1stLevelFunc = __Is1stLevelExpr false heapInst
let specConds = (specConds1 @ specConds2)
|> List.map SimplifyExpr
|> List.filter (fun e -> is1stLevelFunc e && unmodConcrFunc e && not (isConstFunc e))
let aliasingCond = lazy(DiscoverAliasing (methodArgs |> List.map (function var -> VarLiteral(GetExtVarName var))) heapInst)
let argConds = heapInst.methodArgs |> Map.fold (fun acc name value -> acc @ [BinaryEq (VarLiteral(name)) (Const2Expr value)]) []
let allConds = GetAllPossibleConditions specConds argConds [aliasingCond.Force()]
allConds |> List.iter loggerFunc
match __TryOutConditions heapInst allConds with
| Some(candCond,m2,sol) ->
Logger.InfoLine (idt + " - guard found: " + (PrintExpr 0 candCond))
let solThis = match TryFindExistingAndConvertToSolution indent comp m2 candCond callGraph with
| Some(sol2) -> sol2
| None -> sol
let solThis = solThis |> FixSolution comp m
Some(candCond,solThis)
| None ->
Logger.InfoLine (idt + "!!! Giving up !!!")
None
else
// the solution is not immediate
None
// ===========================================================
/// Reads CONFIG.methodToSynth to return a list of methods
/// that Jennisys should attempt to synthesize.
// ===========================================================
let GetMethodsToAnalyze prog =
let __ReadMethodsParam =
let mOpt = Options.CONFIG.methodToSynth;
if mOpt = "*" then
(* all *)
FilterMembers prog FilterMethodMembers
else
let allMethods,neg =
if mOpt.StartsWith("~") then
mOpt.Substring(1), true
else
mOpt, false
(* exact list *)
let methods = allMethods.Split([|','|])
let lst = methods |> Array.fold (fun acc m ->
let idx = m.LastIndexOf(".")
if idx = -1 || idx = m.Length - 1 then
raise (InvalidCmdLineArg("Invalid method full name: " + m))
let compName = m.Substring(0, idx)
let methName = m.Substring(idx + 1)
let c = FindComponent prog compName |> Utils.ExtractOptionMsg ("Cannot find component " + compName)
let mthd = FindMethod c methName |> Utils.ExtractOptionMsg ("Cannot find method " + methName + " in component " + compName)
(c,mthd) :: acc
) []
if neg then
FilterMembers prog FilterMethodMembers |> List.filter (fun e -> not (Utils.ListContains e lst))
else
lst
(* --- function body starts here --- *)
let meths = __ReadMethodsParam
if Options.CONFIG.constructorsOnly then
meths |> List.filter (fun (c,m) -> IsConstructor m)
else
meths
// ============================================================================
/// Goes through a given list of methods of the given program and attempts to
/// synthesize code for each one of them.
///
/// Returns a map from (component * method) |--> Expr * HeapInstance
// ============================================================================
let rec AnalyzeMethods prog members solutionsSoFar =
let __IsAlreadySolved c m solutionMap =
let existingKey = solutionMap |> Map.tryFindKey (fun (cc,mm) v -> CheckSameMethods (c,m) (cc,mm) && not (v = []))
match existingKey with
| Some(_) -> true
| None -> false
let rec __AnalyzeConstructorDeep prog mList solutionsSoFar =
let callGraph = GetCallGraph (solutionsSoFar |> Map.toList) Map.empty
match mList with
| (comp,mthd) :: rest ->
if not (__IsAlreadySolved comp mthd solutionsSoFar) then
let sol = AnalyzeConstructor 2 prog comp mthd callGraph
let unsolved = sol |> Map.filter (fun (c,m) lst -> lst = [] && not(__IsAlreadySolved c m solutionsSoFar)) |> Utils.MapKeys
let newSols = solutionsSoFar |> MergeSolutions sol
__AnalyzeConstructorDeep prog (rest@unsolved) newSols
else
__AnalyzeConstructorDeep prog rest solutionsSoFar
| [] -> solutionsSoFar
(* --- function body starts here --- *)
match members with
| (comp,m) :: rest ->
match m with
| Method(_,_,_,_,_) ->
let sol = __AnalyzeConstructorDeep prog [comp,m] solutionsSoFar
Logger.InfoLine ""
AnalyzeMethods prog rest sol
| _ -> AnalyzeMethods prog rest solutionsSoFar
| [] -> solutionsSoFar
let Analyze prog filename =
let rec __AddMethodsFromProg methods solutions =
match methods with
| (c,m) :: rest ->
let exists = solutions |> Map.tryFindKey (fun (c1,m1) _ -> CheckSameMethods (c,m) (c1,m1))
match exists with
| Some(_) -> __AddMethodsFromProg rest solutions
| None -> __AddMethodsFromProg rest (solutions |> Map.add (c,m) [])
| [] -> solutions
/// Prints given solutions to a file
let __PrintSolution prog outFileName solutions =
use file = System.IO.File.CreateText(outFileName)
file.AutoFlush <- true
//let prog = Program(solutions |> Utils.MapKeys |> Map.ofList |> Utils.MapKeys)
// add all other methods (those for which we don't have synthesized solution) as well
let allMethods = FilterMembers prog FilterConstructorMembers
let extSolutions = solutions //__AddMethodsFromProg allMethods solutions
let synthCode = PrintImplCode prog extSolutions Options.CONFIG.genRepr false
fprintfn file "%s" synthCode
(* --- function body starts here --- *)
let solutions = AnalyzeMethods prog (GetMethodsToAnalyze prog) Map.empty
let progName = System.IO.Path.GetFileNameWithoutExtension(filename)
let outFlatSolFileName = dafnySynthFileNameTemplate.Replace("###", progName)
Logger.InfoLine "Printing synthesized code"
__PrintSolution prog outFlatSolFileName solutions
()
//let AnalyzeComponent_rustan c =
// match c with
// | Component(Class(name,typeParams,members), Model(_,_,cVars,frame,inv), code) ->
// let aVars = Fields members
// let aVars0 = Rename "0" aVars
// let aVars1 = Rename "1" aVars
// let allVars = List.concat [aVars; List.map (fun (a,b) -> b) aVars0; List.map (fun (a,b) -> b) aVars1; cVars]
// let inv0 = Substitute (Map.ofList aVars0) inv
// let inv1 = Substitute (Map.ofList aVars1) inv
// // Now print it as a Dafny program
// printf "class %s" name
// match typeParams with
// | [] -> ()
// | _ -> printf "<%s>" (typeParams |> PrintSep ", " (fun tp -> tp))
// printfn " {"
// // the fields: original abstract fields plus two more copies thereof, plus and concrete fields
// allVars |> List.iter (function Var(nm,None) -> printfn " var %s;" nm | Var(nm,Some(tp)) -> printfn " var %s: %s;" nm (PrintType tp))
// // the method
// printfn " method %s_checkInjective() {" name
// printf " assume " ; (VarsAreDifferent aVars0 aVars1) ; printfn ";"
// printfn " assume %s;" (PrintExpr 0 inv0)
// printfn " assume %s;" (PrintExpr 0 inv1)
// printfn " assert false;" // {:msg "Two abstract states map to the same concrete state"}
// printfn " }"
// // generate code
// members |> List.iter (function
// | Constructor(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv false)
// | Method(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv true)
// | _ -> ())
// // the end of the class
// printfn "}"
// | _ -> assert false // unexpected case
|