summaryrefslogtreecommitdiff
path: root/Source/Jennisys/Analyzer.fs
blob: db4887ed8ad8c8c61ae4d3ac37c648f2d78f1489 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
module Analyzer

open Ast
open Getters
open AstUtils
open CodeGen
open DafnyModelUtils
open DafnyPrinter
open FixpointSolver 
open MethodUnifier
open Modularizer
open Options
open PipelineUtils
open PrintUtils
open Resolver  
open TypeChecker
open Utils

open Microsoft.Boogie

let Rename suffix vars =
  vars |> List.map (function Var(nm,tp,old) -> nm, Var(nm + suffix, tp, old))

let ReplaceName substMap nm =
  match Map.tryFind nm substMap with
    | Some(Var(name,_,_)) -> name
    | None -> nm

let rec Substitute substMap = function
  | IdLiteral(s) -> IdLiteral(ReplaceName substMap s)
  | Dot(e,f) -> Dot(Substitute substMap e, ReplaceName substMap f)
  | UnaryExpr(op,e) -> UnaryExpr(op, Substitute substMap e)
  | BinaryExpr(n,op,e0,e1) -> BinaryExpr(n, op, Substitute substMap e0, Substitute substMap e1)
  | SelectExpr(e0,e1) -> SelectExpr(Substitute substMap e0, Substitute substMap e1)
  | UpdateExpr(e0,e1,e2) -> UpdateExpr(Substitute substMap e0, Substitute substMap e1, Substitute substMap e2)
  | SequenceExpr(ee) -> SequenceExpr(List.map (Substitute substMap) ee)
  | SeqLength(e) -> SeqLength(Substitute substMap e)
  | ForallExpr(vv,e) -> ForallExpr(vv, Substitute substMap e)
  | expr -> expr

let GenMethodAnalysisCode comp m assertion genOld =
  let methodName = GetMethodName m
  let signature = GetMethodSig m 
  let ppre,ppost = GetMethodPrePost m 
  let pre = Desugar ppre
  let post = Desugar ppost |> RewriteOldExpr  
  let ghostPre = GetMethodGhostPrecondition m |> Desugar 
  //let sigStr = PrintSig signature
  let sigVarsDecl = 
    match signature with
    | Sig(ins,outs) -> ins @ outs |> List.fold (fun acc vd -> acc + (sprintf "    var %s;" (PrintVarDecl vd)) + newline) ""

  "  method " + methodName + "()" + newline +
  "    modifies this;" + newline +
  "  {" + newline + 
  // print signature as local variables
  sigVarsDecl +
  "    // assume precondition" + newline +
  "    assume " + (PrintExpr 0 pre) + ";" + newline +
  "    // assume ghost precondition" + newline +
  "    assume " + (PrintExpr 0 ghostPre) + ";" + newline +
  "    // assume invariant and postcondition" + newline + 
  "    assume Valid();" + newline +
  (if genOld then "    assume Valid_old();" + newline else "") + 
  "    assume " + (PrintExpr 0 post) + ";" + newline +
  "    // assume user defined invariant again because assuming Valid() doesn't always work" + newline +
  (GetInvariantsAsList comp |> PrintSep newline (fun e -> "    assume " + (PrintExpr 0 e) + ";")) + newline +
  // if the following assert fails, the model hints at what code to generate; if the verification succeeds, an implementation would be infeasible
  "    // assert false to search for a model satisfying the assumed constraints" + newline + 
  "    assert " + (PrintExpr 0 assertion) + ";" + newline + 
  "  }" + newline
             
let rec MethodAnalysisPrinter onlyForThese assertion genOld comp = 
  let cname = GetComponentName comp
  match onlyForThese with
  | (c,m) :: rest when GetComponentName c = cname -> 
    match m with 
    | Method(_) -> 
        (GenMethodAnalysisCode c m assertion genOld) + newline +
        (MethodAnalysisPrinter rest assertion genOld comp)
    | _ -> ""
  | _ :: rest -> MethodAnalysisPrinter rest assertion genOld comp 
  | [] -> ""     

//  =========================================================================
/// For a given constant "objRefName" (which is an object, something like 
/// "gensym32"), finds a path of field references from "this" (e.g. something
/// like "this.next.next"). 
///
/// Implements a backtracking search over the heap entries to find that
/// path.  It starts from the given object, and follows the backpointers
/// until it reaches the root ("this")
//  ========================================================================= 
// let objRef2ExprCache = new System.Collections.Generic.Dictionary<string, Expr>()
let GetObjRefExpr objRefName (heapInst: HeapInstance) = 
  let rec __GetObjRefExpr objRefName visited = 
    if Set.contains objRefName visited then 
      None
    else 
      let newVisited = Set.add objRefName visited
      match objRefName with
      | "this" -> Some(ObjLiteral("this"))
      | _ -> 
          let rec __fff lst = 
            match lst with
            | ((o,var),_) :: rest -> 
                match __GetObjRefExpr o.name newVisited with
                | Some(expr) -> Some(Dot(expr, GetExtVarName var))
                | None -> __fff rest
            | [] -> None
          let backPointers = heapInst.concreteValues |> List.choose (function 
                                                                        FieldAssignment (x,l) -> 
                                                                          if l = ObjLiteral(objRefName) then Some(x,l) else None
                                                                        |_ -> None)
          __fff backPointers 
  (* --- function body starts here --- *)
  __GetObjRefExpr objRefName (Set.empty)
// THIS DOESN'T WORK BECAUSE THE CACHE HAS TO BE PURGED AFTER EVERY METHOD
//  if objRef2ExprCache.ContainsKey(objRefName) then
//    Some(objRef2ExprCache.[objRefName])
//  else
//    let res = __GetObjRefExpr objRefName (Set.empty)
//    match res with 
//    | Some(e) -> objRef2ExprCache.Add(objRefName, e)
//    | None -> ()
//    res

//  =============================================================================
/// Returns an expression that combines the post-condition of a given method with
/// invariants for all objects present on the heap
//  =============================================================================
let GetHeapExpr prog mthd heapInst includePreState = 
  // get expressions to evaluate:
  //   - add post (and pre?) conditions                                     
  //   - go through all objects on the heap and assert their invariants  
  let pre,post = GetMethodPrePost mthd
  let prepostExpr = post //TODO: do we need the "pre" here as well?
  let heapObjs = heapInst.assignments |> List.fold (fun acc asgn ->
                                                      match asgn with
                                                      | FieldAssignment((o,_),_) -> acc |> Set.add o
                                                      | _ -> acc) Set.empty
  heapObjs |> Set.fold (fun acc o -> 
                          let receiverOpt = GetObjRefExpr o.name heapInst
                          let receiver = Utils.ExtractOption receiverOpt
                          let objComp = FindComponent prog (GetTypeShortName o.objType) |> Utils.ExtractOption
                          let objInvs = GetInvariantsAsList objComp
                          let objInvsUpdated = objInvs |> List.map (ChangeThisReceiver receiver)
                          let objInvFinal = objInvsUpdated |> List.fold BinaryAnd TrueLiteral
                          let objAllInvs = 
                            if includePreState then
                              let objInvPre = MakeOld objInvFinal
                              BinaryAnd objInvFinal objInvPre
                            else  
                              objInvFinal
                          BinaryAnd prepostExpr objAllInvs
                      ) prepostExpr

let IsUnmodConcrOnly prog (comp,meth) expr = 
  let isConstr = IsModifiableObj (ThisObj comp) (comp,meth)
  let rec __IsUnmodOnly args expr = 
    let __IsUnmodOnlyLst elist = 
      elist |> List.fold (fun acc e -> acc && (__IsUnmodOnly args e)) true
    match expr with                                                
    | IntLiteral(_)
    | BoolLiteral(_)
    | BoxLiteral(_)
    | Star        
    | VarDeclExpr(_)
    | ObjLiteral(_)                         -> true
    | VarLiteral(id)                        -> args |> List.exists (fun var -> GetExtVarName var = id)
    | IdLiteral("null") | IdLiteral("this") -> true
    | IdLiteral(id)                         -> 
        not (isConstr || IsAbstractField comp id)
    | Dot(e, fldName)                       -> //if isConstr then false else __IsUnmodOnlyLst [e] 
        if isConstr then
          false
        else
          // assume it is unmodifiable, because it is a method, so just check if it's concrete
          let lhsType = InferType prog comp (MethodArgChecker prog meth) e |> Utils.ExtractOptionMsg (sprintf "Inference failed for %s" (PrintExpr 0 e))
          IsConcreteField lhsType fldName          
    | AssertExpr(e)
    | AssumeExpr(e)
    | SeqLength(e)
    | LCIntervalExpr(e)
    | MethodOutSelect(e,_)   
    | OldExpr(e)
    | UnaryExpr(_,e)                        -> __IsUnmodOnlyLst [e]
    | SelectExpr(e1, e2)
    | BinaryExpr(_,_,e1,e2)                 -> __IsUnmodOnlyLst [e1; e2]
    | IteExpr(e3, e1, e2)         
    | UpdateExpr(e1, e2, e3)                -> __IsUnmodOnlyLst [e1; e2; e3]
    | SequenceExpr(exprs) | SetExpr(exprs)  -> __IsUnmodOnlyLst exprs
    | MethodCall(rcv,_,_,aparams)           -> __IsUnmodOnlyLst (rcv :: aparams)
    | ForallExpr(vars,e)                    -> __IsUnmodOnly (args @ vars) e
  (* --- function body starts here --- *)
  __IsUnmodOnly (GetMethodInArgs meth) expr

let AddUnif indent e v unifMap =
  let idt = Indent indent
  let builder = new CascadingBuilder<_>(unifMap)
  builder {
    let! notAlreadyAdded = Map.tryFind e unifMap |> Utils.IsNoneOption |> Utils.BoolToOption
    Logger.DebugLine (idt + "    - adding unification " + (PrintExpr 0 e) + " <--> " + (PrintConst v))
    return Map.add e v unifMap
  }

//TODO: unifications should probably by "Expr <--> Expr" instead of "Expr <--> Const"
let rec GetUnifications prog indent (comp,meth) heapInst unifs expr =
  let idt = Indent indent
  // - first looks if the give expression talks only about method arguments (args)
  // - then it tries to evaluate it to a constant
  // - if all of these succeed, it adds a unification rule e <--> val(e) to the given unifMap map
  let __AddUnif e unifsAcc =
    if IsConstExpr e then
      unifsAcc
    else      
      let builder = new CascadingBuilder<_>(unifsAcc)
      builder {
        let! argsOnly = IsUnmodConcrOnly prog (comp,meth) e |> Utils.BoolToOption
        let! v = try Some(EvalFull heapInst e |> Expr2Const) with ex -> None
        return AddUnif indent e v unifsAcc
      }
  (* --- function body starts here --- *)
  AstUtils.DescendExpr2 __AddUnif expr unifs

//  =======================================================
/// Returns a map (Expr |--> Const) containing unifications
/// found for the given method wrt to heapInst.
/// 
/// The list of potential unifications include: 
///   (1) arg-value pairs for all method arguments,
///   (2) field-value pairs for all unmodifiable fields,
///   (3) expr-value pairs where expr are unmodifiable 
///       expressions found in the spec.
//  =======================================================
let GetUnificationsForMethod indent prog comp m heapInst =
  let idt = Indent indent
  let rec GetArgValueUnifications args = 
    match args with
    | var :: rest -> 
        let name = GetExtVarName var
        match Map.tryFind name heapInst.methodArgs with
        | Some(c) ->
            GetArgValueUnifications rest |> AddUnif indent (VarLiteral(name)) c
        | None -> failwith ("couldn't find value for argument " + name)
    | [] -> Map.empty
  let rec GetFldValueUnifications unifs = 
    heapInst.assignments |> List.fold (fun acc asgn ->  
                                         match asgn with 
                                         | FieldAssignment((obj,var), fldVal) -> 
                                             try 
                                               let vname = GetExtVarName var
                                               let comp = obj.objType |> FindComponentForType prog |> Utils.ExtractOption
                                               if IsConcreteField comp vname then
                                                 let path = GetObjRefExpr obj.name heapInst |> Utils.ExtractOption
                                                 let c = Expr2Const fldVal
                                                 AddUnif indent (Dot(path, vname)) c acc
                                               else
                                                 acc
                                             with
                                             | ex -> 
                                                 Logger.WarnLine ("[WARN]: error during getting field value unifications: " + ex.Message)
                                                 acc
                                         | _ -> acc
                                      ) unifs

  (* --- function body starts here --- *)
  let unifs = GetArgValueUnifications (GetMethodInArgs m)
  let unifs = 
    //TODO: it should really read the "modifies" clause and figure out modifiable fields from there
    if not (IsConstructor m) then 
      GetFldValueUnifications unifs
    else
      unifs
  GetUnifications prog indent (comp,m) heapInst unifs (GetMethodPrePost m |> fun x -> BinaryAnd (fst x) (snd x))

//  =======================================================
/// Applies given unifications onto a given heapInstance
/// 
/// If "conservative" is true, applies only those that 
/// can be verified to hold, otherwise applies all of them
//  =======================================================
let rec ApplyUnifications indent prog comp mthd unifs heapInst conservative = 
  let idt = Indent indent
  /// 
  let __CheckUnif o f e idx =
    if not conservative || not Options.CONFIG.checkUnifications then 
      true 
    else
      let lhs = if o = NoObj then
                  VarLiteral(GetVarName f)
                else
                  let objRefExpr = GetObjRefExpr o.name heapInst |> Utils.ExtractOptionMsg ("Couldn't find a path from 'this' to " + o.name)
                  let fldName = GetVarName f                             
                  Dot(objRefExpr, fldName)
      let assertionExpr = match GetVarType f with
                          | Some(SeqType(_)) when not (idx = -1) -> BinaryEq (SelectExpr(lhs, IntLiteral(idx))) e
                          | Some(SetType(_)) when not (idx = -1) -> BinaryIn e lhs
                          | _                                    -> BinaryEq lhs e 
      // check if the assertion follows and if so update the env
      let genOld = false
      let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter [comp,mthd] assertionExpr genOld) true genOld
      Logger.Debug (idt + "    - checking assertion: " + (PrintExpr 0 assertionExpr) + " ... ")
      let ok = CheckDafnyProgram code ("unif_" + (GetMethodFullName comp mthd))
      if ok then
        Logger.DebugLine " HOLDS"
      else
        Logger.DebugLine " DOESN'T HOLD"
      ok
  ///
  let __Apply (o,f) c e value= 
    if value = Const2Expr c then
      if __CheckUnif o f e -1 then                                                
        // change the value to expression
        //Logger.TraceLine (sprintf "%s    - applied: %s.%s --> %s" idt (PrintConst o) (GetVarName f) (PrintExpr 0 e) )
        e 
      else
        value
    else 
      let rec __UnifyOverLst lst cnt =
        match lst with
        | lstElem :: rest when lstElem = Const2Expr c ->
            if __CheckUnif o f e cnt then
              //Logger.TraceLine (sprintf "%s    - applied: %s.%s[%d] --> %s" idt (PrintConst o) (GetVarName f) cnt (PrintExpr 0 e) )
              e :: __UnifyOverLst rest (cnt+1)
            else  
              lstElem :: __UnifyOverLst rest (cnt+1)
        | lstElem :: rest ->
            lstElem :: __UnifyOverLst rest (cnt+1)
        | [] -> []
      // see if it's a list, then try to match its elements, otherwise leave it as is
      match value with
      | SequenceExpr(elist) -> 
          let newExprList = __UnifyOverLst elist 0
          SequenceExpr(newExprList)
      | SetExpr(elist) ->
          let newExprList = __UnifyOverLst elist 0
          SetExpr(newExprList)
      | _ -> 
          value

  (* --- function body starts here --- *)
  match unifs with
  | (e,c) :: rest -> 
      let heapInst = ApplyUnifications indent prog comp mthd rest heapInst conservative
      let newHeap = heapInst.assignments|> List.fold (fun acc asgn ->
                                                        match asgn with
                                                        | FieldAssignment((o,f),value) when heapInst.modifiableObjs |> Set.contains o ->
                                                            let e2 = __Apply (o,f) c e value
                                                            acc @ [FieldAssignment((o,f),e2)] 
                                                        | _ -> acc @ [asgn]
                                                     ) [] 
      let newRetVals = heapInst.methodRetVals |> Map.fold (fun acc key value ->
                                                             let e2 = __Apply (NoObj,Var(key, None, false)) c e value
                                                             acc |> Map.add key e2
                                                          ) Map.empty
      {heapInst with assignments = newHeap; methodRetVals = newRetVals}
  | [] -> heapInst

//  ====================================================================================
/// Returns whether the code synthesized for the given method can be verified with Dafny
//  ====================================================================================
let VerifySolution prog solutions genRepr =
  // print the solution to file and try to verify it with Dafny
  //let prog = Program(solutions |> Utils.MapKeys |> Map.ofList |> Utils.MapKeys)
  let code = PrintImplCode prog solutions genRepr false
  CheckDafnyProgram code dafnyVerifySuffix

let rec DiscoverAliasing exprList heapInst = 
  match exprList with
  | e1 :: rest -> 
      let eqExpr = rest |> List.fold (fun acc e -> 
                                        if EvalFull heapInst (BinaryEq e1 e) = TrueLiteral then
                                          BinaryAnd acc (BinaryEq e1 e)
                                        else
                                          acc
                                     ) TrueLiteral
      BinaryAnd eqExpr (DiscoverAliasing rest heapInst)
  | [] -> TrueLiteral

//
let DontResolveUnmodifiableStuff prog comp meth expr =
  let methodArgs = GetMethodInArgs meth
  let __IsMethodArg argName = methodArgs |> List.exists (fun var -> GetExtVarName var = argName)
  let isMod = IsModifiableObj (ThisObj comp) (comp,meth)
  match expr with
  | VarLiteral(id) when __IsMethodArg id -> false 
  | IdLiteral(id) when id = "this" || id = "null" -> true
  | IdLiteral(id) | Dot(_, id) -> 
      // this must be a field, so resolve it only if modifiable
      isMod
  | _ -> true

/// Descends down a given expression and returns bunch of sub-expressions that all evaluate to true
let FindClauses trueOnly resolverFunc heapInst expr = 
  let MyFun expr acc =
    try
      match expr with
      // skip binary logical operators because we want to find smallest sub-expressions
      | BinaryExpr(_,op,_,_) when IsLogicalOp op -> acc 
      | _ ->
          let exprEval = Eval heapInst resolverFunc expr
          match exprEval with
          | _ when exprEval = TrueLiteral -> acc
          | _ ->
              let exprAllResolved = EvalFull heapInst expr
              match exprAllResolved with
              | BoolLiteral(true) -> acc @ (exprEval |> SplitIntoConjunts)
              | BoolLiteral(false) -> acc //if trueOnly then acc else acc @ (UnaryNot exprEval |> SplitIntoConjunts)
              | _ -> acc
    with
    | _ -> acc
  (* --- function body starts here --- *)
  DescendExpr2 MyFun expr []

/// Descends down a given expression and returns all sub-expressions that evaluate to TrueLiteral
let FindTrueClauses resolverFunc heapInst expr = 
  FindClauses true resolverFunc heapInst expr

/// Returns a list of boolean expressions obtained by combining (in some way) 
/// the two given list of conditions conditions
let GetAllPossibleConditions specConds argConds aliasingConds = 
  let __Conjoin lst = lst |> List.fold (fun acc e -> BinaryAnd acc e) TrueLiteral
  let __Preproc lst = lst |> List.map SplitIntoConjunts |> List.concat |> Utils.ListDeduplicate

  // 0. aliasing conditions
  // 1. conjunction of spec conditions
  // 2. individual arg conditions
  // 3. conjunction of arg conditions
  // 4. individual spec conditions
  let aliasing = aliasingConds |> __Preproc
  let specIndi = specConds |> __Preproc
  let specConj = [__Conjoin specIndi]
  let argsIndi = argConds |> __Preproc
  let argsConj = [__Conjoin argsIndi]
  
  let allConds = aliasing @ specConj @ argsIndi @ specIndi @ argsConj
  allConds |> List.filter (fun e -> not (e = TrueLiteral)) 
           |> Utils.ListDeduplicate

// check whther a given solution (in the form of heapInst) verifies assuming a given guard
let rec CheckGuard prog comp m candCond indent idt heapInst callGraph =
  let rec __MinGuard guard idx m2 sol = 
    let conjs = SplitIntoConjunts guard
    let len = List.length conjs
    if idx >= 0 && idx < len && len > 1 then
      let guard' = conjs |> Utils.ListRemoveIdx (len - idx - 1) |> List.fold BinaryAnd TrueLiteral
      match CheckGuard prog comp m guard' indent idt heapInst callGraph with
      | Some(x) -> x
      | None -> __MinGuard guard (idx+1) m2 sol
    else
      guard, m2, sol

  let m2 = AddPrecondition m candCond
  let sol = MakeModular (indent+2) prog comp m2 candCond heapInst callGraph
  Logger.Info (idt + "    - verifying partial solution ... ")
  let verified = 
    if Options.CONFIG.verifyPartialSolutions then
      VerifySolution prog sol Options.CONFIG.genRepr
    else 
      true
  if verified then
    if Options.CONFIG.verifyPartialSolutions then Logger.InfoLine "VERIFIED" else Logger.InfoLine "SKIPPED"
    if Options.CONFIG.minimizeGuards then
      Logger.InfoLine(idt + "    - minimizing guard ... " + (PrintExpr 0 candCond))
      Some(__MinGuard candCond 0 m2 sol)
    else
      Some(candCond,m2,sol)
  else 
    Logger.InfoLine ("NOT VERIFIED")
    None
        
// iteratively tries to remove conjunts and check whether the solutions still verifies
//let MinimizeGuard guard prog comp m heapInst callGraph indent = 


//  ============================================================================
/// Attempts to synthesize the initialization code for the given constructor "m"
///
/// Returns a (heap,env,ctx) tuple
//  ============================================================================                           
let rec AnalyzeConstructor indent prog comp m callGraph =
  let idt = Indent indent
  let TryFindAndVerify m = 
    match TryFindExistingAndConvertToSolution indent comp m TrueLiteral callGraph with
    | Some(sol) ->
        if VerifySolution prog sol Options.CONFIG.genRepr then
          Logger.InfoLine (idt +  "    ~~~ VERIFIED ~~~")
          Some(sol)
        else 
          Logger.InfoLine (idt +  "    !!! NOT VERIFIED !!!")
          None
    | None -> None

  (* --- function body starts here --- *)
  Logger.InfoLine (idt + "[*] Analyzing constructor")
  Logger.InfoLine (idt + "------------------------------------------")
  Logger.InfoLine (Printer.PrintMethodSignFull (indent + 4) comp m)
  Logger.InfoLine (idt + "------------------------------------------")
  match TryFindAndVerify m with
  | Some(sol) -> sol
  | None -> 
      let methodName = GetMethodName m
      let pre,post = GetMethodPrePost m
      // generate Dafny code for analysis first
      let genOld = true
      let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter [comp,m] FalseLiteral genOld) true genOld
      Logger.Info     (idt + "    - searching for an instance      ...")
      let models = RunDafnyProgram code (dafnyScratchSuffix + "_" + (GetMethodFullName comp m))  
      if models.Count = 0 then
        // no models means that the "assert false" was verified, which means that the spec is inconsistent
        Logger.WarnLine (idt + " !!! SPEC IS INCONSISTENT !!!")
        Map.empty
      else 
        if models.Count > 1 then 
          Logger.WarnLine " FAILED "
          failwith "internal error (more than one model for a single constructor analysis)"
        Logger.InfoLine " OK "
        let model = models.[0]
        let hModel = ReadFieldValuesFromModel model prog comp m
        let heapInst = ResolveModel hModel (comp,m)
        let unifs = GetUnificationsForMethod indent prog comp m heapInst |> Map.toList
        let heapInst = ApplyUnifications indent prog comp m unifs heapInst true
        
        // split into method calls
        let sol = MakeModular indent prog comp m TrueLiteral heapInst callGraph |> FixSolution comp m

        if Options.CONFIG.verifySolutions then
          Logger.InfoLine (idt + "    - verifying synthesized solution ... ")
          let verified = VerifySolution prog sol Options.CONFIG.genRepr
          Logger.Info (idt + "    ")
          if verified then
            Logger.InfoLine "~~~ VERIFIED ~~~"
            sol
          else 
            Logger.InfoLine "!!! NOT VERIFIED !!!"
            if Options.CONFIG.inferConditionals then
              TryRecursion (indent + 4) prog comp m unifs heapInst callGraph
            else
              sol      
        else
          sol             
and TryRecursion indent prog comp m unifs heapInst callGraph = 
  let idt = Indent indent

  /// checks whether an expression is ok, meaning 
  ///   - only immediate concrete fields of the "this" object are used,
  ///   - no recursion on the same object with the same parameters
  let __IsOk hInst expr = 
    let compName = GetComponentName comp
    let methName = GetMethodName m
    let myVisitor = 
        fun expr acc ->
        if not acc then
            false
        else
            match expr with
            | Dot(discr, fldName) -> 
                let obj = EvalFull heapInst discr
                match obj with 
                | ObjLiteral(id) when id = "this" -> 
                    try 
                    let fname = RenameFromOld fldName
                    IsConcreteField (InferType prog comp (MethodArgChecker prog m) discr |> Utils.ExtractOption) fname
                    with
                    | _ -> false
                | ObjLiteral(id) -> false
                | _ -> failwithf "Didn't expect the discriminator of a Dot to not be ObjLiteral"
            | MethodCall(receiver, cn, mn, elst) when receiver = ThisLiteral && cn = compName && mn = methName -> 
                elst |> List.exists (function VarLiteral(_) -> false | _ -> true)
            | _ -> true                          
    DescendExpr2 myVisitor expr true

  /// Finds all modifiable fields in a given hInst, and checks if an "ok" 
  /// expression exists for each one of them.
  ///
  /// Returns all possible combinations of "ok" solutions (these are not verified yet).
  let __GetAllAssignments hInst premises = 
    let rec __IterVars vars = 
      match vars with
      | lhs :: [] -> 
          let lhsOptions = premises |> Set.toList 
                                    |> List.choose (function
                                                      | BinaryExpr(_,"=",l,r) -> if l = lhs then Some(r) elif r = lhs then Some(l) else None
                                                      | _ -> None)
                                    |> List.filter (__IsOk hInst)
                                    |> List.map (fun e -> [lhs,e])
          lhsOptions
      | lhs :: rest -> 
          let lhsOptions = __IterVars [lhs]
          if List.isEmpty lhsOptions then
            List.empty
          else 
            let restOptions = __IterVars rest 
            Utils.ListCombine (fun t1 t2 -> t1 @ t2) lhsOptions restOptions
      | [] -> List.empty
                                                              
    let stmts = ConvertToStatements hInst true
    let modVars = stmts |> List.choose (function
                                          | Assign(lhs,_) -> Some(lhs)
                                          | _ -> None)
    __IterVars modVars

  /// Print a given list of assignments
  let rec __PrintSol indent s = 
    let idt = Indent indent
    match s with
    | (l,r) :: [] -> 
        sprintf "%s%s := %s" idt (PrintExpr 0 l) (PrintExpr 0 r)
    | (l,r) :: rest -> 
        let str = __PrintSol indent [l,r]
        str + newline + (__PrintSol indent rest)  
    | [] -> ""      
      
  /// Returns a given method's postcondition where 
  ///   - all input variables are renamed so that their names start with "$" and 
  ///     (so that the unifier know that it's ok to try to unify those variables)
  ///   - all output variables are rewritten as $this.<method_name>(<args>)["<out_var_name>"]
  ///     (so that it is clear that they are results of a method call)
  let __GetMethodPostTemplate comp m = 
    let compName = GetComponentName comp
    let methName = GetMethodName m
    let ins = GetMethodInArgs m
    let outs = GetMethodOutArgs m
    let post = GetMethodPrePost m |> snd 
    post |> RewriteWithCtx (fun ctx e -> 
                              match e with 
                              | VarLiteral(id) when not (IsInVarList ctx id) -> 
                                  if IsInVarList outs id then
                                    let mcall = MethodCall(ThisLiteral, compName, methName, ins |> List.map (function var -> VarLiteral("$" + (GetExtVarName var))))
                                    let outSel = MethodOutSelect(mcall, id)
                                    Some(outSel)
                                  else
                                    Some(VarLiteral("$" + id)) 
                              | _ -> None) []
        |> ChangeThisReceiver (VarLiteral("$this"))

  /// Merges ...
  let __MergeSolutions hInst s = 
    let __FindRhs lhs = s |> List.choose (fun (l,r) -> if l = lhs then Some(r) else None) |> Utils.ListToOption
    let rec __FixAssignments asgs = 
      match asgs with
      | asg :: rest -> 
          let newAsg = 
            match asg with
            | FieldAssignment((obj,var) as discr,valExpr) -> 
                let objPath = GetObjRefExpr obj.name hInst |> Utils.ExtractOption
                let lhs = Dot(objPath, GetExtVarName var)
                match __FindRhs lhs with
                | Some(rhs) -> FieldAssignment(discr,rhs)
                | None -> asg
            | _ -> asg
          newAsg :: (__FixAssignments rest)              
      | [] -> []
    let rec __FixRetValues retVals = 
      match retVals with
      | (varName,varExpr) :: rest -> 
          let lhs = VarLiteral(varName)
          let newVarExpr = 
            match __FindRhs lhs with
            | Some(rhs) -> rhs
            | None -> varExpr
          __FixRetValues rest |> Map.add varName newVarExpr
      | [] -> Map.empty
    if s = [] then 
      hInst
    else 
      // fix assignments
      let newAsgs = __FixAssignments hInst.assignments
      // fix return values
      let newRetVals = __FixRetValues (hInst.methodRetVals |> Map.toList)
      {hInst with assignments   = newAsgs; 
                  methodRetVals = newRetVals}


  /// For a given heap instance and a list of possible solutions, it iterates 
  /// trough all of them and returns whichever verifies first. 
  let rec __IterSolutions hInst premises wrongSol sList = 
    match sList with
    | s :: rest -> 
        Logger.InfoLine (idt + "Candidate solution:")
        Logger.InfoLine (__PrintSol (indent + 4) s)
        let hInst' = __MergeSolutions hInst s
        let sol = Utils.MapSingleton (comp,m) [TrueLiteral, hInst']
        if not (hInst' = hInst) && VerifySolution prog sol Options.CONFIG.genRepr then
          Logger.InfoLine (idt + "  ~~~ VERIFIED ~~~")
          sol
        else 
          Logger.InfoLine (idt + "  !!! NOT VERIFIED !!!")  
          match TryInferConditionals indent prog comp m unifs hInst' callGraph premises with
          | Some(candCond,solThis) -> 
              let m' = AddPrecondition m (UnaryNot(candCond))
              let solRest = AnalyzeConstructor (indent + 2) prog comp m' callGraph
              MergeSolutions solThis solRest |> FixSolution comp m
          | None -> 
              __IterSolutions hInst premises wrongSol rest    
    | [] -> wrongSol

  (* --- function body starts here --- *) 
  let loggerFunc = fun e -> Logger.TraceLine (sprintf "%s    --> %s" idt (PrintExpr 0 e))

  //TODO
  let expandOnlyModVarsFunc = fun e ->
    true
//    let __CheckExpr l = 
//      //TODO: FIX THIS!!!!!
//      match l with 
//      | VarLiteral(vname) -> GetMethodOutArgs m |> List.exists (fun var -> GetVarName var = vname)
//      | IdLiteral(_) -> true
//      | Dot(_,_) -> true
//      | _ -> false     
//    match e with
//    | BinaryExpr(_,"=",l,_) -> 
//        //TODO: it should really check both lhs and rhs
//        __CheckExpr l
//    | BinaryExpr(_,op,l,_) when IsRelationalOp op ->
//        __CheckExpr l
//    | _ -> __CheckExpr e

  let wrongSol = Utils.MapSingleton (comp,m) [TrueLiteral, heapInst]
  let heapInst = ApplyUnifications indent prog comp m unifs heapInst false
  let methodArgs = GetMethodInArgs m
  let heapExpr = GetHeapExpr prog m heapInst true

  //Logger.TraceLine (PrintExpr 0 heapExpr)

  // find set of premises (don't resolve anything)
  let premises = heapExpr |> FindClauses false (fun e -> false) heapInst 

  Logger.TraceLine (sprintf "%s Premises:" idt)
  premises |> List.iter loggerFunc  
                                                     
  // add only recursive call for now
  let post = __GetMethodPostTemplate comp m
    
  let premiseSet = premises |> Set.ofList |> Set.add post 
  let closedPremises = ComputeClosure heapInst expandOnlyModVarsFunc premiseSet
     
  Logger.TraceLine (idt + "Closed premises with methods")
  closedPremises |> Set.iter loggerFunc

  let s = __GetAllAssignments heapInst closedPremises
  if s = [] then
    // have at least one empty sol so that the original heapInst is not missed
    __IterSolutions heapInst closedPremises wrongSol [[]]
  else 
    __IterSolutions heapInst closedPremises wrongSol s
  
and TryInferConditionals indent prog comp m unifs heapInst callGraph premises = 
  let idt = Indent indent
  let loggerFunc = fun e -> Logger.TraceLine (sprintf "%s    --> %s" idt (PrintExpr 0 e))
  let methodArgs = GetMethodInArgs m

  /// Iterates through a given list of boolean conditions and checks
  /// which one suffices.  If it finds such a condition, it returns
  /// the following three things: 
  ///   - the condition itself
  ///   - the method with this condition added to its preconditions
  ///   - a solution
  /// Otherwise returns None.
  let rec __TryOutConditions heapInst candidateConditions =
    let idt = Indent indent
    match candidateConditions with 
    | [] ->
        Logger.InfoLine (sprintf "%s    - no more interesting pre-conditions" idt)
        None
    | candCond :: rest ->
        Logger.InfoLine (sprintf "%s    ________________________" idt)
        Logger.InfoLine (sprintf "%s    candidate pre-condition: %s" idt (PrintExpr 0 candCond))
        Logger.InfoLine (sprintf "%s    ------------------------" idt)
        let idt = idt + "  "
        match CheckGuard prog comp m candCond indent idt heapInst callGraph with
        | Some(guard, m2, sol) -> Some(guard, m2, sol)
        | None -> __TryOutConditions heapInst rest        

  if IsSolution1stLevelOnly heapInst then
    // try to find a non-recursive solution
    Logger.InfoLine (idt + "Strengthening the pre-condition")
    let expr = GetHeapExpr prog m heapInst false
    let specConds1 = expr |> FindTrueClauses (DontResolveUnmodifiableStuff prog comp m) heapInst
    let specConds2 = premises |> Set.toList
    
    let isConstFunc = fun e -> try 
                                 EvalNone heapInst e |> Expr2Const |> ignore 
                                 true
                               with
                               | _ -> false
    let unmodConcrFunc = IsUnmodConcrOnly prog (comp,m)
    let is1stLevelFunc = __Is1stLevelExpr false heapInst
    
    let specConds = (specConds1 @ specConds2) 
                       |> List.map SimplifyExpr 
                       |> List.filter (fun e -> is1stLevelFunc e && unmodConcrFunc e && not (isConstFunc e))
    
    let aliasingCond = lazy(DiscoverAliasing (methodArgs |> List.map (function var -> VarLiteral(GetExtVarName var))) heapInst) 
    let argConds = heapInst.methodArgs |> Map.fold (fun acc name value -> acc @ [BinaryEq (VarLiteral(name)) (Const2Expr value)]) []
    let allConds = GetAllPossibleConditions specConds argConds [aliasingCond.Force()]
    allConds |> List.iter loggerFunc

    match __TryOutConditions heapInst allConds with
    | Some(candCond,m2,sol) ->
        Logger.InfoLine (idt + " - guard found: " + (PrintExpr 0 candCond))
        let solThis = match TryFindExistingAndConvertToSolution indent comp m2 candCond callGraph with
                      | Some(sol2) -> sol2
                      | None -> sol 
        let solThis = solThis |> FixSolution comp m                
        Some(candCond,solThis)
    | None -> 
        Logger.InfoLine (idt + "!!! Giving up !!!")
        None
  else
    // the solution is not immediate
    None
    


//  ===========================================================
/// Reads CONFIG.methodToSynth to return a list of methods 
/// that Jennisys should attempt to synthesize.
//  ===========================================================
let GetMethodsToAnalyze prog =
  let __ReadMethodsParam = 
    let mOpt = Options.CONFIG.methodToSynth;
    if mOpt = "*" then
      (* all *)
      FilterMembers prog FilterMethodMembers
    else
      let allMethods,neg = 
        if mOpt.StartsWith("~") then
          mOpt.Substring(1), true
        else
          mOpt, false
      (* exact list *)
      let methods = allMethods.Split([|','|])
      let lst = methods |> Array.fold (fun acc m -> 
                                         let idx = m.LastIndexOf(".")
                                         if idx = -1 || idx = m.Length - 1 then
                                           raise (InvalidCmdLineArg("Invalid method full name: " + m))
                                         let compName = m.Substring(0, idx)
                                         let methName = m.Substring(idx + 1)
                                         let c = FindComponent prog compName |> Utils.ExtractOptionMsg ("Cannot find component " + compName)
                                         let mthd = FindMethod c methName |> Utils.ExtractOptionMsg ("Cannot find method " + methName + " in component " + compName)
                                         (c,mthd) :: acc
                                      ) []
      if neg then
        FilterMembers prog FilterMethodMembers |> List.filter (fun e -> not (Utils.ListContains e lst))
      else
        lst
  (* --- function body starts here --- *)
  let meths = __ReadMethodsParam
  if Options.CONFIG.constructorsOnly then
    meths |> List.filter (fun (c,m) -> IsConstructor m)
  else 
    meths

// ============================================================================
/// Goes through a given list of methods of the given program and attempts to 
/// synthesize code for each one of them.
///
/// Returns a map from (component * method) |--> Expr * HeapInstance
// ============================================================================
let rec AnalyzeMethods prog members solutionsSoFar = 
  let __IsAlreadySolved c m solutionMap = 
      let existingKey = solutionMap |> Map.tryFindKey (fun (cc,mm) v -> CheckSameMethods (c,m) (cc,mm) && not (v = [])) 
      match existingKey with
      | Some(_) -> true
      | None -> false

  let rec __AnalyzeConstructorDeep prog mList solutionsSoFar =
    let callGraph = GetCallGraph (solutionsSoFar |> Map.toList) Map.empty
    match mList with
    | (comp,mthd) :: rest -> 
        if not (__IsAlreadySolved comp mthd solutionsSoFar) then
          let sol = AnalyzeConstructor 2 prog comp mthd callGraph
          let unsolved = sol |> Map.filter (fun (c,m) lst -> lst = [] && not(__IsAlreadySolved c m solutionsSoFar)) |> Utils.MapKeys
          let newSols = solutionsSoFar |> MergeSolutions sol
          __AnalyzeConstructorDeep prog (rest@unsolved) newSols
        else
          __AnalyzeConstructorDeep prog rest solutionsSoFar
    | [] -> solutionsSoFar
  
  (* --- function body starts here --- *)
  match members with
  | (comp,m) :: rest -> 
      match m with
      | Method(_,_,_,_,_) -> 
          let sol = __AnalyzeConstructorDeep prog [comp,m] solutionsSoFar
          Logger.InfoLine ""
          AnalyzeMethods prog rest sol
      | _ -> AnalyzeMethods prog rest solutionsSoFar
  | [] -> solutionsSoFar

let Analyze prog filename =
  let rec __AddMethodsFromProg methods solutions = 
    match methods with
    | (c,m) :: rest -> 
        let exists = solutions |> Map.tryFindKey (fun (c1,m1) _ -> CheckSameMethods (c,m) (c1,m1))
        match exists with
        | Some(_) -> __AddMethodsFromProg rest solutions
        | None -> __AddMethodsFromProg rest (solutions |> Map.add (c,m) [])
    | [] -> solutions

  /// Prints given solutions to a file
  let __PrintSolution prog outFileName solutions = 
    use file = System.IO.File.CreateText(outFileName)
    file.AutoFlush <- true  
    //let prog = Program(solutions |> Utils.MapKeys |> Map.ofList |> Utils.MapKeys)
    // add all other methods (those for which we don't have synthesized solution) as well
    let allMethods = FilterMembers prog FilterConstructorMembers
    let extSolutions = solutions //__AddMethodsFromProg allMethods solutions
    let synthCode = PrintImplCode prog extSolutions Options.CONFIG.genRepr false
    fprintfn file "%s" synthCode

  (* --- function body starts here --- *)
  let solutions = AnalyzeMethods prog (GetMethodsToAnalyze prog) Map.empty
  let progName = System.IO.Path.GetFileNameWithoutExtension(filename)
  let outFlatSolFileName = dafnySynthFileNameTemplate.Replace("###", progName)
  Logger.InfoLine "Printing synthesized code"
  __PrintSolution prog outFlatSolFileName solutions
  ()

//let AnalyzeComponent_rustan c =
//  match c with
//  | Component(Class(name,typeParams,members), Model(_,_,cVars,frame,inv), code) ->
//      let aVars = Fields members
//      let aVars0 = Rename "0" aVars
//      let aVars1 = Rename "1" aVars
//      let allVars = List.concat [aVars; List.map (fun (a,b) -> b) aVars0; List.map (fun (a,b) -> b) aVars1; cVars]
//      let inv0 = Substitute (Map.ofList aVars0) inv
//      let inv1 = Substitute (Map.ofList aVars1) inv
//      // Now print it as a Dafny program
//      printf "class %s" name
//      match typeParams with
//        | [] -> ()
//        | _  -> printf "<%s>"  (typeParams |> PrintSep ", " (fun tp -> tp))
//      printfn " {"
//      // the fields: original abstract fields plus two more copies thereof, plus and concrete fields
//      allVars |> List.iter (function Var(nm,None) -> printfn "  var %s;" nm | Var(nm,Some(tp)) -> printfn "  var %s: %s;" nm (PrintType tp))
//      // the method
//      printfn "  method %s_checkInjective() {" name
//      printf "    assume " ; (VarsAreDifferent aVars0 aVars1) ; printfn ";"
//      printfn "    assume %s;" (PrintExpr 0 inv0)
//      printfn "    assume %s;" (PrintExpr 0 inv1)
//      printfn "    assert false;" // {:msg "Two abstract states map to the same concrete state"}
//      printfn "  }"
//      // generate code
//      members |> List.iter (function
//        | Constructor(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv false)
//        | Method(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv true)
//        | _ -> ())
//      // the end of the class
//      printfn "}"
//  | _ -> assert false  // unexpected case