// Dafny program verifier version 1.9.6.21116, Copyright (c) 2003-2015, Microsoft. // Command Line Options: -nologo -countVerificationErrors:0 -useBaseNameForFileName /compile:0 /print:- c:\dafny\Test\dafny4\Bug136.dfy const $$Language$Dafny: bool; axiom $$Language$Dafny; type Ty; const unique TBool: Ty; const unique TChar: Ty; const unique TInt: Ty; const unique TNat: Ty; const unique TReal: Ty; function TSet(Ty) : Ty; function TISet(Ty) : Ty; function TMultiSet(Ty) : Ty; function TSeq(Ty) : Ty; function TMap(Ty, Ty) : Ty; function TIMap(Ty, Ty) : Ty; function Inv0_TSet(Ty) : Ty; axiom (forall t: Ty :: { TSet(t) } Inv0_TSet(TSet(t)) == t); function Inv0_TISet(Ty) : Ty; axiom (forall t: Ty :: { TISet(t) } Inv0_TISet(TISet(t)) == t); function Inv0_TSeq(Ty) : Ty; axiom (forall t: Ty :: { TSeq(t) } Inv0_TSeq(TSeq(t)) == t); function Inv0_TMultiSet(Ty) : Ty; axiom (forall t: Ty :: { TMultiSet(t) } Inv0_TMultiSet(TMultiSet(t)) == t); function Inv0_TMap(Ty) : Ty; function Inv1_TMap(Ty) : Ty; axiom (forall t: Ty, u: Ty :: { TMap(t, u) } Inv0_TMap(TMap(t, u)) == t); axiom (forall t: Ty, u: Ty :: { TMap(t, u) } Inv1_TMap(TMap(t, u)) == u); function Inv0_TIMap(Ty) : Ty; function Inv1_TIMap(Ty) : Ty; axiom (forall t: Ty, u: Ty :: { TIMap(t, u) } Inv0_TIMap(TIMap(t, u)) == t); axiom (forall t: Ty, u: Ty :: { TIMap(t, u) } Inv1_TIMap(TIMap(t, u)) == u); type TyTag; function Tag(Ty) : TyTag; const unique TagBool: TyTag; const unique TagChar: TyTag; const unique TagInt: TyTag; const unique TagNat: TyTag; const unique TagReal: TyTag; const unique TagSet: TyTag; const unique TagISet: TyTag; const unique TagMultiSet: TyTag; const unique TagSeq: TyTag; const unique TagMap: TyTag; const unique TagIMap: TyTag; const unique TagClass: TyTag; axiom Tag(TBool) == TagBool; axiom Tag(TChar) == TagChar; axiom Tag(TInt) == TagInt; axiom Tag(TNat) == TagNat; axiom Tag(TReal) == TagReal; axiom (forall t: Ty :: { TSet(t) } Tag(TSet(t)) == TagSet); axiom (forall t: Ty :: { TISet(t) } Tag(TISet(t)) == TagISet); axiom (forall t: Ty :: { TMultiSet(t) } Tag(TMultiSet(t)) == TagMultiSet); axiom (forall t: Ty :: { TSeq(t) } Tag(TSeq(t)) == TagSeq); axiom (forall t: Ty, u: Ty :: { TMap(t, u) } Tag(TMap(t, u)) == TagMap); axiom (forall t: Ty, u: Ty :: { TIMap(t, u) } Tag(TIMap(t, u)) == TagIMap); function {:identity} LitInt(x: int) : int; axiom (forall x: int :: {:identity} { LitInt(x): int } LitInt(x): int == x); axiom (forall x: int :: { $Box(LitInt(x)) } $Box(LitInt(x)) == Lit($Box(x))); function {:identity} LitReal(x: real) : real; axiom (forall x: real :: {:identity} { LitReal(x): real } LitReal(x): real == x); axiom (forall x: real :: { $Box(LitReal(x)) } $Box(LitReal(x)) == Lit($Box(x))); function {:identity} Lit(x: T) : T; axiom (forall x: T :: {:identity} { Lit(x): T } Lit(x): T == x); axiom (forall x: T :: { $Box(Lit(x)) } $Box(Lit(x)) == Lit($Box(x))); type char; function char#FromInt(int) : char; function char#ToInt(char) : int; axiom (forall ch: char :: { char#ToInt(ch) } char#FromInt(char#ToInt(ch)) == ch); axiom (forall n: int :: { char#FromInt(n) } 0 <= n && n < 65536 ==> char#ToInt(char#FromInt(n)) == n); type ref; const null: ref; const unique NoTraitAtAll: ClassName; function TraitParent(ClassName) : ClassName; type Box; const $ArbitraryBoxValue: Box; function $Box(T) : Box; function $Unbox(Box) : T; axiom (forall x: T :: { $Box(x) } $Unbox($Box(x)) == x); axiom (forall bx: Box :: { $IsBox(bx, TInt) } $IsBox(bx, TInt) ==> $Box($Unbox(bx): int) == bx && $Is($Unbox(bx): int, TInt)); axiom (forall bx: Box :: { $IsBox(bx, TNat) } $IsBox(bx, TNat) ==> $Box($Unbox(bx): int) == bx && $Is($Unbox(bx): int, TNat)); axiom (forall bx: Box :: { $IsBox(bx, TReal) } $IsBox(bx, TReal) ==> $Box($Unbox(bx): real) == bx && $Is($Unbox(bx): real, TReal)); axiom (forall bx: Box :: { $IsBox(bx, TBool) } $IsBox(bx, TBool) ==> $Box($Unbox(bx): bool) == bx && $Is($Unbox(bx): bool, TBool)); axiom (forall bx: Box :: { $IsBox(bx, TChar) } $IsBox(bx, TChar) ==> $Box($Unbox(bx): char) == bx && $Is($Unbox(bx): char, TChar)); axiom (forall bx: Box, t: Ty :: { $IsBox(bx, TSet(t)) } $IsBox(bx, TSet(t)) ==> $Box($Unbox(bx): Set Box) == bx && $Is($Unbox(bx): Set Box, TSet(t))); axiom (forall bx: Box, t: Ty :: { $IsBox(bx, TISet(t)) } $IsBox(bx, TISet(t)) ==> $Box($Unbox(bx): ISet Box) == bx && $Is($Unbox(bx): ISet Box, TISet(t))); axiom (forall bx: Box, t: Ty :: { $IsBox(bx, TMultiSet(t)) } $IsBox(bx, TMultiSet(t)) ==> $Box($Unbox(bx): MultiSet Box) == bx && $Is($Unbox(bx): MultiSet Box, TMultiSet(t))); axiom (forall bx: Box, t: Ty :: { $IsBox(bx, TSeq(t)) } $IsBox(bx, TSeq(t)) ==> $Box($Unbox(bx): Seq Box) == bx && $Is($Unbox(bx): Seq Box, TSeq(t))); axiom (forall bx: Box, s: Ty, t: Ty :: { $IsBox(bx, TMap(s, t)) } $IsBox(bx, TMap(s, t)) ==> $Box($Unbox(bx): Map Box Box) == bx && $Is($Unbox(bx): Map Box Box, TMap(s, t))); axiom (forall bx: Box, s: Ty, t: Ty :: { $IsBox(bx, TIMap(s, t)) } $IsBox(bx, TIMap(s, t)) ==> $Box($Unbox(bx): IMap Box Box) == bx && $Is($Unbox(bx): IMap Box Box, TIMap(s, t))); axiom (forall v: T, t: Ty :: { $IsBox($Box(v), t) } $IsBox($Box(v), t) <==> $Is(v, t)); axiom (forall v: T, t: Ty, h: Heap :: { $IsAllocBox($Box(v), t, h) } $IsAllocBox($Box(v), t, h) <==> $IsAlloc(v, t, h)); function $Is(T, Ty) : bool; function $IsAlloc(T, Ty, Heap) : bool; function $IsBox(T, Ty) : bool; function $IsAllocBox(T, Ty, Heap) : bool; axiom (forall v: int :: { $Is(v, TInt) } $Is(v, TInt)); axiom (forall v: int :: { $Is(v, TNat) } $Is(v, TNat) <==> v >= 0); axiom (forall v: real :: { $Is(v, TReal) } $Is(v, TReal)); axiom (forall v: bool :: { $Is(v, TBool) } $Is(v, TBool)); axiom (forall v: char :: { $Is(v, TChar) } $Is(v, TChar)); axiom (forall h: Heap, v: int :: { $IsAlloc(v, TInt, h) } $IsAlloc(v, TInt, h)); axiom (forall h: Heap, v: int :: { $IsAlloc(v, TNat, h) } $IsAlloc(v, TNat, h)); axiom (forall h: Heap, v: real :: { $IsAlloc(v, TReal, h) } $IsAlloc(v, TReal, h)); axiom (forall h: Heap, v: bool :: { $IsAlloc(v, TBool, h) } $IsAlloc(v, TBool, h)); axiom (forall h: Heap, v: char :: { $IsAlloc(v, TChar, h) } $IsAlloc(v, TChar, h)); axiom (forall v: Set Box, t0: Ty :: { $Is(v, TSet(t0)) } $Is(v, TSet(t0)) <==> (forall bx: Box :: { v[bx] } v[bx] ==> $IsBox(bx, t0))); axiom (forall v: ISet Box, t0: Ty :: { $Is(v, TISet(t0)) } $Is(v, TISet(t0)) <==> (forall bx: Box :: { v[bx] } v[bx] ==> $IsBox(bx, t0))); axiom (forall v: MultiSet Box, t0: Ty :: { $Is(v, TMultiSet(t0)) } $Is(v, TMultiSet(t0)) <==> (forall bx: Box :: { v[bx] } 0 < v[bx] ==> $IsBox(bx, t0))); axiom (forall v: MultiSet Box, t0: Ty :: { $Is(v, TMultiSet(t0)) } $Is(v, TMultiSet(t0)) ==> $IsGoodMultiSet(v)); axiom (forall v: Seq Box, t0: Ty :: { $Is(v, TSeq(t0)) } $Is(v, TSeq(t0)) <==> (forall i: int :: { Seq#Index(v, i) } 0 <= i && i < Seq#Length(v) ==> $IsBox(Seq#Index(v, i), t0))); axiom (forall v: Set Box, t0: Ty, h: Heap :: { $IsAlloc(v, TSet(t0), h) } $IsAlloc(v, TSet(t0), h) <==> (forall bx: Box :: { v[bx] } v[bx] ==> $IsAllocBox(bx, t0, h))); axiom (forall v: ISet Box, t0: Ty, h: Heap :: { $IsAlloc(v, TISet(t0), h) } $IsAlloc(v, TISet(t0), h) <==> (forall bx: Box :: { v[bx] } v[bx] ==> $IsAllocBox(bx, t0, h))); axiom (forall v: MultiSet Box, t0: Ty, h: Heap :: { $IsAlloc(v, TMultiSet(t0), h) } $IsAlloc(v, TMultiSet(t0), h) <==> (forall bx: Box :: { v[bx] } 0 < v[bx] ==> $IsAllocBox(bx, t0, h))); axiom (forall v: Seq Box, t0: Ty, h: Heap :: { $IsAlloc(v, TSeq(t0), h) } $IsAlloc(v, TSeq(t0), h) <==> (forall i: int :: { Seq#Index(v, i) } 0 <= i && i < Seq#Length(v) ==> $IsAllocBox(Seq#Index(v, i), t0, h))); axiom (forall v: Map Box Box, t0: Ty, t1: Ty :: { $Is(v, TMap(t0, t1)) } $Is(v, TMap(t0, t1)) <==> (forall bx: Box :: { Map#Elements(v)[bx] } { Map#Domain(v)[bx] } Map#Domain(v)[bx] ==> $IsBox(Map#Elements(v)[bx], t1) && $IsBox(bx, t0))); axiom (forall v: Map Box Box, t0: Ty, t1: Ty, h: Heap :: { $IsAlloc(v, TMap(t0, t1), h) } $IsAlloc(v, TMap(t0, t1), h) <==> (forall bx: Box :: { Map#Elements(v)[bx] } { Map#Domain(v)[bx] } Map#Domain(v)[bx] ==> $IsAllocBox(Map#Elements(v)[bx], t1, h) && $IsAllocBox(bx, t0, h))); axiom (forall v: IMap Box Box, t0: Ty, t1: Ty :: { $Is(v, TIMap(t0, t1)) } $Is(v, TIMap(t0, t1)) <==> (forall bx: Box :: { IMap#Elements(v)[bx] } { IMap#Domain(v)[bx] } IMap#Domain(v)[bx] ==> $IsBox(IMap#Elements(v)[bx], t1) && $IsBox(bx, t0))); axiom (forall v: IMap Box Box, t0: Ty, t1: Ty, h: Heap :: { $IsAlloc(v, TIMap(t0, t1), h) } $IsAlloc(v, TIMap(t0, t1), h) <==> (forall bx: Box :: { IMap#Elements(v)[bx] } { IMap#Domain(v)[bx] } IMap#Domain(v)[bx] ==> $IsAllocBox(IMap#Elements(v)[bx], t1, h) && $IsAllocBox(bx, t0, h))); type ClassName; const unique class._System.int: ClassName; const unique class._System.bool: ClassName; const unique class._System.set: ClassName; const unique class._System.seq: ClassName; const unique class._System.multiset: ClassName; function Tclass._System.object() : Ty; function dtype(ref) : Ty; function TypeTuple(a: ClassName, b: ClassName) : ClassName; function TypeTupleCar(ClassName) : ClassName; function TypeTupleCdr(ClassName) : ClassName; axiom (forall a: ClassName, b: ClassName :: { TypeTuple(a, b) } TypeTupleCar(TypeTuple(a, b)) == a && TypeTupleCdr(TypeTuple(a, b)) == b); type HandleType; function SetRef_to_SetBox(s: [ref]bool) : Set Box; axiom (forall s: [ref]bool, bx: Box :: { SetRef_to_SetBox(s)[bx] } SetRef_to_SetBox(s)[bx] == s[$Unbox(bx): ref]); axiom (forall s: [ref]bool :: { SetRef_to_SetBox(s) } $Is(SetRef_to_SetBox(s), TSet(Tclass._System.object()))); type DatatypeType; type DtCtorId; function DatatypeCtorId(DatatypeType) : DtCtorId; function DtRank(DatatypeType) : int; function BoxRank(Box) : int; axiom (forall d: DatatypeType :: { BoxRank($Box(d)) } BoxRank($Box(d)) == DtRank(d)); const $ModuleContextHeight: int; const $FunctionContextHeight: int; type LayerType; const $LZ: LayerType; function $LS(LayerType) : LayerType; function AtLayer([LayerType]A, LayerType) : A; axiom (forall f: [LayerType]A, ly: LayerType :: { AtLayer(f, ly) } AtLayer(f, ly) == f[ly]); axiom (forall f: [LayerType]A, ly: LayerType :: { AtLayer(f, $LS(ly)) } AtLayer(f, $LS(ly)) == AtLayer(f, ly)); type Field _; function FDim(Field T) : int; function IndexField(int) : Field Box; axiom (forall i: int :: { IndexField(i) } FDim(IndexField(i)) == 1); function IndexField_Inverse(Field T) : int; axiom (forall i: int :: { IndexField(i) } IndexField_Inverse(IndexField(i)) == i); function MultiIndexField(Field Box, int) : Field Box; axiom (forall f: Field Box, i: int :: { MultiIndexField(f, i) } FDim(MultiIndexField(f, i)) == FDim(f) + 1); function MultiIndexField_Inverse0(Field T) : Field T; function MultiIndexField_Inverse1(Field T) : int; axiom (forall f: Field Box, i: int :: { MultiIndexField(f, i) } MultiIndexField_Inverse0(MultiIndexField(f, i)) == f && MultiIndexField_Inverse1(MultiIndexField(f, i)) == i); function DeclType(Field T) : ClassName; type NameFamily; function DeclName(Field T) : NameFamily; function FieldOfDecl(ClassName, NameFamily) : Field alpha; axiom (forall cl: ClassName, nm: NameFamily :: { FieldOfDecl(cl, nm): Field T } DeclType(FieldOfDecl(cl, nm): Field T) == cl && DeclName(FieldOfDecl(cl, nm): Field T) == nm); function $IsGhostField(Field T) : bool; axiom (forall h: Heap, k: Heap, v: T, t: Ty :: { $HeapSucc(h, k), $IsAlloc(v, t, h) } $HeapSucc(h, k) ==> $IsAlloc(v, t, h) ==> $IsAlloc(v, t, k)); axiom (forall h: Heap, k: Heap, bx: Box, t: Ty :: { $HeapSucc(h, k), $IsAllocBox(bx, t, h) } $HeapSucc(h, k) ==> $IsAllocBox(bx, t, h) ==> $IsAllocBox(bx, t, k)); const unique alloc: Field bool; axiom FDim(alloc) == 0 && !$IsGhostField(alloc); function _System.array.Length(a: ref) : int; axiom (forall o: ref :: 0 <= _System.array.Length(o)); function Int(x: real) : int; axiom (forall x: real :: { Int(x): int } Int(x): int == int(x)); function Real(x: int) : real; axiom (forall x: int :: { Real(x): real } Real(x): real == real(x)); axiom (forall i: int :: { Int(Real(i)) } Int(Real(i)) == i); function {:inline true} _System.real.Trunc(x: real) : int { Int(x) } type Heap = [ref,Field alpha]alpha; function {:inline true} read(H: Heap, r: ref, f: Field alpha) : alpha { H[r, f] } function {:inline true} update(H: Heap, r: ref, f: Field alpha, v: alpha) : Heap { H[r, f := v] } function $IsGoodHeap(Heap) : bool; function $IsHeapAnchor(Heap) : bool; var $Heap: Heap where $IsGoodHeap($Heap) && $IsHeapAnchor($Heap); function $HeapSucc(Heap, Heap) : bool; axiom (forall h: Heap, r: ref, f: Field alpha, x: alpha :: { update(h, r, f, x) } $IsGoodHeap(update(h, r, f, x)) ==> $HeapSucc(h, update(h, r, f, x))); axiom (forall a: Heap, b: Heap, c: Heap :: { $HeapSucc(a, b), $HeapSucc(b, c) } $HeapSucc(a, b) && $HeapSucc(b, c) ==> $HeapSucc(a, c)); axiom (forall h: Heap, k: Heap :: { $HeapSucc(h, k) } $HeapSucc(h, k) ==> (forall o: ref :: { read(k, o, alloc) } read(h, o, alloc) ==> read(k, o, alloc))); function $HeapSuccGhost(Heap, Heap) : bool; axiom (forall h: Heap, k: Heap :: { $HeapSuccGhost(h, k) } $HeapSuccGhost(h, k) ==> $HeapSucc(h, k) && (forall o: ref, f: Field alpha :: { read(k, o, f) } !$IsGhostField(f) ==> read(h, o, f) == read(k, o, f))); type TickType; var $Tick: TickType; procedure $YieldHavoc(this: ref, rds: Set Box, nw: Set Box); modifies $Heap; ensures (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> $o == this || rds[$Box($o)] || nw[$Box($o)] ==> read($Heap, $o, $f) == read(old($Heap), $o, $f)); ensures $HeapSucc(old($Heap), $Heap); procedure $IterHavoc0(this: ref, rds: Set Box, modi: Set Box); modifies $Heap; ensures (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> rds[$Box($o)] && !modi[$Box($o)] && $o != this ==> read($Heap, $o, $f) == read(old($Heap), $o, $f)); ensures $HeapSucc(old($Heap), $Heap); procedure $IterHavoc1(this: ref, modi: Set Box, nw: Set Box); modifies $Heap; ensures (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> read($Heap, $o, $f) == read(old($Heap), $o, $f) || $o == this || modi[$Box($o)] || nw[$Box($o)]); ensures $HeapSucc(old($Heap), $Heap); procedure $IterCollectNewObjects(prevHeap: Heap, newHeap: Heap, this: ref, NW: Field (Set Box)) returns (s: Set Box); ensures (forall bx: Box :: { s[bx] } s[bx] <==> read(newHeap, this, NW)[bx] || ( $Unbox(bx) != null && !read(prevHeap, $Unbox(bx): ref, alloc) && read(newHeap, $Unbox(bx): ref, alloc))); type Set T = [T]bool; function Set#Card(Set T) : int; axiom (forall s: Set T :: { Set#Card(s) } 0 <= Set#Card(s)); function Set#Empty() : Set T; axiom (forall o: T :: { Set#Empty()[o] } !Set#Empty()[o]); axiom (forall s: Set T :: { Set#Card(s) } (Set#Card(s) == 0 <==> s == Set#Empty()) && (Set#Card(s) != 0 ==> (exists x: T :: s[x]))); function Set#Singleton(T) : Set T; axiom (forall r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]); axiom (forall r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o); axiom (forall r: T :: { Set#Card(Set#Singleton(r)) } Set#Card(Set#Singleton(r)) == 1); function Set#UnionOne(Set T, T) : Set T; axiom (forall a: Set T, x: T, o: T :: { Set#UnionOne(a, x)[o] } Set#UnionOne(a, x)[o] <==> o == x || a[o]); axiom (forall a: Set T, x: T :: { Set#UnionOne(a, x) } Set#UnionOne(a, x)[x]); axiom (forall a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] } a[y] ==> Set#UnionOne(a, x)[y]); axiom (forall a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a)); axiom (forall a: Set T, x: T :: { Set#Card(Set#UnionOne(a, x)) } !a[x] ==> Set#Card(Set#UnionOne(a, x)) == Set#Card(a) + 1); function Set#Union(Set T, Set T) : Set T; axiom (forall a: Set T, b: Set T, o: T :: { Set#Union(a, b)[o] } Set#Union(a, b)[o] <==> a[o] || b[o]); axiom (forall a: Set T, b: Set T, y: T :: { Set#Union(a, b), a[y] } a[y] ==> Set#Union(a, b)[y]); axiom (forall a: Set T, b: Set T, y: T :: { Set#Union(a, b), b[y] } b[y] ==> Set#Union(a, b)[y]); axiom (forall a: Set T, b: Set T :: { Set#Union(a, b) } Set#Disjoint(a, b) ==> Set#Difference(Set#Union(a, b), a) == b && Set#Difference(Set#Union(a, b), b) == a); function Set#Intersection(Set T, Set T) : Set T; axiom (forall a: Set T, b: Set T, o: T :: { Set#Intersection(a, b)[o] } Set#Intersection(a, b)[o] <==> a[o] && b[o]); axiom (forall a: Set T, b: Set T :: { Set#Union(Set#Union(a, b), b) } Set#Union(Set#Union(a, b), b) == Set#Union(a, b)); axiom (forall a: Set T, b: Set T :: { Set#Union(a, Set#Union(a, b)) } Set#Union(a, Set#Union(a, b)) == Set#Union(a, b)); axiom (forall a: Set T, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) } Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b)); axiom (forall a: Set T, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) } Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b)); axiom (forall a: Set T, b: Set T :: { Set#Card(Set#Union(a, b)) } { Set#Card(Set#Intersection(a, b)) } Set#Card(Set#Union(a, b)) + Set#Card(Set#Intersection(a, b)) == Set#Card(a) + Set#Card(b)); function Set#Difference(Set T, Set T) : Set T; axiom (forall a: Set T, b: Set T, o: T :: { Set#Difference(a, b)[o] } Set#Difference(a, b)[o] <==> a[o] && !b[o]); axiom (forall a: Set T, b: Set T, y: T :: { Set#Difference(a, b), b[y] } b[y] ==> !Set#Difference(a, b)[y]); axiom (forall a: Set T, b: Set T :: { Set#Card(Set#Difference(a, b)) } Set#Card(Set#Difference(a, b)) + Set#Card(Set#Difference(b, a)) + Set#Card(Set#Intersection(a, b)) == Set#Card(Set#Union(a, b)) && Set#Card(Set#Difference(a, b)) == Set#Card(a) - Set#Card(Set#Intersection(a, b))); function Set#Subset(Set T, Set T) : bool; axiom (forall a: Set T, b: Set T :: { Set#Subset(a, b) } Set#Subset(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] ==> b[o])); function Set#Equal(Set T, Set T) : bool; axiom (forall a: Set T, b: Set T :: { Set#Equal(a, b) } Set#Equal(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] <==> b[o])); axiom (forall a: Set T, b: Set T :: { Set#Equal(a, b) } Set#Equal(a, b) ==> a == b); function Set#Disjoint(Set T, Set T) : bool; axiom (forall a: Set T, b: Set T :: { Set#Disjoint(a, b) } Set#Disjoint(a, b) <==> (forall o: T :: { a[o] } { b[o] } !a[o] || !b[o])); type ISet T = [T]bool; function ISet#Empty() : Set T; axiom (forall o: T :: { ISet#Empty()[o] } !ISet#Empty()[o]); function ISet#UnionOne(ISet T, T) : ISet T; axiom (forall a: ISet T, x: T, o: T :: { ISet#UnionOne(a, x)[o] } ISet#UnionOne(a, x)[o] <==> o == x || a[o]); axiom (forall a: ISet T, x: T :: { ISet#UnionOne(a, x) } ISet#UnionOne(a, x)[x]); axiom (forall a: ISet T, x: T, y: T :: { ISet#UnionOne(a, x), a[y] } a[y] ==> ISet#UnionOne(a, x)[y]); function ISet#Union(ISet T, ISet T) : ISet T; axiom (forall a: ISet T, b: ISet T, o: T :: { ISet#Union(a, b)[o] } ISet#Union(a, b)[o] <==> a[o] || b[o]); axiom (forall a: ISet T, b: ISet T, y: T :: { ISet#Union(a, b), a[y] } a[y] ==> ISet#Union(a, b)[y]); axiom (forall a: Set T, b: Set T, y: T :: { ISet#Union(a, b), b[y] } b[y] ==> ISet#Union(a, b)[y]); axiom (forall a: ISet T, b: ISet T :: { ISet#Union(a, b) } ISet#Disjoint(a, b) ==> ISet#Difference(ISet#Union(a, b), a) == b && ISet#Difference(ISet#Union(a, b), b) == a); function ISet#Intersection(ISet T, ISet T) : ISet T; axiom (forall a: ISet T, b: ISet T, o: T :: { ISet#Intersection(a, b)[o] } ISet#Intersection(a, b)[o] <==> a[o] && b[o]); axiom (forall a: ISet T, b: ISet T :: { ISet#Union(ISet#Union(a, b), b) } ISet#Union(ISet#Union(a, b), b) == ISet#Union(a, b)); axiom (forall a: Set T, b: Set T :: { ISet#Union(a, ISet#Union(a, b)) } ISet#Union(a, ISet#Union(a, b)) == ISet#Union(a, b)); axiom (forall a: ISet T, b: ISet T :: { ISet#Intersection(ISet#Intersection(a, b), b) } ISet#Intersection(ISet#Intersection(a, b), b) == ISet#Intersection(a, b)); axiom (forall a: ISet T, b: ISet T :: { ISet#Intersection(a, ISet#Intersection(a, b)) } ISet#Intersection(a, ISet#Intersection(a, b)) == ISet#Intersection(a, b)); function ISet#Difference(ISet T, ISet T) : ISet T; axiom (forall a: ISet T, b: ISet T, o: T :: { ISet#Difference(a, b)[o] } ISet#Difference(a, b)[o] <==> a[o] && !b[o]); axiom (forall a: ISet T, b: ISet T, y: T :: { ISet#Difference(a, b), b[y] } b[y] ==> !ISet#Difference(a, b)[y]); function ISet#Subset(ISet T, ISet T) : bool; axiom (forall a: ISet T, b: ISet T :: { ISet#Subset(a, b) } ISet#Subset(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] ==> b[o])); function ISet#Equal(ISet T, ISet T) : bool; axiom (forall a: ISet T, b: ISet T :: { ISet#Equal(a, b) } ISet#Equal(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] <==> b[o])); axiom (forall a: ISet T, b: ISet T :: { ISet#Equal(a, b) } ISet#Equal(a, b) ==> a == b); function ISet#Disjoint(ISet T, ISet T) : bool; axiom (forall a: ISet T, b: ISet T :: { ISet#Disjoint(a, b) } ISet#Disjoint(a, b) <==> (forall o: T :: { a[o] } { b[o] } !a[o] || !b[o])); function Math#min(a: int, b: int) : int; axiom (forall a: int, b: int :: { Math#min(a, b) } a <= b <==> Math#min(a, b) == a); axiom (forall a: int, b: int :: { Math#min(a, b) } b <= a <==> Math#min(a, b) == b); axiom (forall a: int, b: int :: { Math#min(a, b) } Math#min(a, b) == a || Math#min(a, b) == b); function Math#clip(a: int) : int; axiom (forall a: int :: { Math#clip(a) } 0 <= a ==> Math#clip(a) == a); axiom (forall a: int :: { Math#clip(a) } a < 0 ==> Math#clip(a) == 0); type MultiSet T = [T]int; function $IsGoodMultiSet(ms: MultiSet T) : bool; axiom (forall ms: MultiSet T :: { $IsGoodMultiSet(ms) } $IsGoodMultiSet(ms) <==> (forall bx: T :: { ms[bx] } 0 <= ms[bx] && ms[bx] <= MultiSet#Card(ms))); function MultiSet#Card(MultiSet T) : int; axiom (forall s: MultiSet T :: { MultiSet#Card(s) } 0 <= MultiSet#Card(s)); axiom (forall s: MultiSet T, x: T, n: int :: { MultiSet#Card(s[x := n]) } 0 <= n ==> MultiSet#Card(s[x := n]) == MultiSet#Card(s) - s[x] + n); function MultiSet#Empty() : MultiSet T; axiom (forall o: T :: { MultiSet#Empty()[o] } MultiSet#Empty()[o] == 0); axiom (forall s: MultiSet T :: { MultiSet#Card(s) } (MultiSet#Card(s) == 0 <==> s == MultiSet#Empty()) && (MultiSet#Card(s) != 0 ==> (exists x: T :: 0 < s[x]))); function MultiSet#Singleton(T) : MultiSet T; axiom (forall r: T, o: T :: { MultiSet#Singleton(r)[o] } (MultiSet#Singleton(r)[o] == 1 <==> r == o) && (MultiSet#Singleton(r)[o] == 0 <==> r != o)); axiom (forall r: T :: { MultiSet#Singleton(r) } MultiSet#Singleton(r) == MultiSet#UnionOne(MultiSet#Empty(), r)); function MultiSet#UnionOne(MultiSet T, T) : MultiSet T; axiom (forall a: MultiSet T, x: T, o: T :: { MultiSet#UnionOne(a, x)[o] } 0 < MultiSet#UnionOne(a, x)[o] <==> o == x || 0 < a[o]); axiom (forall a: MultiSet T, x: T :: { MultiSet#UnionOne(a, x) } MultiSet#UnionOne(a, x)[x] == a[x] + 1); axiom (forall a: MultiSet T, x: T, y: T :: { MultiSet#UnionOne(a, x), a[y] } 0 < a[y] ==> 0 < MultiSet#UnionOne(a, x)[y]); axiom (forall a: MultiSet T, x: T, y: T :: { MultiSet#UnionOne(a, x), a[y] } x != y ==> a[y] == MultiSet#UnionOne(a, x)[y]); axiom (forall a: MultiSet T, x: T :: { MultiSet#Card(MultiSet#UnionOne(a, x)) } MultiSet#Card(MultiSet#UnionOne(a, x)) == MultiSet#Card(a) + 1); function MultiSet#Union(MultiSet T, MultiSet T) : MultiSet T; axiom (forall a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Union(a, b)[o] } MultiSet#Union(a, b)[o] == a[o] + b[o]); axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Card(MultiSet#Union(a, b)) } MultiSet#Card(MultiSet#Union(a, b)) == MultiSet#Card(a) + MultiSet#Card(b)); function MultiSet#Intersection(MultiSet T, MultiSet T) : MultiSet T; axiom (forall a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Intersection(a, b)[o] } MultiSet#Intersection(a, b)[o] == Math#min(a[o], b[o])); axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Intersection(MultiSet#Intersection(a, b), b) } MultiSet#Intersection(MultiSet#Intersection(a, b), b) == MultiSet#Intersection(a, b)); axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Intersection(a, MultiSet#Intersection(a, b)) } MultiSet#Intersection(a, MultiSet#Intersection(a, b)) == MultiSet#Intersection(a, b)); function MultiSet#Difference(MultiSet T, MultiSet T) : MultiSet T; axiom (forall a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Difference(a, b)[o] } MultiSet#Difference(a, b)[o] == Math#clip(a[o] - b[o])); axiom (forall a: MultiSet T, b: MultiSet T, y: T :: { MultiSet#Difference(a, b), b[y], a[y] } a[y] <= b[y] ==> MultiSet#Difference(a, b)[y] == 0); axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Card(MultiSet#Difference(a, b)) } MultiSet#Card(MultiSet#Difference(a, b)) + MultiSet#Card(MultiSet#Difference(b, a)) + 2 * MultiSet#Card(MultiSet#Intersection(a, b)) == MultiSet#Card(MultiSet#Union(a, b)) && MultiSet#Card(MultiSet#Difference(a, b)) == MultiSet#Card(a) - MultiSet#Card(MultiSet#Intersection(a, b))); function MultiSet#Subset(MultiSet T, MultiSet T) : bool; axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Subset(a, b) } MultiSet#Subset(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] <= b[o])); function MultiSet#Equal(MultiSet T, MultiSet T) : bool; axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Equal(a, b) } MultiSet#Equal(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] == b[o])); axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Equal(a, b) } MultiSet#Equal(a, b) ==> a == b); function MultiSet#Disjoint(MultiSet T, MultiSet T) : bool; axiom (forall a: MultiSet T, b: MultiSet T :: { MultiSet#Disjoint(a, b) } MultiSet#Disjoint(a, b) <==> (forall o: T :: { a[o] } { b[o] } a[o] == 0 || b[o] == 0)); function MultiSet#FromSet(Set T) : MultiSet T; axiom (forall s: Set T, a: T :: { MultiSet#FromSet(s)[a] } (MultiSet#FromSet(s)[a] == 0 <==> !s[a]) && (MultiSet#FromSet(s)[a] == 1 <==> s[a])); axiom (forall s: Set T :: { MultiSet#Card(MultiSet#FromSet(s)) } MultiSet#Card(MultiSet#FromSet(s)) == Set#Card(s)); function MultiSet#FromSeq(Seq T) : MultiSet T; axiom (forall s: Seq T :: { MultiSet#FromSeq(s) } $IsGoodMultiSet(MultiSet#FromSeq(s))); axiom (forall s: Seq T :: { MultiSet#Card(MultiSet#FromSeq(s)) } MultiSet#Card(MultiSet#FromSeq(s)) == Seq#Length(s)); axiom (forall s: Seq T, v: T :: { MultiSet#FromSeq(Seq#Build(s, v)) } MultiSet#FromSeq(Seq#Build(s, v)) == MultiSet#UnionOne(MultiSet#FromSeq(s), v)); axiom (forall :: MultiSet#FromSeq(Seq#Empty(): Seq T) == MultiSet#Empty(): MultiSet T); axiom (forall a: Seq T, b: Seq T :: { MultiSet#FromSeq(Seq#Append(a, b)) } MultiSet#FromSeq(Seq#Append(a, b)) == MultiSet#Union(MultiSet#FromSeq(a), MultiSet#FromSeq(b))); axiom (forall s: Seq T, i: int, v: T, x: T :: { MultiSet#FromSeq(Seq#Update(s, i, v))[x] } 0 <= i && i < Seq#Length(s) ==> MultiSet#FromSeq(Seq#Update(s, i, v))[x] == MultiSet#Union(MultiSet#Difference(MultiSet#FromSeq(s), MultiSet#Singleton(Seq#Index(s, i))), MultiSet#Singleton(v))[x]); axiom (forall s: Seq T, x: T :: { MultiSet#FromSeq(s)[x] } (exists i: int :: { Seq#Index(s, i) } 0 <= i && i < Seq#Length(s) && x == Seq#Index(s, i)) <==> 0 < MultiSet#FromSeq(s)[x]); type Seq _; function Seq#Length(Seq T) : int; axiom (forall s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); function Seq#Empty() : Seq T; axiom (forall :: Seq#Length(Seq#Empty(): Seq T) == 0); axiom (forall s: Seq T :: { Seq#Length(s) } Seq#Length(s) == 0 ==> s == Seq#Empty()); axiom (forall t: Ty :: { $Is(Seq#Empty(): Seq T, t) } $Is(Seq#Empty(): Seq T, t)); function Seq#Singleton(T) : Seq T; axiom (forall t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); function Seq#Build(s: Seq T, val: T) : Seq T; axiom (forall s: Seq T, v: T :: { Seq#Length(Seq#Build(s, v)) } Seq#Length(Seq#Build(s, v)) == 1 + Seq#Length(s)); axiom (forall s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s, v), i) } (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s, v), i) == v) && (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s, v), i) == Seq#Index(s, i))); axiom (forall s: Seq Box, bx: Box, t: Ty :: { $Is(Seq#Build(s, bx), TSeq(t)) } $Is(s, TSeq(t)) && $IsBox(bx, t) ==> $Is(Seq#Build(s, bx), TSeq(t))); function Seq#Append(Seq T, Seq T) : Seq T; axiom (forall s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0, s1)) } Seq#Length(Seq#Append(s0, s1)) == Seq#Length(s0) + Seq#Length(s1)); axiom (forall s0: Seq Box, s1: Seq Box, t: Ty :: { $Is(Seq#Append(s0, s1), t) } $Is(s0, t) && $Is(s1, t) ==> $Is(Seq#Append(s0, s1), t)); function Seq#Index(Seq T, int) : T; axiom (forall t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); axiom (forall s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0, s1), n) } (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0, s1), n) == Seq#Index(s0, n)) && (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0, s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); function Seq#Update(Seq T, int, T) : Seq T; axiom (forall s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s, i, v)) } 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s, i, v)) == Seq#Length(s)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s, i, v), n) } 0 <= n && n < Seq#Length(s) ==> (i == n ==> Seq#Index(Seq#Update(s, i, v), n) == v) && (i != n ==> Seq#Index(Seq#Update(s, i, v), n) == Seq#Index(s, n))); function Seq#Contains(Seq T, T) : bool; axiom (forall s: Seq T, x: T :: { Seq#Contains(s, x) } Seq#Contains(s, x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); axiom (forall x: T :: { Seq#Contains(Seq#Empty(), x) } !Seq#Contains(Seq#Empty(), x)); axiom (forall s0: Seq T, s1: Seq T, x: T :: { Seq#Contains(Seq#Append(s0, s1), x) } Seq#Contains(Seq#Append(s0, s1), x) <==> Seq#Contains(s0, x) || Seq#Contains(s1, x)); axiom (forall s: Seq T, v: T, x: T :: { Seq#Contains(Seq#Build(s, v), x) } Seq#Contains(Seq#Build(s, v), x) <==> v == x || Seq#Contains(s, x)); axiom (forall s: Seq T, n: int, x: T :: { Seq#Contains(Seq#Take(s, n), x) } Seq#Contains(Seq#Take(s, n), x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); axiom (forall s: Seq T, n: int, x: T :: { Seq#Contains(Seq#Drop(s, n), x) } Seq#Contains(Seq#Drop(s, n), x) <==> (exists i: int :: { Seq#Index(s, i) } 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); function Seq#Equal(Seq T, Seq T) : bool; axiom (forall s0: Seq T, s1: Seq T :: { Seq#Equal(s0, s1) } Seq#Equal(s0, s1) <==> Seq#Length(s0) == Seq#Length(s1) && (forall j: int :: { Seq#Index(s0, j) } { Seq#Index(s1, j) } 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0, j) == Seq#Index(s1, j))); axiom (forall a: Seq T, b: Seq T :: { Seq#Equal(a, b) } Seq#Equal(a, b) ==> a == b); function Seq#SameUntil(Seq T, Seq T, int) : bool; axiom (forall s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0, s1, n) } Seq#SameUntil(s0, s1, n) <==> (forall j: int :: { Seq#Index(s0, j) } { Seq#Index(s1, j) } 0 <= j && j < n ==> Seq#Index(s0, j) == Seq#Index(s1, j))); function Seq#Take(s: Seq T, howMany: int) : Seq T; axiom (forall s: Seq T, n: int :: { Seq#Length(Seq#Take(s, n)) } 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s, n)) == n); axiom (forall s: Seq T, n: int, j: int :: {:weight 25} { Seq#Index(Seq#Take(s, n), j) } { Seq#Index(s, j), Seq#Take(s, n) } 0 <= j && j < n && j < Seq#Length(s) ==> Seq#Index(Seq#Take(s, n), j) == Seq#Index(s, j)); function Seq#Drop(s: Seq T, howMany: int) : Seq T; axiom (forall s: Seq T, n: int :: { Seq#Length(Seq#Drop(s, n)) } 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s, n)) == Seq#Length(s) - n); axiom (forall s: Seq T, n: int, j: int :: {:weight 25} { Seq#Index(Seq#Drop(s, n), j) } 0 <= n && 0 <= j && j < Seq#Length(s) - n ==> Seq#Index(Seq#Drop(s, n), j) == Seq#Index(s, j + n)); axiom (forall s: Seq T, n: int, k: int :: {:weight 25} { Seq#Index(s, k), Seq#Drop(s, n) } 0 <= n && n <= k && k < Seq#Length(s) ==> Seq#Index(Seq#Drop(s, n), k - n) == Seq#Index(s, k)); axiom (forall s: Seq T, t: Seq T :: { Seq#Append(s, t) } Seq#Take(Seq#Append(s, t), Seq#Length(s)) == s && Seq#Drop(Seq#Append(s, t), Seq#Length(s)) == t); function Seq#FromArray(h: Heap, a: ref) : Seq Box; axiom (forall h: Heap, a: ref :: { Seq#Length(Seq#FromArray(h, a)) } Seq#Length(Seq#FromArray(h, a)) == _System.array.Length(a)); axiom (forall h: Heap, a: ref :: { Seq#FromArray(h, a) } (forall i: int :: { read(h, a, IndexField(i)) } { Seq#Index(Seq#FromArray(h, a): Seq Box, i) } 0 <= i && i < Seq#Length(Seq#FromArray(h, a)) ==> Seq#Index(Seq#FromArray(h, a), i) == read(h, a, IndexField(i)))); axiom (forall h0: Heap, h1: Heap, a: ref :: { Seq#FromArray(h1, a), $HeapSucc(h0, h1) } $IsGoodHeap(h0) && $IsGoodHeap(h1) && $HeapSucc(h0, h1) && (forall i: int :: 0 <= i && i < _System.array.Length(a) ==> read(h0, a, IndexField(i)) == read(h1, a, IndexField(i))) ==> Seq#FromArray(h0, a) == Seq#FromArray(h1, a)); axiom (forall h: Heap, i: int, v: Box, a: ref :: { Seq#FromArray(update(h, a, IndexField(i), v), a) } 0 <= i && i < _System.array.Length(a) ==> Seq#FromArray(update(h, a, IndexField(i), v), a) == Seq#Update(Seq#FromArray(h, a), i, v)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Take(Seq#Update(s, i, v), n) } 0 <= i && i < n && n <= Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Take(Seq#Update(s, i, v), n) } n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Drop(Seq#Update(s, i, v), n) } 0 <= n && n <= i && i < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i - n, v)); axiom (forall s: Seq T, i: int, v: T, n: int :: { Seq#Drop(Seq#Update(s, i, v), n) } 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); axiom (forall h: Heap, a: ref, n0: int, n1: int :: { Seq#Take(Seq#FromArray(h, a), n0), Seq#Take(Seq#FromArray(h, a), n1) } n0 + 1 == n1 && 0 <= n0 && n1 <= _System.array.Length(a) ==> Seq#Take(Seq#FromArray(h, a), n1) == Seq#Build(Seq#Take(Seq#FromArray(h, a), n0), read(h, a, IndexField(n0): Field Box))); axiom (forall s: Seq T, v: T, n: int :: { Seq#Drop(Seq#Build(s, v), n) } 0 <= n && n <= Seq#Length(s) ==> Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v)); function Seq#Rank(Seq T) : int; axiom (forall s: Seq Box, i: int :: { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s)); axiom (forall s: Seq T, i: int :: { Seq#Rank(Seq#Drop(s, i)) } 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s)); axiom (forall s: Seq T, i: int :: { Seq#Rank(Seq#Take(s, i)) } 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s)); axiom (forall s: Seq T, i: int, j: int :: { Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) } 0 <= i && i < j && j <= Seq#Length(s) ==> Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) < Seq#Rank(s)); axiom (forall s: Seq T, n: int :: { Seq#Drop(s, n) } n == 0 ==> Seq#Drop(s, n) == s); axiom (forall s: Seq T, n: int :: { Seq#Take(s, n) } n == 0 ==> Seq#Take(s, n) == Seq#Empty()); axiom (forall s: Seq T, m: int, n: int :: { Seq#Drop(Seq#Drop(s, m), n) } 0 <= m && 0 <= n && m + n <= Seq#Length(s) ==> Seq#Drop(Seq#Drop(s, m), n) == Seq#Drop(s, m + n)); type Map _ _; function Map#Domain(Map U V) : [U]bool; function Map#Elements(Map U V) : [U]V; function Map#Card(Map U V) : int; axiom (forall m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m)); function Map#Empty() : Map U V; axiom (forall u: U :: { Map#Domain(Map#Empty(): Map U V)[u] } !Map#Domain(Map#Empty(): Map U V)[u]); axiom (forall m: Map U V :: { Map#Card(m) } (Map#Card(m) == 0 <==> m == Map#Empty()) && (Map#Card(m) != 0 ==> (exists x: U :: Map#Domain(m)[x]))); function Map#Glue([U]bool, [U]V, Ty) : Map U V; axiom (forall a: [U]bool, b: [U]V, t: Ty :: { Map#Domain(Map#Glue(a, b, t)) } Map#Domain(Map#Glue(a, b, t)) == a); axiom (forall a: [U]bool, b: [U]V, t: Ty :: { Map#Elements(Map#Glue(a, b, t)) } Map#Elements(Map#Glue(a, b, t)) == b); axiom (forall a: [U]bool, b: [U]V, t: Ty :: { $Is(Map#Glue(a, b, t), t) } $Is(Map#Glue(a, b, t), t)); function Map#Build(Map U V, U, V) : Map U V; axiom (forall m: Map U V, u: U, u': U, v: V :: { Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] } (u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] && Map#Elements(Map#Build(m, u, v))[u'] == v) && (u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] && Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u'])); axiom (forall m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m)); axiom (forall m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } !Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m) + 1); function Map#Equal(Map U V, Map U V) : bool; axiom (forall m: Map U V, m': Map U V :: { Map#Equal(m, m') } Map#Equal(m, m') <==> (forall u: U :: Map#Domain(m)[u] == Map#Domain(m')[u]) && (forall u: U :: Map#Domain(m)[u] ==> Map#Elements(m)[u] == Map#Elements(m')[u])); axiom (forall m: Map U V, m': Map U V :: { Map#Equal(m, m') } Map#Equal(m, m') ==> m == m'); function Map#Disjoint(Map U V, Map U V) : bool; axiom (forall m: Map U V, m': Map U V :: { Map#Disjoint(m, m') } Map#Disjoint(m, m') <==> (forall o: U :: { Map#Domain(m)[o] } { Map#Domain(m')[o] } !Map#Domain(m)[o] || !Map#Domain(m')[o])); type IMap _ _; function IMap#Domain(IMap U V) : [U]bool; function IMap#Elements(IMap U V) : [U]V; function IMap#Empty() : IMap U V; axiom (forall u: U :: { IMap#Domain(IMap#Empty(): IMap U V)[u] } !IMap#Domain(IMap#Empty(): IMap U V)[u]); function IMap#Glue([U]bool, [U]V, Ty) : IMap U V; axiom (forall a: [U]bool, b: [U]V, t: Ty :: { IMap#Domain(IMap#Glue(a, b, t)) } IMap#Domain(IMap#Glue(a, b, t)) == a); axiom (forall a: [U]bool, b: [U]V, t: Ty :: { IMap#Elements(IMap#Glue(a, b, t)) } IMap#Elements(IMap#Glue(a, b, t)) == b); axiom (forall a: [U]bool, b: [U]V, t: Ty :: { $Is(IMap#Glue(a, b, t), t) } $Is(IMap#Glue(a, b, t), t)); function IMap#Build(IMap U V, U, V) : IMap U V; axiom (forall m: IMap U V, u: U, u': U, v: V :: { IMap#Domain(IMap#Build(m, u, v))[u'] } { IMap#Elements(IMap#Build(m, u, v))[u'] } (u' == u ==> IMap#Domain(IMap#Build(m, u, v))[u'] && IMap#Elements(IMap#Build(m, u, v))[u'] == v) && (u' != u ==> IMap#Domain(IMap#Build(m, u, v))[u'] == IMap#Domain(m)[u'] && IMap#Elements(IMap#Build(m, u, v))[u'] == IMap#Elements(m)[u'])); function IMap#Equal(IMap U V, IMap U V) : bool; axiom (forall m: IMap U V, m': IMap U V :: { IMap#Equal(m, m') } IMap#Equal(m, m') <==> (forall u: U :: IMap#Domain(m)[u] == IMap#Domain(m')[u]) && (forall u: U :: IMap#Domain(m)[u] ==> IMap#Elements(m)[u] == IMap#Elements(m')[u])); axiom (forall m: IMap U V, m': IMap U V :: { IMap#Equal(m, m') } IMap#Equal(m, m') ==> m == m'); function INTERNAL_add_boogie(x: int, y: int) : int; axiom (forall x: int, y: int :: { INTERNAL_add_boogie(x, y): int } INTERNAL_add_boogie(x, y): int == x + y); function INTERNAL_sub_boogie(x: int, y: int) : int; axiom (forall x: int, y: int :: { INTERNAL_sub_boogie(x, y): int } INTERNAL_sub_boogie(x, y): int == x - y); function INTERNAL_mul_boogie(x: int, y: int) : int; axiom (forall x: int, y: int :: { INTERNAL_mul_boogie(x, y): int } INTERNAL_mul_boogie(x, y): int == x * y); function INTERNAL_div_boogie(x: int, y: int) : int; axiom (forall x: int, y: int :: { INTERNAL_div_boogie(x, y): int } INTERNAL_div_boogie(x, y): int == x div y); function INTERNAL_mod_boogie(x: int, y: int) : int; axiom (forall x: int, y: int :: { INTERNAL_mod_boogie(x, y): int } INTERNAL_mod_boogie(x, y): int == x mod y); function {:never_pattern true} INTERNAL_lt_boogie(x: int, y: int) : bool; axiom (forall x: int, y: int :: {:never_pattern true} { INTERNAL_lt_boogie(x, y): bool } INTERNAL_lt_boogie(x, y): bool == (x < y)); function {:never_pattern true} INTERNAL_le_boogie(x: int, y: int) : bool; axiom (forall x: int, y: int :: {:never_pattern true} { INTERNAL_le_boogie(x, y): bool } INTERNAL_le_boogie(x, y): bool == (x <= y)); function {:never_pattern true} INTERNAL_gt_boogie(x: int, y: int) : bool; axiom (forall x: int, y: int :: {:never_pattern true} { INTERNAL_gt_boogie(x, y): bool } INTERNAL_gt_boogie(x, y): bool == (x > y)); function {:never_pattern true} INTERNAL_ge_boogie(x: int, y: int) : bool; axiom (forall x: int, y: int :: {:never_pattern true} { INTERNAL_ge_boogie(x, y): bool } INTERNAL_ge_boogie(x, y): bool == (x >= y)); const unique class._System.object: ClassName; // Tclass._System.object Tag axiom Tag(Tclass._System.object()) == Tagclass._System.object; const unique Tagclass._System.object: TyTag; // Box/unbox axiom for Tclass._System.object axiom (forall bx: Box :: { $IsBox(bx, Tclass._System.object()) } $IsBox(bx, Tclass._System.object()) ==> $Box($Unbox(bx): ref) == bx && $Is($Unbox(bx): ref, Tclass._System.object())); // object: Class $Is axiom (forall $o: ref :: { $Is($o, Tclass._System.object()) } $Is($o, Tclass._System.object())); // object: Class $IsAlloc axiom (forall $o: ref, $h: Heap :: { $IsAlloc($o, Tclass._System.object(), $h) } $IsAlloc($o, Tclass._System.object(), $h) <==> $o == null || read($h, $o, alloc)); const unique class._System.array: ClassName; function Tclass._System.array(Ty) : Ty; // Tclass._System.array Tag axiom (forall #$arg: Ty :: { Tclass._System.array(#$arg) } Tag(Tclass._System.array(#$arg)) == Tagclass._System.array); const unique Tagclass._System.array: TyTag; // Tclass._System.array injectivity 0 axiom (forall #$arg: Ty :: { Tclass._System.array(#$arg) } Tclass._System.array_0(Tclass._System.array(#$arg)) == #$arg); function Tclass._System.array_0(Ty) : Ty; // Box/unbox axiom for Tclass._System.array axiom (forall #$arg: Ty, bx: Box :: { $IsBox(bx, Tclass._System.array(#$arg)) } $IsBox(bx, Tclass._System.array(#$arg)) ==> $Box($Unbox(bx): ref) == bx && $Is($Unbox(bx): ref, Tclass._System.array(#$arg))); // array.: Allocation axiom axiom (forall #$arg: Ty, $i0: int, $h: Heap, $o: ref :: { read($h, $o, IndexField($i0)), Tclass._System.array(#$arg) } $IsGoodHeap($h) && $o != null && dtype($o) == Tclass._System.array(#$arg) && 0 <= $i0 && $i0 < _System.array.Length($o) ==> $IsBox(read($h, $o, IndexField($i0)), #$arg) && (read($h, $o, alloc) ==> $IsAllocBox(read($h, $o, IndexField($i0)), #$arg, $h))); // array: Class $Is axiom (forall #$arg: Ty, $o: ref :: { $Is($o, Tclass._System.array(#$arg)) } $Is($o, Tclass._System.array(#$arg)) <==> $o == null || dtype($o) == Tclass._System.array(#$arg)); // array: Class $IsAlloc axiom (forall #$arg: Ty, $o: ref, $h: Heap :: { $IsAlloc($o, Tclass._System.array(#$arg), $h) } $IsAlloc($o, Tclass._System.array(#$arg), $h) <==> $o == null || read($h, $o, alloc)); // array.Length: Allocation axiom axiom (forall #$arg: Ty, $h: Heap, $o: ref :: $IsGoodHeap($h) && $o != null && dtype($o) == Tclass._System.array(#$arg) ==> $Is(_System.array.Length($o), TInt) && (read($h, $o, alloc) ==> $IsAlloc(_System.array.Length($o), TInt, $h))); function Tclass._System.___hFunc0(Ty) : Ty; // Tclass._System.___hFunc0 Tag axiom (forall #$T0: Ty :: { Tclass._System.___hFunc0(#$T0) } Tag(Tclass._System.___hFunc0(#$T0)) == Tagclass._System.___hFunc0); const unique Tagclass._System.___hFunc0: TyTag; // Tclass._System.___hFunc0 injectivity 0 axiom (forall #$T0: Ty :: { Tclass._System.___hFunc0(#$T0) } Tclass._System.___hFunc0_0(Tclass._System.___hFunc0(#$T0)) == #$T0); function Tclass._System.___hFunc0_0(Ty) : Ty; // Box/unbox axiom for Tclass._System.___hFunc0 axiom (forall #$T0: Ty, bx: Box :: { $IsBox(bx, Tclass._System.___hFunc0(#$T0)) } $IsBox(bx, Tclass._System.___hFunc0(#$T0)) ==> $Box($Unbox(bx): HandleType) == bx && $Is($Unbox(bx): HandleType, Tclass._System.___hFunc0(#$T0))); function Handle0([Heap]Box, [Heap]bool, [Heap]Set Box) : HandleType; function Apply0(Ty, HandleType, Heap) : Box; function Requires0(Ty, HandleType, Heap) : bool; function Reads0(Ty, HandleType, Heap) : Set Box; axiom (forall t0: Ty, heap: Heap, h: [Heap]Box, r: [Heap]bool, rd: [Heap]Set Box :: { Apply0(t0, Handle0(h, r, rd), heap) } Apply0(t0, Handle0(h, r, rd), heap) == h[heap]); axiom (forall t0: Ty, heap: Heap, h: [Heap]Box, r: [Heap]bool, rd: [Heap]Set Box :: { Requires0(t0, Handle0(h, r, rd), heap) } r[heap] ==> Requires0(t0, Handle0(h, r, rd), heap)); axiom (forall t0: Ty, heap: Heap, h: [Heap]Box, r: [Heap]bool, rd: [Heap]Set Box, bx: Box :: { Reads0(t0, Handle0(h, r, rd), heap)[bx] } Reads0(t0, Handle0(h, r, rd), heap)[bx] == rd[heap][bx]); function {:inline true} _System.___hFunc0.requires(t0: Ty, heap: Heap, f: HandleType) : bool { Requires0(t0, f, heap) } function {:inline true} _System.___hFunc0.requires#canCall(t0: Ty, heap: Heap, f: HandleType) : bool { true } function {:inline true} _System.___hFunc0.reads(t0: Ty, heap: Heap, f: HandleType) : Set Box { Reads0(t0, f, heap) } function {:inline true} _System.___hFunc0.reads#canCall(t0: Ty, heap: Heap, f: HandleType) : bool { true } axiom (forall t0: Ty, h0: Heap, h1: Heap, f: HandleType :: { $HeapSucc(h0, h1), Reads0(t0, f, h1) } $HeapSucc(h0, h1) && $IsGoodHeap(h0) && $IsGoodHeap(h1) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h0) && (forall o: ref, fld: Field a :: o != null && read(h0, o, alloc) && read(h1, o, alloc) && Reads0(t0, f, h0)[$Box(o)] ==> read(h0, o, fld) == read(h1, o, fld)) ==> Reads0(t0, f, h0) == Reads0(t0, f, h1)); axiom (forall t0: Ty, h0: Heap, h1: Heap, f: HandleType :: { $HeapSucc(h0, h1), Reads0(t0, f, h1) } $HeapSucc(h0, h1) && $IsGoodHeap(h0) && $IsGoodHeap(h1) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h0) && (forall o: ref, fld: Field a :: o != null && read(h0, o, alloc) && read(h1, o, alloc) && Reads0(t0, f, h1)[$Box(o)] ==> read(h0, o, fld) == read(h1, o, fld)) ==> Reads0(t0, f, h0) == Reads0(t0, f, h1)); axiom (forall t0: Ty, h0: Heap, h1: Heap, f: HandleType :: { $HeapSucc(h0, h1), Requires0(t0, f, h1) } $HeapSucc(h0, h1) && $IsGoodHeap(h0) && $IsGoodHeap(h1) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h0) && (forall o: ref, fld: Field a :: o != null && read(h0, o, alloc) && read(h1, o, alloc) && Reads0(t0, f, h0)[$Box(o)] ==> read(h0, o, fld) == read(h1, o, fld)) ==> Requires0(t0, f, h0) == Requires0(t0, f, h1)); axiom (forall t0: Ty, h0: Heap, h1: Heap, f: HandleType :: { $HeapSucc(h0, h1), Requires0(t0, f, h1) } $HeapSucc(h0, h1) && $IsGoodHeap(h0) && $IsGoodHeap(h1) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h0) && (forall o: ref, fld: Field a :: o != null && read(h0, o, alloc) && read(h1, o, alloc) && Reads0(t0, f, h1)[$Box(o)] ==> read(h0, o, fld) == read(h1, o, fld)) ==> Requires0(t0, f, h0) == Requires0(t0, f, h1)); axiom (forall t0: Ty, h0: Heap, h1: Heap, f: HandleType :: { $HeapSucc(h0, h1), Apply0(t0, f, h1) } $HeapSucc(h0, h1) && $IsGoodHeap(h0) && $IsGoodHeap(h1) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h0) && (forall o: ref, fld: Field a :: o != null && read(h0, o, alloc) && read(h1, o, alloc) && Reads0(t0, f, h0)[$Box(o)] ==> read(h0, o, fld) == read(h1, o, fld)) ==> Apply0(t0, f, h0) == Apply0(t0, f, h1)); axiom (forall t0: Ty, h0: Heap, h1: Heap, f: HandleType :: { $HeapSucc(h0, h1), Apply0(t0, f, h1) } $HeapSucc(h0, h1) && $IsGoodHeap(h0) && $IsGoodHeap(h1) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h0) && (forall o: ref, fld: Field a :: o != null && read(h0, o, alloc) && read(h1, o, alloc) && Reads0(t0, f, h1)[$Box(o)] ==> read(h0, o, fld) == read(h1, o, fld)) ==> Apply0(t0, f, h0) == Apply0(t0, f, h1)); axiom (forall t0: Ty, h: Heap, f: HandleType :: { Apply0(t0, f, h) } $IsGoodHeap(h) && $Is(f, Tclass._System.___hFunc0(t0)) && $IsAlloc(f, Tclass._System.___hFunc0(t0), h) ==> $IsBox(Apply0(t0, f, h), t0) && $IsAllocBox(Apply0(t0, f, h), t0, h)); const unique class._module.__default: ClassName; function Tclass._module.__default() : Ty; // Tclass._module.__default Tag axiom Tag(Tclass._module.__default()) == Tagclass._module.__default; const unique Tagclass._module.__default: TyTag; // Box/unbox axiom for Tclass._module.__default axiom (forall bx: Box :: { $IsBox(bx, Tclass._module.__default()) } $IsBox(bx, Tclass._module.__default()) ==> $Box($Unbox(bx): ref) == bx && $Is($Unbox(bx): ref, Tclass._module.__default())); // _default: Class $Is axiom (forall $o: ref :: { $Is($o, Tclass._module.__default()) } $Is($o, Tclass._module.__default()) <==> $o == null || dtype($o) == Tclass._module.__default()); // _default: Class $IsAlloc axiom (forall $o: ref, $h: Heap :: { $IsAlloc($o, Tclass._module.__default(), $h) } $IsAlloc($o, Tclass._module.__default(), $h) <==> $o == null || read($h, $o, alloc)); procedure CheckWellformed$$_module.__default.test(); free requires 0 == $ModuleContextHeight && 0 == $FunctionContextHeight; modifies $Heap, $Tick; implementation CheckWellformed$$_module.__default.test() { var $_Frame: [ref,Field beta]bool; // AddMethodImpl: test, CheckWellformed$$_module.__default.test $_Frame := (lambda $o: ref, $f: Field alpha :: $o != null && read($Heap, $o, alloc) ==> false); assume {:captureState "Bug136.dfy(4,7): initial state"} true; havoc $Heap; assume (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> read($Heap, $o, $f) == read(old($Heap), $o, $f)); assume $HeapSucc(old($Heap), $Heap); } procedure InterModuleCall$$_module.__default.test(); modifies $Heap, $Tick; // frame condition free ensures (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> read($Heap, $o, $f) == read(old($Heap), $o, $f)); // boilerplate free ensures $HeapSucc(old($Heap), $Heap); procedure IntraModuleCall$$_module.__default.test(); modifies $Heap, $Tick; // frame condition free ensures (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> read($Heap, $o, $f) == read(old($Heap), $o, $f)); // boilerplate free ensures $HeapSucc(old($Heap), $Heap); procedure Impl$$_module.__default.test() returns ($_reverifyPost: bool); free requires 0 == $ModuleContextHeight && 0 == $FunctionContextHeight; modifies $Heap, $Tick; // frame condition free ensures (forall $o: ref, $f: Field alpha :: { read($Heap, $o, $f) } $o != null && read(old($Heap), $o, alloc) ==> read($Heap, $o, $f) == read(old($Heap), $o, $f)); // boilerplate free ensures $HeapSucc(old($Heap), $Heap); implementation Impl$$_module.__default.test() returns ($_reverifyPost: bool) { var $_Frame: [ref,Field beta]bool; // AddMethodImpl: test, Impl$$_module.__default.test $_Frame := (lambda $o: ref, $f: Field alpha :: $o != null && read($Heap, $o, alloc) ==> false); assume {:captureState "Bug136.dfy(5,1): initial state"} true; $_reverifyPost := false; // ----- assume statement ----- Bug136.dfy(6,5) assume true; assume false; // ----- assert statement ----- Bug136.dfy(7,5) assume true; assert true; } Dafny program verifier finished with 2 verified, 0 errors