// RUN: %dafny /compile:0 /dprint:"%t.dprint" "%s" > "%t" // RUN: %diff "%s.expect" "%t" /* Lists */ // Here are some standard definitions of List and functions on Lists datatype List = Nil | Cons(T, List) function length(l: List): nat { match l case Nil => 0 case Cons(x, xs) => 1 + length(xs) } function concat(l: List, ys: List): List { match l case Nil => ys case Cons(x, xs) => Cons(x, concat(xs, ys)) } function reverse(l: List): List { match l case Nil => Nil case Cons(x, xs) => concat(reverse(xs), Cons(x, Nil)) } function revacc(l: List, acc: List): List { match l case Nil => acc case Cons(x, xs) => revacc(xs, Cons(x, acc)) } function qreverse(l: List): List { revacc(l, Nil) } // Here are two lemmas about the List functions. lemma Lemma_ConcatNil(xs : List) ensures concat(xs, Nil) == xs; { } lemma Lemma_RevCatCommute(xs : List) ensures forall ys, zs :: revacc(xs, concat(ys, zs)) == concat(revacc(xs, ys), zs); { } // Here is a theorem that says "qreverse" and "reverse" calculate the same result. The proof // is given in a calculational style. The proof is not minimal--some lines can be omitted // and Dafny will still fill in the details. lemma Theorem_QReverseIsCorrect_Calc(l: List) ensures qreverse(l) == reverse(l); { calc { qreverse(l); // def. qreverse revacc(l, Nil); { Lemma_Revacc_calc(l, Nil); } concat(reverse(l), Nil); { Lemma_ConcatNil(reverse(l)); } reverse(l); } } lemma Lemma_Revacc_calc(xs: List, ys: List) ensures revacc(xs, ys) == concat(reverse(xs), ys); { match (xs) { case Nil => case Cons(x, xrest) => calc { concat(reverse(xs), ys); // def. reverse concat(concat(reverse(xrest), Cons(x, Nil)), ys); // induction hypothesis: Lemma_Revacc_calc(xrest, Cons(x, Nil)) concat(revacc(xrest, Cons(x, Nil)), ys); { Lemma_RevCatCommute(xrest); } // forall xs,ys,zs :: revacc(xs, concat(ys, zs)) == concat(revacc(xs, ys), zs) revacc(xrest, concat(Cons(x, Nil), ys)); // def. concat (x2) revacc(xrest, Cons(x, ys)); // def. revacc revacc(xs, ys); } } } // Here is a version of the same proof, as it was constructed before Dafny's "calc" construct. lemma Theorem_QReverseIsCorrect(l: List) ensures qreverse(l) == reverse(l); { assert qreverse(l) == // def. qreverse revacc(l, Nil); Lemma_Revacc(l, Nil); assert revacc(l, Nil) == concat(reverse(l), Nil); Lemma_ConcatNil(reverse(l)); } lemma Lemma_Revacc(xs: List, ys: List) ensures revacc(xs, ys) == concat(reverse(xs), ys); { match (xs) { case Nil => case Cons(x, xrest) => assert revacc(xs, ys) == // def. revacc revacc(xrest, Cons(x, ys)); assert concat(reverse(xs), ys) == // def. reverse concat(concat(reverse(xrest), Cons(x, Nil)), ys) == // induction hypothesis: Lemma_Revacc(xrest, Cons(x, Nil)) concat(revacc(xrest, Cons(x, Nil)), ys); Lemma_RevCatCommute(xrest); // forall xs,ys,zs :: revacc(xs, concat(ys, zs)) == concat(revacc(xs, ys), zs) assert concat(revacc(xrest, Cons(x, Nil)), ys) == revacc(xrest, concat(Cons(x, Nil), ys)); assert forall g: _T0, gs :: concat(Cons(g, Nil), gs) == Cons(g, gs); assert revacc(xrest, concat(Cons(x, Nil), ys)) == // the assert lemma just above revacc(xrest, Cons(x, ys)); } } /* Fibonacci */ // To further demonstrate what the "calc" construct can do, here are some proofs about the Fibonacci function. function Fib(n: nat): nat { if n < 2 then n else Fib(n - 2) + Fib(n - 1) } lemma Lemma_Fib() ensures Fib(5) < 6; { calc { Fib(5); Fib(4) + Fib(3); < calc { Fib(2); Fib(0) + Fib(1); 0 + 1; 1; } 6; } } /* List length */ // Here are some proofs that show the use of nested calculations. lemma Lemma_Concat_Length(xs: List, ys: List) ensures length(concat(xs, ys)) == length(xs) + length(ys); {} lemma Lemma_Reverse_Length(xs: List) ensures length(xs) == length(reverse(xs)); { match (xs) { case Nil => case Cons(x, xrest) => calc { length(reverse(xs)); // def. reverse length(concat(reverse(xrest), Cons(x, Nil))); { Lemma_Concat_Length(reverse(xrest), Cons(x, Nil)); } length(reverse(xrest)) + length(Cons(x, Nil)); // induction hypothesis length(xrest) + length(Cons(x, Nil)); calc { length(Cons(x, Nil)); // def. length // 1 + length(Nil); // ambigious type parameter // def. length 1 + 0; 1; } length(xrest) + 1; // def. length length(xs); } } } lemma Window(xs: List, ys: List) ensures length(xs) == length(ys) ==> length(reverse(xs)) == length(reverse(ys)); { calc { length(xs) == length(ys) ==> length(reverse(xs)) == length(reverse(ys)); { if (length(xs) == length(ys)) { calc { length(reverse(xs)); { Lemma_Reverse_Length(xs); } length(xs); length(ys); { Lemma_Reverse_Length(ys); } length(reverse(ys)); } } } length(xs) == length(ys) ==> length(reverse(xs)) == length(reverse(xs)); true; } } // In the following we use a combination of calc and forall function ith(xs: List, i: nat): a requires i < length(xs); { match xs case Cons(x, xrest) => if i == 0 then x else ith(xrest, i - 1) } lemma lemma_zero_length(xs: List) ensures length(xs) == 0 <==> xs.Nil?; {} lemma lemma_extensionality(xs: List, ys: List) requires length(xs) == length(ys); // (0) requires forall i: nat | i < length(xs) :: ith(xs, i) == ith(ys, i); // (1) ensures xs == ys; { match xs { case Nil => calc { true; // (0) length(xs) == length(ys); 0 == length(ys); { lemma_zero_length(ys); } Nil == ys; xs == ys; } case Cons(x, xrest) => match ys { case Cons(y, yrest) => calc { xs; Cons(x, xrest); calc { x; ith(xs, 0); // (1) with i = 0 ith(ys, 0); y; } Cons(y, xrest); { forall (j: nat | j < length(xrest)) { calc { ith(xrest, j); ith(xs, j + 1); // (1) with i = j + 1 ith(ys, j + 1); ith(yrest, j); } } lemma_extensionality(xrest, yrest); } Cons(y, yrest); ys; } } } }