// RUN: %dafny /compile:0 /print:"%t.print" /dprint:"%t.dprint.dfy" "%s" > "%t"; %dafny /noVerify /compile:0 "%t.dprint.dfy" >> "%t" // RUN: %diff "%s.expect" "%t" class Node { var next: Node; function IsList(r: set): bool reads r; { this in r && (next != null ==> next.IsList(r - {this})) } method Test(n: Node, nodes: set) { assume nodes == nodes - {n}; // the next line needs the Set extensionality axiom, the antecedent of // which is supplied by the previous line assert IsList(nodes) == IsList(nodes - {n}); } method Create() modifies this; { next := null; var tmp: Node; tmp := new Node; assert tmp != this; // was once a bug in the Dafny checker } method SequenceUpdateOutOfBounds(s: seq>, j: int) returns (t: seq>) { t := s[j := {}]; // error: j is possibly out of bounds } method Sequence(s: seq, j: int, b: bool, c: bool) returns (t: seq) requires 10 <= |s|; requires 8 <= j && j < |s|; ensures |t| == |s|; ensures t[8] == s[8] || t[9] == s[9]; ensures t[j] == b; { if (c) { t := s[j := b]; } else { t := s[..j] + [b] + s[j+1..]; } } method Max0(x: int, y: int) returns (r: int) ensures r == (if x < y then y else x); { if (x < y) { r := y; } else { r := x; } } method Max1(x: int, y: int) returns (r: int) ensures r == x || r == y; ensures x <= r && y <= r; { r := if x < y then y else x; } function PoorlyDefined(x: int): int requires if next == null then 5/x < 20 else true; // error: ill-defined then branch requires if next == null then true else 0 <= 5/x; // error: ill-defined then branch requires if next.next == null then true else true; // error: ill-defined guard requires 10/x != 8; // this is well-defined, because we get here only if x is non-0 reads this, next; { 12 } } // ------------------ modifies clause tests ------------------------ class Modifies { var x: int; var next: Modifies; method A(p: Modifies) modifies this, p; { x := x + 1; while (p != null && p.x < 75) decreases 75 - p.x; // error: not defined (null deref) at top of each iteration (there's good reason { // to insist on this; for example, the decrement check could not be performed p.x := p.x + 1; // at the end of the loop body if p were set to null in the loop body) } } method Aprime(p: Modifies) modifies this, p; { x := x + 1; while (p != null && p.x < 75) decreases if p != null then 75 - p.x else 0; // given explicitly (but see Adoubleprime below) { p.x := p.x + 1; } } method Adoubleprime(p: Modifies) modifies this, p; { x := x + 1; while (p != null && p.x < 75) // here, the decreases clause is heuristically inferred (to be the { // same as the one in Aprime above) p.x := p.x + 1; } } method B(p: Modifies) modifies this; { A(this); if (p == this) { p.A(p); } A(p); // error: may violate modifies clause } method C(b: bool) modifies this; ensures !b ==> x == old(x) && next == old(next); { } method D(p: Modifies, y: int) requires p != null; { if (y == 3) { p.C(true); // error: may violate modifies clause } else { p.C(false); // error: may violation modifies clause (the check is done without regard // for the postcondition, which also makes sense, since there may, in // principle, be other fields of the object that are not constrained by the // postcondition) } } method E() modifies this; { A(null); // allowed } method F(s: set) modifies s; { forall m | m in s && m != null && 2 <= m.x { m.x := m.x + 1; } if (this in s) { x := 2 * x; } } method G(s: set) modifies this; { var m := 3; // this is a different m forall m | m in s && m == this { m.x := m.x + 1; } if (s <= {this}) { forall (m | m in s) { m.x := m.x + 1; } F(s); } forall (m | m in s) ensures true; { assert m == null || m.x < m.x + 10; } forall (m | m != null && m in s) { m.x := m.x + 1; // error: may violate modifies clause } } method SetConstruction() { var s := {1}; assert s != {}; if (*) { assert s != {0,1}; } else { assert s != {1,0}; } } } // ------------------ allocated -------------------------------------------------- class AllocatedTests { method M(r: AllocatedTests, k: Node, S: set, d: Lindgren) { var n := new Node; var t := S + {n}; if (*) { assert !fresh(n); // error: n was not allocated in the initial state } else { assert fresh(n); // correct } var U := {k,n}; if (*) { assert !fresh(U); // error: n was not allocated initially } else { assert fresh(U); // error: k was not allocated initially } var Q := [k,n]; if (*) { assert !fresh(Q); // error: n was not allocated initially } else { assert fresh(Q); // error: k was not allocated initially } } } datatype Lindgren = Pippi(Node) | Longstocking(seq, Lindgren) | HerrNilsson // -------------------------------------------------- class InitCalls { var z: int; var p: InitCalls; method Init(y: int) modifies this; ensures z == y; { z := y; } method InitFromReference(q: InitCalls) requires q != null && 15 <= q.z; modifies this; ensures p == q; { p := q; } method TestDriver() { var c: InitCalls; c := new InitCalls.Init(15); var d := new InitCalls.Init(17); var e: InitCalls := new InitCalls.Init(18); var f: object := new InitCalls.Init(19); assert c.z + d.z + e.z == 50; // poor man's type cast: ghost var g: InitCalls; assert f == g ==> g.z == 19; // test that the call is done before the assignment to the LHS var r := c; r := new InitCalls.InitFromReference(r); // fine, since r.z==15 r := new InitCalls.InitFromReference(r); // error, since r.z is unknown } } // --------------- some tests with quantifiers and ranges ---------------------- method QuantifierRange0(a: seq, x: T, y: T, N: int) requires 0 <= N && N <= |a|; requires forall k | 0 <= k && k < N :: a[k] != x; requires exists k | 0 <= k && k < N :: a[k] == y; ensures forall k :: 0 <= k && k < N ==> a[k] != x; // same as the precondition, but using ==> instead of | ensures exists k :: 0 <= k && k < N && a[k] == y; // same as the precondition, but using && instead of | { assert x != y; } method QuantifierRange1(a: seq, x: T, y: T, N: int) requires 0 <= N && N <= |a|; requires forall k :: 0 <= k && k < N ==> a[k] != x; requires exists k :: 0 <= k && k < N && a[k] == y; ensures forall k | 0 <= k && k < N :: a[k] != x; // same as the precondition, but using | instead of ==> ensures exists k | 0 <= k && k < N :: a[k] == y; // same as the precondition, but using | instead of && { assert x != y; } method QuantifierRange2(a: seq, x: T, y: T, N: int) requires 0 <= N && N <= |a|; requires exists k | 0 <= k && k < N :: a[k] == y; ensures forall k | 0 <= k && k < N :: a[k] == y; // error { assert N != 0; if (N == 1) { assert forall k | a[if 0 <= k && k < N then k else 0] != y :: k < 0 || N <= k; // in this case, the precondition holds trivially } if (forall k | 0 <= k && k < N :: a[k] == x) { assert x == y; } } // ----------------------- tests that involve sequences of boxes -------- ghost method M(zeros: seq, Z: bool) requires 1 <= |zeros| && Z == false; requires forall k :: 0 <= k && k < |zeros| ==> zeros[k] == Z; { var x := [Z]; assert zeros[0..1] == [Z]; } class SomeType { var x: int; method DoIt(stack: seq) requires null !in stack; modifies stack; { forall n | n in stack { n.x := 10; } } } // ----------------------- tests of some theory axioms -------- method TestSequences0() { var s := [0, 2, 4]; if (*) { assert 4 in s; assert 0 in s; assert 1 !in s; } else { assert 2 in s; assert exists n :: n in s && -3 <= n && n < 2; } assert 7 in s; // error } // ----------------------- test attributes on methods and constructors -------- method test0() { assert false; // error } method {:verify false} test1() { assert false; } function test2() : bool { !test2() // error } function {:verify false} test3() : bool { !test3() } class Test { method test0() { assert false; // error } method {:verify false} test1() { assert false; } constructor init0() { assert false; // error } constructor {:verify false} init1() { assert false; } function test2() : bool { !test2() // error } function {:verify false} test3() : bool { !test3() } } // ------ an if-then-else regression test function F(b: bool): int // The if-then-else in the following line was once translated incorrectly, // incorrectly causing the postcondition to verify ensures if b then F(b) == 5 else F(b) == 6; { 5 } // ----------------------- test attributes on method specification constructs (assert, ensures, modifies, decreases, invariant) -------- class AttributeTests { var f: int; method m0() { } method m1() returns (r: bool) { r := false; } function method m2() : bool { true } constructor C() { } method testAttributes0() returns (r: AttributeTests) ensures {:boolAttr true} true; ensures {:boolAttr false} true; ensures {:intAttr 0} true; ensures {:intAttr 1} true; modifies {:boolAttr true} this`f; modifies {:boolAttr false} this`f; modifies {:intAttr 0} this`f; modifies {:intAttr 1} this`f; modifies {:boolAttr true} this; modifies {:boolAttr false} this; modifies {:intAttr 0} this; modifies {:intAttr 1} this; decreases {:boolAttr true} f; decreases {:boolAttr false} f; decreases {:intAttr 0} f; decreases {:intAttr 1} f; { assert {:boolAttr true} true; assert {:boolAttr false} true; assert {:intAttr 0} true; assert {:intAttr 1} true; while (false) invariant {:boolAttr true} true; invariant {:boolAttr false} true; invariant {:intAttr 0} true; invariant {:intAttr 1} true; modifies {:boolAttr true} this`f; modifies {:boolAttr false} this`f; modifies {:intAttr 0} this`f; modifies {:intAttr 1} this`f; decreases {:boolAttr true} f; decreases {:boolAttr false} f; decreases {:intAttr 0} f; decreases {:intAttr 1} f; { } m0() {:boolAttr true}; m0() {:boolAttr false}; m0() {:intAttr 0}; m0() {:intAttr 1}; this.m0() {:boolAttr true}; this.m0() {:boolAttr false}; this.m0() {:intAttr 0}; this.m0() {:intAttr 1}; var b1 := m1() {:boolAttr true}; b1 := m1() {:boolAttr false}; b1 := m1() {:intAttr 0}; b1 := m1() {:intAttr 1}; var b2, b2' := m2() {:boolAttr true}, m2() {:boolAttr true}; b2, b2' := m2() {:boolAttr false}, m2() {:boolAttr false}; b2, b2' := m2() {:intAttr 0}, m2() {:boolAttr false}; b2, b2' := m2() {:intAttr 1}, m2() {:boolAttr false}; var c := new AttributeTests.C() {:boolAttr true}; c := new AttributeTests.C() {:boolAttr false}; c := new AttributeTests.C() {:intAttr 0}; c := new AttributeTests.C() {:intAttr 1}; if (*) { return new AttributeTests.C() {:boolAttr true}; } else { return new AttributeTests.C() {:intAttr 0}; } // forall statements resolve their attributes once the bound variables have been // added to the scope var y: bool, x: real; var aa := new real[120]; forall y: int, x, z {:trgr x == y} {:tri z == z} | x < y // the range will infer the type of x ensures z && 0 <= x < aa.Length ==> aa[x] == 0.0; // ensures clause will infer type of z { } } } // ----------------------- test attributes on variable declarations -------- method TestAttributesVarDecls() { var {:foo foo} foo := null; var {:bar bar} bar := 0; var {:foo foobar} {:bar foobar} foobar : set := {}; var {:baz baz && foobaz} baz, {:foobaz foobaz != baz} foobaz := true, false; } // ----------------------- Pretty printing of !(!expr) -------- method TestNotNot() { assert !(!true); // Shouldn't pretty print as "!!true". assert !(true == false); assert !(if true then false else false); assert !if true then false else false; assert !if !(!true) then false else false; assert true == !(!true); } // ----------------------- Assign-such-that statements ------- method AssignSuchThat0(a: int, b: int) returns (x: int, y: int) ensures x == a && y == b; { if (*) { x, y :| a <= x < a + 1 && b + a <= y + a && y <= b; } else { var xx, yy :| a <= xx < a + 1 && b + a <= yy + a && yy <= b; x, y := xx, yy; } } method AssignSuchThat1(a: int, b: int) returns (x: int, y: int) { ghost var k :| assume 0 <= k < a - b; // this acts like an 'assume 0 < a - b;' assert b < a; k :| k == old(2*k); // note, the 'old' has no effect on local variables like k assert k == 0; var S := {2, 4, 7}; var T :| T <= S; assert 3 !in T; assert T == {}; // error: T may be larger } method AssignSuchThat2(i: int, j: int, ghost S: set) modifies S; { var n := new Node; var a := new int[25]; var t; if (0 <= i < j < 25) { a[i], t, a[j], n.next, n :| assume true; } if (n != null && n.next != null) { assume n in S && n.next in S; n.next.next, n.next :| assume n != null && n.next != null && n.next.next == n.next; // error: n.next may equal n (thus aliasing n.next.next and n.next) } else if (0 <= i < 25 && 0 <= j < 25) { t, a[i], a[j] :| assume t < a[i] < a[j]; // error: i may equal j (thus aliasing a[i] and a[j]) } } method AssignSuchThat3() { var n := new Node; n, n.next :| assume n.next == n; // error: RHS is not well defined (RHS is evaluated after the havocking of the LHS) } method AssignSuchThat4() { var n := new Node; n, n.next :| assume n != null && n.next == n; // that's the ticket } method AssignSuchThat5() { var k := new Node; ghost var n: Node :| fresh(n); // fine assert false; // error } method AssignSuchThat6() { var n: Node; n :| assume n != null && fresh(n); // there is no non-null fresh object, so this amounts to 'assume false;' assert false; // no problemo } method AssignSuchThat7(A: set, x: T) { var B :| B <= A; assert x in B ==> x in A; } method AssignSuchThat8(n: int) returns (x: int, y: Lindgren) { x :| x in {1}; x :| x in {3, 7, 11}; x :| x in {n + 12}; y :| y in {HerrNilsson}; y :| y == y; x :| x in multiset{3, 3, 2, 3}; x :| x in map[5 := 10, 6 := 12]; x :| x in [n, n, 2]; x :| x in []; // error } codatatype QuiteFinite = QQA | QQB | QQC method AssignSuchThat9() returns (q: QuiteFinite) { q :| q != QQA && q != QQC; } // ----------- let-such-that expressions ------------------------ function method LetSuchThat_P(x: int): bool method LetSuchThat0(ghost g: int) requires LetSuchThat_P(g); { var t :| LetSuchThat_P(t); // assign-such-that statement ghost var u := var q :| LetSuchThat_P(q); q + 1; // let-such-that expression if (forall a,b | LetSuchThat_P(a) && LetSuchThat_P(b) :: a == b) { assert t < u; } assert LetSuchThat_P(u-1); // yes assert LetSuchThat_P(u); // error: no reason to expect this to hold } method LetSuchThat1(A: set) { ghost var C := var B :| B <= A; B - A; assert C == {}; } method LetSuchThat2(n: nat) { ghost var x := (var k :| k < n; k) + 3; // fine, such a k always exists assert x < n+3; if (*) { x := var k :| 0 <= k < n; k; // error: there may not be such a k } else { x := var k: nat :| k < n; k; // error: there may not be such a k } } ghost method LetSuchThat3(n: int) returns (xx: int, yy: Lindgren) { xx := var x :| x in {1}; x+10; xx := var x :| x in {3, 7, 11}; x+10; xx := var x :| x in {n + 12}; x+10; yy := var y :| y in {HerrNilsson}; y; yy := var y :| y == y; y; xx := var x :| x in multiset{3, 3, 2, 3}; x+10; xx := var x :| x in map[5 := 10, 6 := 12]; x+10; xx := var x :| x in [n, n, 2]; x+10; xx := var x :| x in (var m : map := map[]; m); x+10; // error } // ------------- ghost loops only modify ghost fields class GT { var x: int; var y: int; ghost var z: int; method M0(N: int) modifies this; { x := 18; var n := 0; while n < 100 { // not a ghost loop n, y := n + 1, y + 1; } assert x == 18; // error: the verifier loses this information for the loop } method M1(ghost N: int) modifies this; { x := 18; ghost var n := N; while n < 100 { // a ghost loop n, z := n + 1, z + 1; } assert x == 18; // fine, the verifier knows that the loop modifies only ghost state } method P0() modifies this; ghost method P1() modifies this; method Q() modifies this; { if (*) { P0(); assert forall x: GT :: x != null ==> !fresh(x); // error: method P2 may have allocated stuff } else { P1(); assert forall x: GT :: x != null ==> !fresh(x); // fine, because the ghost method does not allocate anything } } }