1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: ppconstrnew.ml,v 1.62.2.6 2005/03/08 10:13:45 herbelin Exp $ *)
(*i*)
open Ast
open Util
open Pp
open Nametab
open Names
open Nameops
open Libnames
open Coqast
open Ppextend
open Topconstr
open Term
open Pattern
(*i*)
let pr_id id = Nameops.pr_id (Constrextern.v7_to_v8_id id)
let sep_p = fun _ -> str"."
let sep_v = fun _ -> str"," ++ spc()
let sep_pp = fun _ -> str":"
let sep_bar = fun _ -> spc() ++ str"| "
let pr_tight_coma () = str "," ++ cut ()
let latom = 0
let lannot = 100
let lprod = 200
let llambda = 200
let lif = 200
let lletin = 200
let lfix = 200
let larrow = 90
let lcast = 100
let larg = 9
let lapp = 10
let lposint = 0
let lnegint = 35 (* must be consistent with Notation "- x" *)
let ltop = (200,E)
let lproj = 1
let lsimple = (1,E)
let prec_less child (parent,assoc) =
if parent < 0 && child = lprod then true
else
let parent = abs parent in
match assoc with
| E -> (<=) child parent
| L -> (<) child parent
| Prec n -> child<=n
| Any -> true
let env_assoc_value v env =
try List.nth env (v-1)
with Not_found -> anomaly ("Inconsistent environment for pretty-print rule")
let decode_constrlist_value = function
| CAppExpl (_,_,l) -> l
| CApp (_,_,l) -> List.map fst l
| _ -> anomaly "Ill-formed list argument of notation"
let decode_patlist_value = function
| CPatCstr (_,_,l) -> l
| _ -> anomaly "Ill-formed list argument of notation"
open Symbols
let rec print_hunk n decode pr env = function
| UnpMetaVar (e,prec) -> pr (n,prec) (env_assoc_value e env)
| UnpListMetaVar (e,prec,sl) ->
prlist_with_sep (fun () -> prlist (print_hunk n decode pr env) sl)
(pr (n,prec)) (decode (env_assoc_value e env))
| UnpTerminal s -> str s
| UnpBox (b,sub) -> ppcmd_of_box b (prlist (print_hunk n decode pr env) sub)
| UnpCut cut -> ppcmd_of_cut cut
let pr_notation_gen decode pr s env =
let unpl, level = find_notation_printing_rule s in
prlist (print_hunk level decode pr env) unpl, level
let pr_notation = pr_notation_gen decode_constrlist_value
let pr_patnotation = pr_notation_gen decode_patlist_value
let pr_delimiters key strm =
strm ++ str ("%"^key)
let surround p = hov 1 (str"(" ++ p ++ str")")
let pr_located pr ((b,e),x) =
if Options.do_translate() && (b,e)<>dummy_loc then
let (b,e) = unloc (b,e) in
comment b ++ pr x ++ comment e
else pr x
let pr_com_at n =
if Options.do_translate() && n <> 0 then comment n
else mt()
let pr_with_comments loc pp = pr_located (fun x -> x) (loc,pp)
let pr_sep_com sep f c = pr_with_comments (constr_loc c) (sep() ++ f c)
open Rawterm
let pr_opt pr = function
| None -> mt ()
| Some x -> spc() ++ pr x
let pr_optc pr = function
| None -> mt ()
| Some x -> pr_sep_com spc pr x
let pr_universe = Univ.pr_uni
let pr_sort = function
| RProp Term.Null -> str "Prop"
| RProp Term.Pos -> str "Set"
| RType u -> str "Type" ++ pr_opt pr_universe u
let pr_expl_args pr (a,expl) =
match expl with
| None -> pr (lapp,L) a
| Some (_,ExplByPos n) ->
anomaly("Explicitation by position not implemented")
| Some (_,ExplByName id) ->
str "(" ++ pr_id id ++ str ":=" ++ pr ltop a ++ str ")"
let pr_opt_type pr = function
| CHole _ -> mt ()
| t -> cut () ++ str ":" ++ pr t
let pr_opt_type_spc pr = function
| CHole _ -> mt ()
| t -> str " :" ++ pr_sep_com (fun()->brk(1,2)) (pr ltop) t
let pr_name = function
| Anonymous -> str"_"
| Name id -> pr_id id
let pr_lident (b,_ as loc,id) =
if loc <> dummy_loc then
let (b,_) = unloc loc in
pr_located pr_id (make_loc (b,b+String.length(string_of_id id)),id)
else pr_id id
let pr_lname = function
(loc,Name id) -> pr_lident (loc,id)
| lna -> pr_located pr_name lna
let pr_or_var pr = function
| Genarg.ArgArg x -> pr x
| Genarg.ArgVar (loc,s) -> pr_lident (loc,s)
let las = lapp
let rec pr_patt sep inh p =
let (strm,prec) = match p with
| CPatAlias (_,p,id) ->
pr_patt mt (las,E) p ++ str " as " ++ pr_id id, las
| CPatCstr (_,c,[]) -> pr_reference c, latom
| CPatCstr (_,c,args) ->
pr_reference c ++ prlist (pr_patt spc (lapp,L)) args, lapp
| CPatAtom (_,None) -> str "_", latom
| CPatAtom (_,Some r) -> pr_reference r, latom
| CPatNotation (_,"( _ )",[p]) ->
pr_patt (fun()->str"(") (max_int,E) p ++ str")", latom
| CPatNotation (_,s,env) -> pr_patnotation (pr_patt mt) s env
| CPatNumeral (_,i) -> Bignat.pr_bigint i, latom
| CPatDelimiters (_,k,p) -> pr_delimiters k (pr_patt mt lsimple p), 1
in
let loc = cases_pattern_loc p in
pr_with_comments loc
(sep() ++ if prec_less prec inh then strm else surround strm)
let pr_patt = pr_patt mt
let pr_eqn pr (loc,pl,rhs) =
spc() ++ hov 4
(pr_with_comments loc
(str "| " ++
hov 0 (prlist_with_sep sep_v (pr_patt ltop) pl ++ str " =>") ++
pr_sep_com spc (pr ltop) rhs))
let begin_of_binder = function
LocalRawDef((loc,_),_) -> fst (unloc loc)
| LocalRawAssum((loc,_)::_,_) -> fst (unloc loc)
| _ -> assert false
let begin_of_binders = function
| b::_ -> begin_of_binder b
| _ -> 0
let pr_binder many pr (nal,t) =
match t with
| CHole _ -> prlist_with_sep spc pr_lname nal
| _ ->
let s = prlist_with_sep spc pr_lname nal ++ str" : " ++ pr t in
hov 1 (if many then surround s else s)
let pr_binder_among_many pr_c = function
| LocalRawAssum (nal,t) ->
pr_binder true pr_c (nal,t)
| LocalRawDef (na,c) ->
let c,topt = match c with
| CCast(_,c,t) -> c, t
| _ -> c, CHole dummy_loc in
hov 1 (surround
(pr_lname na ++ pr_opt_type pr_c topt ++
str":=" ++ cut() ++ pr_c c))
let pr_undelimited_binders pr_c =
prlist_with_sep spc (pr_binder_among_many pr_c)
let pr_delimited_binders kw pr_c bl =
let n = begin_of_binders bl in
match bl with
| [LocalRawAssum (nal,t)] ->
pr_com_at n ++ kw() ++ pr_binder false pr_c (nal,t)
| LocalRawAssum _ :: _ as bdl ->
pr_com_at n ++ kw() ++ pr_undelimited_binders pr_c bdl
| _ -> assert false
let pr_let_binder pr x a =
hov 0 (hov 0 (pr_name x ++ brk(0,1) ++ str ":=") ++
pr_sep_com (fun () -> brk(0,1)) (pr ltop) a)
let rec extract_prod_binders = function
(* | CLetIn (loc,na,b,c) as x ->
let bl,c = extract_prod_binders c in
if bl = [] then [], x else LocalRawDef (na,b) :: bl, c*)
| CProdN (loc,[],c) ->
extract_prod_binders c
| CProdN (loc,(nal,t)::bl,c) ->
let bl,c = extract_prod_binders (CProdN(loc,bl,c)) in
LocalRawAssum (nal,t) :: bl, c
| c -> [], c
let rec extract_lam_binders = function
(* | CLetIn (loc,na,b,c) as x ->
let bl,c = extract_lam_binders c in
if bl = [] then [], x else LocalRawDef (na,b) :: bl, c*)
| CLambdaN (loc,[],c) ->
extract_lam_binders c
| CLambdaN (loc,(nal,t)::bl,c) ->
let bl,c = extract_lam_binders (CLambdaN(loc,bl,c)) in
LocalRawAssum (nal,t) :: bl, c
| c -> [], c
let pr_global vars ref =
(* pr_global_env vars ref *)
let s = string_of_qualid (Constrextern.shortest_qualid_of_v7_global vars ref) in
(str s)
let split_lambda = function
| CLambdaN (loc,[[na],t],c) -> (na,t,c)
| CLambdaN (loc,([na],t)::bl,c) -> (na,t,CLambdaN(loc,bl,c))
| CLambdaN (loc,(na::nal,t)::bl,c) -> (na,t,CLambdaN(loc,(nal,t)::bl,c))
| _ -> anomaly "ill-formed fixpoint body"
let rename na na' t c =
match (na,na') with
| (_,Name id), (_,Name id') -> (na',t,replace_vars_constr_expr [id,id'] c)
| (_,Name id), (_,Anonymous) -> (na,t,c)
| _ -> (na',t,c)
let split_product na' = function
| CArrow (loc,t,c) -> (na',t,c)
| CProdN (loc,[[na],t],c) -> rename na na' t c
| CProdN (loc,([na],t)::bl,c) -> rename na na' t (CProdN(loc,bl,c))
| CProdN (loc,(na::nal,t)::bl,c) ->
rename na na' t (CProdN(loc,(nal,t)::bl,c))
| _ -> anomaly "ill-formed fixpoint body"
let merge_binders (na1,ty1) cofun (na2,ty2) codom =
let na =
match snd na1, snd na2 with
Anonymous, Name id ->
if occur_var_constr_expr id cofun then
failwith "avoid capture"
else na2
| Name id, Anonymous ->
if occur_var_constr_expr id codom then
failwith "avoid capture"
else na1
| Anonymous, Anonymous -> na1
| Name id1, Name id2 ->
if id1 <> id2 then failwith "not same name" else na1 in
let ty =
match ty1, ty2 with
CHole _, _ -> ty2
| _, CHole _ -> ty1
| _ ->
Constrextern.check_same_type ty1 ty2;
ty2 in
(LocalRawAssum ([na],ty), codom)
let rec strip_domain bvar cofun c =
match c with
| CArrow(loc,a,b) ->
merge_binders bvar cofun ((dummy_loc,Anonymous),a) b
| CProdN(loc,[([na],ty)],c') ->
merge_binders bvar cofun (na,ty) c'
| CProdN(loc,([na],ty)::bl,c') ->
merge_binders bvar cofun (na,ty) (CProdN(loc,bl,c'))
| CProdN(loc,(na::nal,ty)::bl,c') ->
merge_binders bvar cofun (na,ty) (CProdN(loc,(nal,ty)::bl,c'))
| _ -> failwith "not a product"
(* Note: binder sharing is lost *)
let rec strip_domains (nal,ty) cofun c =
match nal with
[] -> assert false
| [na] ->
let bnd, c' = strip_domain (na,ty) cofun c in
([bnd],None,c')
| na::nal ->
let f = CLambdaN(dummy_loc,[(nal,ty)],cofun) in
let bnd, c1 = strip_domain (na,ty) f c in
(try
let bl, rest, c2 = strip_domains (nal,ty) cofun c1 in
(bnd::bl, rest, c2)
with Failure _ -> ([bnd],Some (nal,ty), c1))
(* Re-share binders *)
let rec factorize_binders = function
| ([] | [_] as l) -> l
| LocalRawAssum (nal,ty) as d :: (LocalRawAssum (nal',ty')::l as l') ->
(try
let _ = Constrextern.check_same_type ty ty' in
factorize_binders (LocalRawAssum (nal@nal',ty)::l)
with _ ->
d :: factorize_binders l')
| d :: l -> d :: factorize_binders l
(* Extract lambdas when a type constraint occurs *)
let rec extract_def_binders c ty =
match c with
| CLambdaN(loc,bvar::lams,b) ->
(try
let f = CLambdaN(loc,lams,b) in
let bvar', rest, ty' = strip_domains bvar f ty in
let c' =
match rest, lams with
None,[] -> b
| None, _ -> f
| Some bvar,_ -> CLambdaN(loc,bvar::lams,b) in
let (bl,c2,ty2) = extract_def_binders c' ty' in
(factorize_binders (bvar'@bl), c2, ty2)
with Failure _ ->
([],c,ty))
| _ -> ([],c,ty)
let rec split_fix n typ def =
if n = 0 then ([],typ,def)
else
let (na,_,def) = split_lambda def in
let (na,t,typ) = split_product na typ in
let (bl,typ,def) = split_fix (n-1) typ def in
(LocalRawAssum ([na],t)::bl,typ,def)
let pr_recursive_decl pr pr_dangling dangling_with_for id bl annot t c =
let pr_body =
if dangling_with_for then pr_dangling else pr in
pr_id id ++ str" " ++
hov 0 (pr_undelimited_binders (pr ltop) bl ++ annot) ++
pr_opt_type_spc pr t ++ str " :=" ++
pr_sep_com (fun () -> brk(1,2)) (pr_body ltop) c
let pr_fixdecl pr prd dangling_with_for (id,n,bl,t,c) =
let annot =
let ids = names_of_local_assums bl in
if List.length ids > 1 then
spc() ++ str "{struct " ++ pr_name (snd (List.nth ids n)) ++ str"}"
else mt() in
pr_recursive_decl pr prd dangling_with_for id bl annot t c
let pr_cofixdecl pr prd dangling_with_for (id,bl,t,c) =
pr_recursive_decl pr prd dangling_with_for id bl (mt()) t c
let pr_recursive pr_decl id = function
| [] -> anomaly "(co)fixpoint with no definition"
| [d1] -> pr_decl false d1
| dl ->
prlist_with_sep (fun () -> fnl() ++ str "with ")
(pr_decl true) dl ++
fnl() ++ str "for " ++ pr_id id
let pr_arg pr x = spc () ++ pr x
let is_var id = function
| CRef (Ident (_,id')) when id=id' -> true
| _ -> false
let tm_clash = function
| (CRef (Ident (_,id)), Some (CApp (_,_,nal)))
when List.exists (function CRef (Ident (_,id')),_ -> id=id' | _ -> false)
nal
-> Some id
| (CRef (Ident (_,id)), Some (CAppExpl (_,_,nal)))
when List.exists (function CRef (Ident (_,id')) -> id=id' | _ -> false)
nal
-> Some id
| _ -> None
let pr_case_item pr (tm,(na,indnalopt)) =
hov 0 (pr (lcast,E) tm ++
(*
(match na with
| Name id when not (is_var id tm) -> spc () ++ str "as " ++ pr_id id
| Anonymous when tm_clash (tm,indnalopt) <> None ->
(* hide [tm] name to avoid conflicts *)
spc () ++ str "as _" (* ++ pr_id (out_some (tm_clash (tm,indnalopt)))*)
| _ -> mt ()) ++
*)
(match na with (* Decision of printing "_" or not moved to constrextern.ml *)
| Some na -> spc () ++ str "as " ++ pr_name na
| None -> mt ()) ++
(match indnalopt with
| None -> mt ()
(*
| Some (_,ind,nal) ->
spc () ++ str "in " ++
hov 0 (pr_reference ind ++ prlist (pr_arg pr_name) nal))
*)
| Some t -> spc () ++ str "in " ++ pr lsimple t))
let pr_case_type pr po =
match po with
| None | Some (CHole _) -> mt()
| Some p ->
spc() ++ hov 2 (str "return" ++ pr_sep_com spc (pr lsimple) p)
let pr_return_type pr po = pr_case_type pr po
let pr_simple_return_type pr na po =
(match na with
| Some (Name id) ->
spc () ++ str "as " ++ pr_id id
| _ -> mt ()) ++
pr_case_type pr po
let pr_proj pr pr_app a f l =
hov 0 (pr lsimple a ++ cut() ++ str ".(" ++ pr_app pr f l ++ str ")")
let pr_appexpl pr f l =
hov 2 (
str "@" ++ pr_reference f ++
prlist (pr_sep_com spc (pr (lapp,L))) l)
let pr_app pr a l =
hov 2 (
pr (lapp,L) a ++
prlist (fun a -> spc () ++ pr_expl_args pr a) l)
let rec pr sep inherited a =
let (strm,prec) = match a with
| CRef r -> pr_reference r, latom
| CFix (_,id,fix) ->
hov 0 (str"fix " ++
pr_recursive
(pr_fixdecl (pr mt) (pr_dangling_with_for mt)) (snd id) fix),
lfix
| CCoFix (_,id,cofix) ->
hov 0 (str "cofix " ++
pr_recursive
(pr_cofixdecl (pr mt) (pr_dangling_with_for mt)) (snd id) cofix),
lfix
| CArrow (_,a,b) ->
hov 0 (pr mt (larrow,L) a ++ str " ->" ++
pr (fun () ->brk(1,0)) (-larrow,E) b),
larrow
| CProdN _ ->
let (bl,a) = extract_prod_binders a in
hov 0 (
hov 2 (pr_delimited_binders (fun () -> str"forall" ++ spc())
(pr mt ltop) bl) ++
str "," ++ pr spc ltop a),
lprod
| CLambdaN _ ->
let (bl,a) = extract_lam_binders a in
hov 0 (
hov 2 (pr_delimited_binders (fun () -> str"fun" ++ spc())
(pr mt ltop) bl) ++
str " =>" ++ pr spc ltop a),
llambda
| CLetIn (_,(_,Name x),(CFix(_,(_,x'),[_])|CCoFix(_,(_,x'),[_]) as fx), b)
when x=x' ->
hv 0 (
hov 2 (str "let " ++ pr mt ltop fx ++ str " in") ++
pr spc ltop b),
lletin
| CLetIn (_,x,a,b) ->
hv 0 (
hov 2 (str "let " ++ pr_lname x ++ str " :=" ++
pr spc ltop a ++ str " in") ++
pr spc ltop b),
lletin
| CAppExpl (_,(Some i,f),l) ->
let l1,l2 = list_chop i l in
let c,l1 = list_sep_last l1 in
let p = pr_proj (pr mt) pr_appexpl c f l1 in
if l2<>[] then
p ++ prlist (pr spc (lapp,L)) l2, lapp
else
p, lproj
| CAppExpl (_,(None,Ident (_,var)),[t])
| CApp (_,(_,CRef(Ident(_,var))),[t,None])
when var = Topconstr.ldots_var ->
hov 0 (str ".." ++ pr spc (latom,E) t ++ spc () ++ str ".."), larg
| CAppExpl (_,(None,f),l) -> pr_appexpl (pr mt) f l, lapp
| CApp (_,(Some i,f),l) ->
let l1,l2 = list_chop i l in
let c,l1 = list_sep_last l1 in
assert (snd c = None);
let p = pr_proj (pr mt) pr_app (fst c) f l1 in
if l2<>[] then
p ++ prlist (fun a -> spc () ++ pr_expl_args (pr mt) a) l2, lapp
else
p, lproj
| CApp (_,(None,a),l) -> pr_app (pr mt) a l, lapp
| CCases (_,(po,rtntypopt),c,eqns) ->
v 0
(hv 0 (str "match" ++ brk (1,2) ++
hov 0 (
prlist_with_sep sep_v
(pr_case_item (pr_dangling_with_for mt)) c
++ pr_case_type (pr_dangling_with_for mt) rtntypopt) ++
spc () ++ str "with") ++
prlist (pr_eqn (pr mt)) eqns ++ spc() ++ str "end"),
latom
| CLetTuple (_,nal,(na,po),c,b) ->
hv 0 (
str "let " ++
hov 0 (str "(" ++
prlist_with_sep sep_v pr_name nal ++
str ")" ++
pr_simple_return_type (pr mt) na po ++ str " :=" ++
pr spc ltop c ++ str " in") ++
pr spc ltop b),
lletin
| CIf (_,c,(na,po),b1,b2) ->
(* On force les parenthèses autour d'un "if" sous-terme (même si le
parsing est lui plus tolérant) *)
hv 0 (
hov 1 (str "if " ++ pr mt ltop c ++ pr_simple_return_type (pr mt) na po) ++
spc () ++
hov 0 (str "then" ++ pr (fun () -> brk (1,1)) ltop b1) ++ spc () ++
hov 0 (str "else" ++ pr (fun () -> brk (1,1)) ltop b2)),
lif
| COrderedCase (_,st,po,c,[b1;b2]) when st = IfStyle ->
(* On force les parenthèses autour d'un "if" sous-terme (même si le
parsing est lui plus tolérant) *)
hv 0 (
hov 1 (str "if " ++ pr mt ltop c ++
pr_return_type (pr mt) po) ++ spc () ++
hov 0 (str "then" ++ pr (fun () -> brk (1,1)) ltop b1) ++ spc () ++
hov 0 (str "else" ++ pr (fun () -> brk (1,1)) ltop b2)),
lif
| COrderedCase (_,st,po,c,[CLambdaN(_,[nal,_],b)]) when st = LetStyle ->
hv 0 (
str "let " ++
hov 0 (str "(" ++
prlist_with_sep sep_v (fun (_,n) -> pr_name n) nal ++
str ")" ++
pr_return_type (pr mt) po ++ str " :=" ++
pr spc ltop c ++ str " in") ++
pr spc ltop b),
lletin
| COrderedCase (_,style,po,c,bl) ->
hv 0 (
str (if style=MatchStyle then "old_match " else "match ") ++
pr mt ltop c ++
pr_return_type (pr_dangling_with_for mt) po ++
str " with" ++ brk (1,0) ++
hov 0 (prlist
(fun b -> str "| ??? =>" ++ pr spc ltop b ++ fnl ()) bl) ++
str "end"),
latom
| CHole _ -> str "_", latom
| CEvar (_,n) -> str (Evd.string_of_existential n), latom
| CPatVar (_,(_,p)) -> str "?" ++ pr_patvar p, latom
| CSort (_,s) -> pr_sort s, latom
| CCast (_,a,b) ->
hv 0 (pr mt (lcast,L) a ++ cut () ++ str ":" ++ pr mt (-lcast,E) b),
lcast
| CNotation (_,"( _ )",[t]) ->
pr (fun()->str"(") (max_int,L) t ++ str")", latom
| CNotation (_,s,env) -> pr_notation (pr mt) s env
| CNumeral (_,(Bignat.POS _ as p)) -> Bignat.pr_bigint p, lposint
| CNumeral (_,(Bignat.NEG _ as p)) -> Bignat.pr_bigint p, lnegint
| CDelimiters (_,sc,a) -> pr_delimiters sc (pr mt lsimple a), 1
| CDynamic _ -> str "<dynamic>", latom
in
let loc = constr_loc a in
pr_with_comments loc
(sep() ++ if prec_less prec inherited then strm else surround strm)
and pr_dangling_with_for sep inherited a =
match a with
| (CFix (_,_,[_])|CCoFix(_,_,[_])) -> pr sep (latom,E) a
| _ -> pr sep inherited a
let pr = pr mt
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],t,b)) idl
(abstract_constr_expr c bl)
let rec prod_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,prod_constr_expr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],t,b)) idl
(prod_constr_expr c bl)
let rec strip_context n iscast t =
if n = 0 then
[], if iscast then match t with CCast (_,c,_) -> c | _ -> t else t
else match t with
| CLambdaN (loc,(nal,t)::bll,c) ->
let n' = List.length nal in
if n' > n then
let nal1,nal2 = list_chop n nal in
[LocalRawAssum (nal1,t)], CLambdaN (loc,(nal2,t)::bll,c)
else
let bl', c = strip_context (n-n') iscast
(if bll=[] then c else CLambdaN (loc,bll,c)) in
LocalRawAssum (nal,t) :: bl', c
| CProdN (loc,(nal,t)::bll,c) ->
let n' = List.length nal in
if n' > n then
let nal1,nal2 = list_chop n nal in
[LocalRawAssum (nal1,t)], CProdN (loc,(nal2,t)::bll,c)
else
let bl', c = strip_context (n-n') iscast
(if bll=[] then c else CProdN (loc,bll,c)) in
LocalRawAssum (nal,t) :: bl', c
| CArrow (loc,t,c) ->
let bl', c = strip_context (n-1) iscast c in
LocalRawAssum ([loc,Anonymous],t) :: bl', c
| CCast (_,c,_) -> strip_context n false c
| CLetIn (_,na,b,c) ->
let bl', c = strip_context (n-1) iscast c in
LocalRawDef (na,b) :: bl', c
| _ -> anomaly "ppconstrnew: strip_context"
let transf istype env iscast bl c =
let c' =
if istype then prod_constr_expr c bl
else abstract_constr_expr c bl in
if Options.do_translate() then
let r =
Constrintern.for_grammar
(Constrintern.interp_rawconstr_gen istype Evd.empty env false ([],[]))
c' in
begin try
(* Try to infer old case and type annotations *)
let _ = Pretyping.understand_gen_tcc Evd.empty env [] None r in
(*msgerrnl (str "Typage OK");*) ()
with e -> (*msgerrnl (str "Warning: can't type")*) () end;
let c =
(if istype then Constrextern.extern_rawtype
else Constrextern.extern_rawconstr)
(Termops.vars_of_env env) r in
let n = local_binders_length bl in
strip_context n iscast c
else bl, c
let pr_constr_env env c = pr lsimple (snd (transf false env false [] c))
let pr_lconstr_env env c = pr ltop (snd (transf false env false [] c))
let pr_constr c = pr_constr_env (Global.env()) c
let pr_lconstr c = pr_lconstr_env (Global.env()) c
let pr_binders = pr_undelimited_binders (pr ltop)
let is_Eval_key c =
Options.do_translate () &
(let f id = let s = string_of_id id in s = "Eval" in
let g = function
| Ident(_,id) -> f id
| Qualid (_,qid) -> let d,id = repr_qualid qid in d = empty_dirpath & f id
in
match c with
| CRef ref | CApp (_,(_,CRef ref),_) when g ref -> true
| _ -> false)
let pr_protect_eval c =
if is_Eval_key c then h 0 (str "(" ++ pr ltop c ++ str ")") else pr ltop c
let pr_lconstr_env_n env iscast bl c =
let bl, c = transf false env iscast bl c in
bl, pr_protect_eval c
let pr_type_env_n env bl c = pr ltop (snd (transf true env false bl c))
let pr_type c = pr ltop (snd (transf true (Global.env()) false [] c))
let transf_pattern env c =
if Options.do_translate() then
Constrextern.extern_rawconstr (Termops.vars_of_env env)
(Constrintern.for_grammar
(Constrintern.interp_rawconstr_gen false Evd.empty env true ([],[]))
c)
else c
let pr_pattern c = pr lsimple (transf_pattern (Global.env()) c)
let pr_rawconstr_env env c =
pr_constr (Constrextern.extern_rawconstr (Termops.vars_of_env env) c)
let pr_lrawconstr_env env c =
pr_lconstr (Constrextern.extern_rawconstr (Termops.vars_of_env env) c)
let pr_cases_pattern = pr_patt ltop
let pr_pattern_occ prc = function
([],c) -> prc c
| (nl,c) -> hov 1 (prc c ++ spc() ++ str"at " ++
hov 0 (prlist_with_sep spc int nl))
let pr_unfold_occ pr_ref = function
([],qid) -> pr_ref qid
| (nl,qid) -> hov 1 (pr_ref qid ++ spc() ++ str"at " ++
hov 0 (prlist_with_sep spc int nl))
let pr_qualid qid = str (string_of_qualid qid)
open Rawterm
let pr_arg pr x = spc () ++ pr x
let pr_red_flag pr r =
(if r.rBeta then pr_arg str "beta" else mt ()) ++
(if r.rIota then pr_arg str "iota" else mt ()) ++
(if r.rZeta then pr_arg str "zeta" else mt ()) ++
(if r.rConst = [] then
if r.rDelta then pr_arg str "delta"
else mt ()
else
pr_arg str "delta " ++ (if r.rDelta then str "-" else mt ()) ++
hov 0 (str "[" ++ prlist_with_sep spc pr r.rConst ++ str "]"))
open Genarg
let pr_metaid id = str"?" ++ pr_id id
let pr_red_expr (pr_constr,pr_lconstr,pr_ref) = function
| Red false -> str "red"
| Hnf -> str "hnf"
| Simpl o -> str "simpl" ++ pr_opt (pr_pattern_occ pr_constr) o
| Cbv f ->
if f = {rBeta=true;rIota=true;rZeta=true;rDelta=true;rConst=[]} then
str "compute"
else
hov 1 (str "cbv" ++ pr_red_flag pr_ref f)
| Lazy f ->
hov 1 (str "lazy" ++ pr_red_flag pr_ref f)
| Unfold l ->
hov 1 (str "unfold" ++ spc() ++
prlist_with_sep pr_coma (pr_unfold_occ pr_ref) l)
| Fold l -> hov 1 (str "fold" ++ prlist (pr_arg pr_constr) l)
| Pattern l ->
hov 1 (str "pattern" ++
pr_arg (prlist_with_sep pr_coma (pr_pattern_occ pr_constr)) l)
| Red true -> error "Shouldn't be accessible from user"
| ExtraRedExpr s -> str s
let rec pr_may_eval test prc prlc pr2 = function
| ConstrEval (r,c) ->
hov 0
(str "eval" ++ brk (1,1) ++
pr_red_expr (prc,prlc,pr2) r ++
str " in" ++ spc() ++ prc c)
| ConstrContext ((_,id),c) ->
hov 0
(str "context " ++ pr_id id ++ spc () ++
str "[" ++ prlc c ++ str "]")
| ConstrTypeOf c -> hov 1 (str "type of" ++ spc() ++ prc c)
| ConstrTerm c when test c -> h 0 (str "(" ++ prc c ++ str ")")
| ConstrTerm c -> prc c
let pr_may_eval a = pr_may_eval (fun _ -> false) a
let pr_rawconstr_env_no_translate env c =
pr lsimple (Constrextern.extern_rawconstr (Termops.vars_of_env env) c)
let pr_lrawconstr_env_no_translate env c =
pr ltop (Constrextern.extern_rawconstr (Termops.vars_of_env env) c)
(* Printing reference with translation *)
let pr_reference r =
let loc = loc_of_reference r in
try match Nametab.extended_locate (snd (qualid_of_reference r)) with
| TrueGlobal ref ->
pr_with_comments loc
(pr_reference (Constrextern.extern_reference loc Idset.empty ref))
| SyntacticDef kn ->
let is_coq_root d =
let d = repr_dirpath d in
d <> [] & string_of_id (list_last d) = "Coq" in
let dir,id = repr_path (sp_of_syntactic_definition kn) in
let r =
if (is_coq_root (Lib.library_dp()) or is_coq_root dir) then
(match Syntax_def.search_syntactic_definition loc kn with
| RRef (_,ref) ->
Constrextern.extern_reference dummy_loc Idset.empty ref
| _ -> r)
else r
in pr_with_comments loc (pr_reference r)
with Not_found ->
error_global_not_found (snd (qualid_of_reference r))
(** constr printers *)
let pr_term_env env c = pr lsimple (Constrextern.extern_constr false env c)
let pr_lterm_env env c = pr ltop (Constrextern.extern_constr false env c)
let pr_term c = pr_term_env (Global.env()) c
let pr_lterm c = pr_lterm_env (Global.env()) c
let pr_constr_pattern_env env c =
pr lsimple (Constrextern.extern_pattern env Termops.empty_names_context c)
let pr_constr_pattern t =
pr lsimple
(Constrextern.extern_pattern (Global.env()) Termops.empty_names_context t)
(************************************************************************)
(* Automatic standardisation of names in Arith and ZArith by translator *)
(* Very not robust *)
let is_to_rename dir id =
let dirs = List.map string_of_id (repr_dirpath dir) in
match List.rev dirs with
| "Coq"::"Arith"::"Between"::_ -> false
| "Coq"::"ZArith"::
("Wf_Z"|"Zpower"|"Zlogarithm"|"Zbinary"|"Zdiv"|"Znumtheory")::_ -> false
| "Coq"::("Arith"|"NArith"|"ZArith")::_ -> true
| "Coq"::"Init"::"Peano"::_ -> true
| "Coq"::"Init"::"Logic"::_ when string_of_id id = "iff_trans" -> true
| "Coq"::"Reals"::"RIneq"::_ -> true
| _ -> false
let is_ref_to_rename ref =
let sp = sp_of_global ref in
is_to_rename (dirpath sp) (basename sp)
let get_name (ln,lp,lz,ll,lr,lr') id refbase n =
let id' = string_of_id n in
(match id' with
| "nat" -> (id_of_string (List.hd ln),(List.tl ln,lp,lz,ll,lr,lr'))
| "positive" -> (id_of_string (List.hd lp),(ln,List.tl lp,lz,ll,lr,lr'))
| "Z" -> (id_of_string (List.hd lz),(ln,lp,List.tl lz,ll,lr,lr'))
| "Prop" when List.mem (string_of_id id) ["a";"b";"c"] ->
(* pour iff_trans *)
(id_of_string (List.hd ll),(ln,lp,lz,List.tl ll,lr,lr'))
| "R" when (* Noms r,r1,r2 *)
refbase = "Rle_refl" or
refbase = "Rlt_monotony_contra" or
refbase = "Rmult_le_reg_l" or
refbase = "Rle_monotony_contra" or
refbase = "Rge_monotony" ->
(id_of_string (List.hd lr')),(ln,lp,lz,ll,lr,List.tl lr')
| "R" when (* Noms r1,r2,r3,r4 *)
List.mem (string_of_id id)
["x";"y";"x'";"y'";"z";"t";"n";"m";"a";"b";"c";"p";"q"]
& refbase <> "sum_inequa_Rle_lt"
->
(id_of_string (List.hd lr),(ln,lp,lz,ll,List.tl lr,lr'))
| _ -> id,(ln,lp,lz,ll,lr,lr'))
let get_name_constr names id refbase t = match kind_of_term t with
| Ind ind ->
let n = basename (sp_of_global (IndRef ind)) in
get_name names id refbase n
| Const sp ->
let n = basename (sp_of_global (ConstRef sp)) in
get_name names id refbase n
| Sort _ -> get_name names id refbase (id_of_string "Prop")
| _ -> id,names
let names =
(["n";"m";"p";"q"],["p";"q";"r";"s"],["n";"m";"p";"q"],["A";"B";"C"],
["r1";"r2";"r3";"r4"],["r";"r1";"r2"])
let znames refbase t =
let rec aux c names = match kind_of_term c with
| Prod (Name id as na,t,c) ->
let (id,names) = get_name_constr names id refbase t in
(na,id) :: aux c names
| Prod (Anonymous,t,c) ->
(Anonymous,id_of_string "ZZ") :: aux c names
| _ -> []
in aux t names
let get_name_raw names id refbase t = match t with
| CRef(Ident (_,n)) -> get_name names id refbase n
| CSort _ -> get_name names id refbase (id_of_string "Prop")
| _ -> id,names
let rename_bound_variables id0 t =
if is_to_rename (Lib.library_dp()) id0 then
let refbase = string_of_id id0 in
let rec aux c names subst = match c with
| CProdN (loc,bl,c) ->
let rec aux2 names subst = function
| (nal,t)::bl ->
let rec aux3 names subst = function
| (loc,Name id)::nal ->
let (id',names) = get_name_raw names id refbase t in
let (nal,names,subst) = aux3 names ((id,id')::subst) nal in
(loc,Name id')::nal, names, subst
| x::nal ->
let (nal,names,subst) = aux3 names subst nal in
x::nal,names,subst
| [] -> [],names,subst in
let t = replace_vars_constr_expr subst t in
let nal,names,subst = aux3 names subst nal in
let bl,names,subst = aux2 names subst bl in
(nal,t)::bl, names, subst
| [] -> [],names,subst in
let bl,names,subst = aux2 names subst bl in
CProdN (loc,bl,aux c names subst)
| CArrow (loc,t,u) ->
let u = aux u names subst in
CArrow (loc,replace_vars_constr_expr subst t,u)
| _ -> replace_vars_constr_expr subst c
in aux t names []
else t
let translate_binding kn n ebl =
let t = Retyping.get_type_of (Global.env()) Evd.empty (mkConst kn) in
let subst= znames (string_of_id (basename (sp_of_global (ConstRef kn)))) t in
try
let _,subst' = list_chop n subst in
List.map (function
| (x,NamedHyp id,c) -> (x,NamedHyp (List.assoc (Name id) subst'),c)
| x -> x) ebl
with _ -> ebl
let translate_with_bindings c bl =
match bl with
| ExplicitBindings l ->
let l = match c with
| RRef (_,(ConstRef kn as ref)) when is_ref_to_rename ref ->
translate_binding kn 0 l
| RApp (_,RRef (_,(ConstRef kn as ref)),args) when is_ref_to_rename ref
-> translate_binding kn (List.length args) l
| _ ->
l
in ExplicitBindings l
| x -> x
|