1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: command.ml,v 1.116.2.1 2004/07/16 19:31:47 herbelin Exp $ *)
open Pp
open Util
open Options
open Term
open Termops
open Declarations
open Entries
open Inductive
open Environ
open Reduction
open Tacred
open Declare
open Nametab
open Names
open Libnames
open Nameops
open Topconstr
open Library
open Libobject
open Constrintern
open Proof_type
open Tacmach
open Safe_typing
open Nametab
open Typeops
open Indtypes
open Vernacexpr
open Decl_kinds
open Pretyping
open Symbols
let mkLambdaCit = List.fold_right (fun (x,a) b -> mkLambdaC(x,a,b))
let mkProdCit = List.fold_right (fun (x,a) b -> mkProdC(x,a,b))
let rec abstract_rawconstr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_rawconstr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],t,b)) idl
(abstract_rawconstr c bl)
let rec prod_rawconstr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,prod_rawconstr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],t,b)) idl
(prod_rawconstr c bl)
let rec destSubCast c = match kind_of_term c with
| Lambda (x,t,c) ->
let (b,u) = destSubCast c in mkLambda (x,t,b), mkProd (x,t,u)
| LetIn (x,b,t,c) ->
let (d,u) = destSubCast c in mkLetIn (x,b,t,d), mkLetIn (x,b,t,u)
| Cast (b,u) -> (b,u)
| _ -> assert false
let rec adjust_conclusion a cs = function
| CProdN (loc,bl,c) -> CProdN (loc,bl,adjust_conclusion a cs c)
| CLetIn (loc,b,t,c) -> CLetIn (loc,b,t,adjust_conclusion a cs c)
| CHole loc ->
let (nar,name,params) = a in
if nar <> 0 then
user_err_loc (loc,"",
str "Cannot infer the non constant arguments of the conclusion of "
++ pr_id cs);
let args = List.map (fun id -> CRef(Ident(loc,id))) params in
CAppExpl (loc,(None,Ident(loc,name)),List.rev args)
| c -> c
(* Commands of the interface *)
(* 1| Constant definitions *)
let definition_message id =
if_verbose message ((string_of_id id) ^ " is defined")
let constant_entry_of_com (bl,com,comtypopt,opacity) =
let sigma = Evd.empty in
let env = Global.env() in
match comtypopt with
None ->
let b = abstract_rawconstr com bl in
let j = judgment_of_rawconstr sigma env b in
{ const_entry_body = j.uj_val;
const_entry_type = Some (Evarutil.refresh_universes j.uj_type);
const_entry_opaque = opacity }
| Some comtyp ->
(* We use a cast to avoid troubles with evars in comtyp *)
(* that can only be resolved knowing com *)
let b = abstract_rawconstr (mkCastC (com,comtyp)) bl in
let (body,typ) = destSubCast (interp_constr sigma env b) in
{ const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = opacity }
let red_constant_entry ce = function
| None -> ce
| Some red ->
let body = ce.const_entry_body in
{ ce with const_entry_body =
reduction_of_redexp red (Global.env()) Evd.empty body }
let declare_global_definition ident ce local =
let (_,kn) = declare_constant ident (DefinitionEntry ce,IsDefinition) in
if local = Local then
msg_warning (pr_id ident ++ str" is declared as a global definition");
definition_message ident;
ConstRef kn
let declare_definition ident (local,_) bl red_option c typopt hook =
let ce = constant_entry_of_com (bl,c,typopt,false) in
if bl<>[] && red_option <> None then
error "Evaluation under a local context not supported";
let ce' = red_constant_entry ce red_option in
let r = match local with
| Local when Lib.sections_are_opened () ->
let c =
SectionLocalDef(ce'.const_entry_body,ce'.const_entry_type,false) in
let _ = declare_variable ident (Lib.cwd(), c, IsDefinition) in
definition_message ident;
if Pfedit.refining () then
msgerrnl (str"Warning: Local definition " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
declare_global_definition ident ce' local in
hook local r
let syntax_definition ident c local onlyparse =
let c = snd (interp_aconstr [] [] c) in
let onlyparse = !Options.v7_only or onlyparse in
Syntax_def.declare_syntactic_definition local ident onlyparse c
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let assumption_message id =
if_verbose message ((string_of_id id) ^ " is assumed")
let declare_one_assumption is_coe (local,kind) c (_,ident) =
let r = match local with
| Local when Lib.sections_are_opened () ->
let r =
declare_variable ident
(Lib.cwd(), SectionLocalAssum c, IsAssumption kind) in
assumption_message ident;
if is_verbose () & Pfedit.refining () then
msgerrnl (str"Warning: Variable " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
let (_,kn) =
declare_constant ident (ParameterEntry c, IsAssumption kind) in
assumption_message ident;
if local=Local & Options.is_verbose () then
msg_warning (pr_id ident ++ str" is declared as a parameter" ++
str" because it is at a global level");
ConstRef kn in
if is_coe then Class.try_add_new_coercion r local
let declare_assumption idl is_coe k bl c =
let c = prod_rawconstr c bl in
let c = interp_type Evd.empty (Global.env()) c in
List.iter (declare_one_assumption is_coe k c) idl
(* 3a| Elimination schemes for mutual inductive definitions *)
open Indrec
let non_type_eliminations =
[ (InProp,elimination_suffix InProp);
(InSet,elimination_suffix InSet) ]
let declare_one_elimination ind =
let (mib,mip) = Global.lookup_inductive ind in
let mindstr = string_of_id mip.mind_typename in
let declare s c t =
let id = id_of_string s in
let kn = Declare.declare_internal_constant id
(DefinitionEntry
{ const_entry_body = c;
const_entry_type = t;
const_entry_opaque = false },
Decl_kinds.IsDefinition) in
definition_message id;
kn
in
let env = Global.env () in
let sigma = Evd.empty in
let elim_scheme = Indrec.build_indrec env sigma ind in
let npars = mip.mind_nparams in
let make_elim s = Indrec.instanciate_indrec_scheme s npars elim_scheme in
let kelim = mip.mind_kelim in
(* in case the inductive has a type elimination, generates only one
induction scheme, the other ones share the same code with the
apropriate type *)
if List.mem InType kelim then
let elim = make_elim (new_sort_in_family InType) in
let cte = declare (mindstr^(Indrec.elimination_suffix InType)) elim None in
let c = mkConst (snd cte) and t = constant_type (Global.env()) (snd cte) in
List.iter (fun (sort,suff) ->
let (t',c') =
Indrec.instanciate_type_indrec_scheme (new_sort_in_family sort)
npars c t in
let _ = declare (mindstr^suff) c' (Some t') in ())
non_type_eliminations
else (* Impredicative or logical inductive definition *)
List.iter
(fun (sort,suff) ->
if List.mem sort kelim then
let elim = make_elim (new_sort_in_family sort) in
let _ = declare (mindstr^suff) elim None in ())
non_type_eliminations
let declare_eliminations sp =
let mib = Global.lookup_mind sp in
if mib.mind_finite then
for i = 0 to Array.length mib.mind_packets - 1 do
declare_one_elimination (sp,i)
done
(* 3b| Mutual Inductive definitions *)
let minductive_message = function
| [] -> error "no inductive definition"
| [x] -> (pr_id x ++ str " is defined")
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are defined")
let recursive_message v =
match Array.length v with
| 0 -> error "no recursive definition"
| 1 -> (Printer.pr_global v.(0) ++ str " is recursively defined")
| _ -> hov 0 (prvect_with_sep pr_coma Printer.pr_global v ++
spc () ++ str "are recursively defined")
let corecursive_message v =
match Array.length v with
| 0 -> error "no corecursive definition"
| 1 -> (Printer.pr_global v.(0) ++ str " is corecursively defined")
| _ -> hov 0 (prvect_with_sep pr_coma Printer.pr_global v ++
spc () ++ str "are corecursively defined")
let interp_mutual lparams lnamearconstrs finite =
let allnames =
List.fold_left (fun acc (id,_,_,l) -> id::(List.map fst l)@acc)
[] lnamearconstrs in
if not (list_distinct allnames) then
error "Two inductive objects have the same name";
let nparams = local_binders_length lparams
and sigma = Evd.empty
and env0 = Global.env() in
let env_params, params =
List.fold_left
(fun (env, params) d -> match d with
| LocalRawAssum ([_,na],(CHole _ as t)) ->
let t = interp_binder sigma env na t in
let d = (na,None,t) in
(push_rel d env, d::params)
| LocalRawAssum (nal,t) ->
let t = interp_type sigma env t in
let ctx = list_map_i (fun i (_,na) -> (na,None,lift i t)) 0 nal in
let ctx = List.rev ctx in
(push_rel_context ctx env, ctx@params)
| LocalRawDef ((_,na),c) ->
let c = judgment_of_rawconstr sigma env c in
let d = (na, Some c.uj_val, c.uj_type) in
(push_rel d env,d::params))
(env0,[]) lparams
in
(* Builds the params of the inductive entry *)
let params' =
List.map (fun (na,b,t) ->
let id = match na with
| Name id -> id
| Anonymous -> anomaly "Unnamed inductive variable" in
match b with
| None -> (id, LocalAssum t)
| Some b -> (id, LocalDef b)) params
in
let paramassums =
List.fold_right (fun d l -> match d with
(id,LocalAssum _) -> id::l | (_,LocalDef _) -> l) params' [] in
let indnames =
List.map (fun (id,_,_,_)-> id) lnamearconstrs @ paramassums in
let nparamassums = List.length paramassums in
let (ind_env,ind_impls,arityl) =
List.fold_left
(fun (env, ind_impls, arl) (recname, _, arityc, _) ->
let arity = interp_type sigma env_params arityc in
let fullarity = it_mkProd_or_LetIn arity params in
let env' = Termops.push_rel_assum (Name recname,fullarity) env in
let argsc = compute_arguments_scope fullarity in
let ind_impls' =
if Impargs.is_implicit_args() then
let impl = Impargs.compute_implicits false env_params fullarity in
let paramimpl,_ = list_chop nparamassums impl in
let l = List.fold_right
(fun imp l -> if Impargs.is_status_implicit imp then
Impargs.name_of_implicit imp::l else l) paramimpl [] in
(recname,(l,impl,argsc))::ind_impls
else
(recname,([],[],argsc))::ind_impls in
(env', ind_impls', (arity::arl)))
(env0, [], []) lnamearconstrs
in
(* Names of parameters as arguments of the inductive type (defs removed) *)
let lparargs =
List.flatten
(List.map (function (id,LocalAssum _) -> [id] | _ -> []) params') in
let notations =
List.fold_right (fun (_,ntnopt,_,_) l -> option_cons ntnopt l)
lnamearconstrs [] in
let fs = States.freeze() in
(* Declare the notations for the inductive types pushed in local context*)
try
List.iter (fun (df,c,scope) -> (* No scope for tmp notation *)
Metasyntax.add_notation_interpretation df ind_impls c None) notations;
let ind_env_params = push_rel_context params ind_env in
let mispecvec =
List.map2
(fun ar (name,_,_,lname_constr) ->
let constrnames, bodies = List.split lname_constr in
(* Compute the conclusions of constructor types *)
(* for inductive given in ML syntax *)
let nar =
List.length (fst (Reductionops.splay_arity env_params Evd.empty ar))
in
let bodies =
List.map2 (adjust_conclusion (nar,name,lparargs))
constrnames bodies
in
(* Interpret the constructor types *)
let constrs =
List.map
(interp_type_with_implicits sigma ind_env_params
(paramassums,ind_impls))
bodies
in
(* Build the inductive entry *)
{ mind_entry_params = params';
mind_entry_typename = name;
mind_entry_arity = ar;
mind_entry_consnames = constrnames;
mind_entry_lc = constrs })
(List.rev arityl) lnamearconstrs
in
States.unfreeze fs;
notations, { mind_entry_finite = finite; mind_entry_inds = mispecvec }
with e -> States.unfreeze fs; raise e
let declare_mutual_with_eliminations isrecord mie =
let lrecnames =
List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let (_,kn) = declare_mind isrecord mie in
if_verbose ppnl (minductive_message lrecnames);
declare_eliminations kn;
kn
(* Very syntactical equality *)
let eq_la d1 d2 = match d1,d2 with
| LocalRawAssum (nal,ast), LocalRawAssum (nal',ast') ->
List.for_all2 (fun (_,na) (_,na') -> na = na') nal nal'
& (try let _ = Constrextern.check_same_type ast ast' in true with _ -> false)
| LocalRawDef ((_,id),ast), LocalRawDef ((_,id'),ast') ->
id=id' & (try let _ = Constrextern.check_same_type ast ast' in true with _ -> false)
| _ -> false
let extract_coe lc =
List.fold_right
(fun (addcoe,((_,(id:identifier)),t)) (l1,l2) ->
((if addcoe then id::l1 else l1), (id,t)::l2)) lc ([],[])
let extract_coe_la_lc = function
| [] -> anomaly "Vernacentries: empty list of inductive types"
| ((_,id),ntn,la,ar,lc)::rest ->
let rec check = function
| [] -> [],[]
| ((_,id),ntn,la',ar,lc)::rest ->
if (List.length la = List.length la') &&
(List.for_all2 eq_la la la')
then
let mcoes, mspec = check rest in
let coes, lc' = extract_coe lc in
(coes::mcoes,(id,ntn,ar,lc')::mspec)
else
error ("Parameters should be syntactically the same "^
"for each inductive type")
in
let mcoes, mspec = check rest in
let coes, lc' = extract_coe lc in
(coes,la,(id,ntn,ar,lc'):: mspec)
let build_mutual lind finite =
let ((coes:identifier list),lparams,lnamearconstructs) = extract_coe_la_lc lind in
let notations,mie = interp_mutual lparams lnamearconstructs finite in
let kn = declare_mutual_with_eliminations false mie in
(* Declare the notations now bound to the inductive types *)
List.iter (fun (df,c,scope) ->
Metasyntax.add_notation_interpretation df [] c scope) notations;
List.iter
(fun id ->
Class.try_add_new_coercion (locate (make_short_qualid id)) Global) coes
(* try to find non recursive definitions *)
let list_chop_hd i l = match list_chop i l with
| (l1,x::l2) -> (l1,x,l2)
| _ -> assert false
let collect_non_rec env =
let rec searchrec lnonrec lnamerec ldefrec larrec nrec =
try
let i =
list_try_find_i
(fun i f ->
if List.for_all (fun def -> not (occur_var env f def)) ldefrec
then i else failwith "try_find_i")
0 lnamerec
in
let (lf1,f,lf2) = list_chop_hd i lnamerec in
let (ldef1,def,ldef2) = list_chop_hd i ldefrec in
let (lar1,ar,lar2) = list_chop_hd i larrec in
let newlnv =
try
match list_chop i nrec with
| (lnv1,_::lnv2) -> (lnv1@lnv2)
| _ -> [] (* nrec=[] for cofixpoints *)
with Failure "list_chop" -> []
in
searchrec ((f,def,ar)::lnonrec)
(lf1@lf2) (ldef1@ldef2) (lar1@lar2) newlnv
with Failure "try_find_i" ->
(List.rev lnonrec,
(Array.of_list lnamerec, Array.of_list ldefrec,
Array.of_list larrec, Array.of_list nrec))
in
searchrec []
let build_recursive (lnameargsardef:(fixpoint_expr *decl_notation) list) =
let lrecnames = List.map (fun ((f,_,_,_,_),_) -> f) lnameargsardef
and sigma = Evd.empty
and env0 = Global.env()
and nv = Array.of_list (List.map (fun ((_,n,_,_,_),_) -> n) lnameargsardef) in
(* Build the recursive context and notations for the recursive types *)
let (rec_sign,rec_impls,arityl) =
List.fold_left
(fun (env,impls,arl) ((recname,_,bl,arityc,_),_) ->
let arityc = prod_rawconstr arityc bl in
let arity = interp_type sigma env0 arityc in
let impl =
if Impargs.is_implicit_args()
then Impargs.compute_implicits false env0 arity
else [] in
let impls' =(recname,([],impl,compute_arguments_scope arity))::impls in
(Environ.push_named (recname,None,arity) env, impls', arity::arl))
(env0,[],[]) lnameargsardef in
let arityl = List.rev arityl in
let notations =
List.fold_right (fun (_,ntnopt) l -> option_cons ntnopt l)
lnameargsardef [] in
let recdef =
(* Declare local notations *)
let fs = States.freeze() in
let def =
try
List.iter (fun (df,c,scope) -> (* No scope for tmp notation *)
Metasyntax.add_notation_interpretation df [] c None) notations;
List.map2
(fun ((_,_,bl,_,def),_) arity ->
let def = abstract_rawconstr def bl in
interp_casted_constr_with_implicits
sigma rec_sign rec_impls def arity)
lnameargsardef arityl
with e ->
States.unfreeze fs; raise e in
States.unfreeze fs; def
in
let (lnonrec,(namerec,defrec,arrec,nvrec)) =
collect_non_rec env0 lrecnames recdef arityl (Array.to_list nv) in
let recvec =
Array.map (subst_vars (List.rev (Array.to_list namerec))) defrec in
let recdecls = (Array.map (fun id -> Name id) namerec, arrec, recvec) in
let rec declare i fi =
let ce =
{ const_entry_body = mkFix ((nvrec,i),recdecls);
const_entry_type = Some arrec.(i);
const_entry_opaque = false } in
let (_,kn) = declare_constant fi (DefinitionEntry ce, IsDefinition) in
(ConstRef kn)
in
(* declare the recursive definitions *)
let lrefrec = Array.mapi declare namerec in
if_verbose ppnl (recursive_message lrefrec);
(* The others are declared as normal definitions *)
let var_subst id = (id, global_reference id) in
let _ =
List.fold_left
(fun subst (f,def,t) ->
let ce = { const_entry_body = replace_vars subst def;
const_entry_type = Some t;
const_entry_opaque = false } in
let _ = declare_constant f (DefinitionEntry ce, IsDefinition) in
warning ((string_of_id f)^" is non-recursively defined");
(var_subst f) :: subst)
(List.map var_subst (Array.to_list namerec))
lnonrec
in
List.iter (fun (df,c,scope) ->
Metasyntax.add_notation_interpretation df [] c scope) notations
let build_corecursive lnameardef =
let lrecnames = List.map (fun (f,_,_,_) -> f) lnameardef
and sigma = Evd.empty
and env0 = Global.env() in
let fs = States.freeze() in
let (rec_sign,arityl) =
try
List.fold_left
(fun (env,arl) (recname,bl,arityc,_) ->
let arityc = prod_rawconstr arityc bl in
let arj = type_judgment_of_rawconstr Evd.empty env0 arityc in
let arity = arj.utj_val in
let _ = declare_variable recname
(Lib.cwd(),SectionLocalAssum arj.utj_val,IsAssumption Definitional) in
(Environ.push_named (recname,None,arity) env, (arity::arl)))
(env0,[]) lnameardef
with e ->
States.unfreeze fs; raise e in
let arityl = List.rev arityl in
let recdef =
try
List.map (fun (_,bl,arityc,def) ->
let arityc = prod_rawconstr arityc bl in
let def = abstract_rawconstr def bl in
let arity = interp_constr sigma rec_sign arityc in
interp_casted_constr sigma rec_sign def arity)
lnameardef
with e ->
States.unfreeze fs; raise e
in
States.unfreeze fs;
let (lnonrec,(namerec,defrec,arrec,_)) =
collect_non_rec env0 lrecnames recdef arityl [] in
let recvec =
Array.map (subst_vars (List.rev (Array.to_list namerec))) defrec in
let recdecls = (Array.map (fun id -> Name id) namerec, arrec, recvec) in
let rec declare i fi =
let ce =
{ const_entry_body = mkCoFix (i, recdecls);
const_entry_type = Some (arrec.(i));
const_entry_opaque = false }
in
let _,kn = declare_constant fi (DefinitionEntry ce, IsDefinition) in
(ConstRef kn)
in
let lrefrec = Array.mapi declare namerec in
if_verbose ppnl (corecursive_message lrefrec);
let var_subst id = (id, global_reference id) in
let _ =
List.fold_left
(fun subst (f,def,t) ->
let ce = { const_entry_body = replace_vars subst def;
const_entry_type = Some t;
const_entry_opaque = false } in
let _ = declare_constant f (DefinitionEntry ce,IsDefinition) in
warning ((string_of_id f)^" is non-recursively defined");
(var_subst f) :: subst)
(List.map var_subst (Array.to_list namerec))
lnonrec
in ()
let build_scheme lnamedepindsort =
let lrecnames = List.map (fun ((_,f),_,_,_) -> f) lnamedepindsort
and sigma = Evd.empty
and env0 = Global.env() in
let lrecspec =
List.map
(fun (_,dep,indid,sort) ->
let ind = Nametab.global_inductive indid in
let (mib,mip) = Global.lookup_inductive ind in
(ind,mib,mip,dep,interp_elimination_sort sort))
lnamedepindsort
in
let listdecl = Indrec.build_mutual_indrec env0 sigma lrecspec in
let rec declare decl fi lrecref =
let decltype = Retyping.get_type_of env0 Evd.empty decl in
let decltype = Evarutil.refresh_universes decltype in
let ce = { const_entry_body = decl;
const_entry_type = Some decltype;
const_entry_opaque = false } in
let _,kn = declare_constant fi (DefinitionEntry ce, IsDefinition) in
ConstRef kn :: lrecref
in
let lrecref = List.fold_right2 declare listdecl lrecnames [] in
if_verbose ppnl (recursive_message (Array.of_list lrecref))
let rec generalize_rawconstr c = function
| [] -> c
| LocalRawDef (id,b)::bl -> mkLetInC(id,b,generalize_rawconstr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],t,b)) idl
(generalize_rawconstr c bl)
let start_proof id kind c hook =
let sign = Global.named_context () in
let sign = clear_proofs sign in
Pfedit.start_proof id kind sign c hook
let start_proof_com sopt kind (bl,t) hook =
let id = match sopt with
| Some id ->
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) or is_section_variable id then
errorlabstrm "start_proof" (pr_id id ++ str " already exists");
id
| None ->
next_global_ident_away false (id_of_string "Unnamed_thm")
(Pfedit.get_all_proof_names ())
in
let env = Global.env () in
let c = interp_type Evd.empty env (generalize_rawconstr t bl) in
let _ = Typeops.infer_type env c in
start_proof id kind c hook
let save id const kind hook =
let {const_entry_body = pft;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
let l,r = match kind with
| IsLocal when Lib.sections_are_opened () ->
let c = SectionLocalDef (pft, tpo, opacity) in
let _ = declare_variable id (Lib.cwd(), c, IsDefinition) in
(Local, VarRef id)
| IsLocal ->
let k = IsDefinition in
let _,kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn)
| IsGlobal k ->
let k = theorem_kind_of_goal_kind k in
let _,kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn) in
hook l r;
Pfedit.delete_current_proof ();
definition_message id
let save_named opacity =
let id,(const,persistence,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
save id const persistence hook
let check_anonymity id save_ident =
if atompart_of_id id <> "Unnamed_thm" then
error "This command can only be used for unnamed theorem"
(*
message("Overriding name "^(string_of_id id)^" and using "^save_ident)
*)
let save_anonymous opacity save_ident =
let id,(const,persistence,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
save save_ident const persistence hook
let save_anonymous_with_strength kind opacity save_ident =
let id,(const,_,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
(* we consider that non opaque behaves as local for discharge *)
save save_ident const (IsGlobal (Proof kind)) hook
let admit () =
let (id,k,typ,hook) = Pfedit.current_proof_statement () in
(* Contraire aux besoins d'interactivité...
if k <> IsGlobal (Proof Conjecture) then
error "Only statements declared as conjecture can be admitted";
*)
let (_,kn) = declare_constant id (ParameterEntry typ, IsConjecture) in
hook Global (ConstRef kn);
Pfedit.delete_current_proof ();
assumption_message id
let get_current_context () =
try Pfedit.get_current_goal_context ()
with e when Logic.catchable_exception e ->
(Evd.empty, Global.env())
|