1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: command.ml 10067 2007-08-09 17:13:16Z msozeau $ *)
open Pp
open Util
open Options
open Term
open Termops
open Declarations
open Entries
open Inductive
open Environ
open Reduction
open Redexpr
open Declare
open Nametab
open Names
open Libnames
open Nameops
open Topconstr
open Library
open Libobject
open Constrintern
open Proof_type
open Tacmach
open Safe_typing
open Nametab
open Impargs
open Typeops
open Reductionops
open Indtypes
open Vernacexpr
open Decl_kinds
open Pretyping
open Evarutil
open Evarconv
open Notation
let mkLambdaCit = List.fold_right (fun (x,a) b -> mkLambdaC(x,a,b))
let mkProdCit = List.fold_right (fun (x,a) b -> mkProdC(x,a,b))
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],t,b)) idl
(abstract_constr_expr c bl)
let rec generalize_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,generalize_constr_expr c bl)
| LocalRawAssum (idl,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],t,b)) idl
(generalize_constr_expr c bl)
let rec under_binders env f n c =
if n = 0 then f env Evd.empty c else
match kind_of_term c with
| Lambda (x,t,c) ->
mkLambda (x,t,under_binders (push_rel (x,None,t) env) f (n-1) c)
| LetIn (x,b,t,c) ->
mkLetIn (x,b,t,under_binders (push_rel (x,Some b,t) env) f (n-1) c)
| _ -> assert false
let rec destSubCast c = match kind_of_term c with
| Lambda (x,t,c) ->
let (b,u) = destSubCast c in mkLambda (x,t,b), mkProd (x,t,u)
| LetIn (x,b,t,c) ->
let (d,u) = destSubCast c in mkLetIn (x,b,t,d), mkLetIn (x,b,t,u)
| Cast (b,_, u) -> (b,u)
| _ -> assert false
let rec complete_conclusion a cs = function
| CProdN (loc,bl,c) -> CProdN (loc,bl,complete_conclusion a cs c)
| CLetIn (loc,b,t,c) -> CLetIn (loc,b,t,complete_conclusion a cs c)
| CHole loc ->
let (has_no_args,name,params) = a in
if not has_no_args then
user_err_loc (loc,"",
str "Cannot infer the non constant arguments of the conclusion of "
++ pr_id cs);
let args = List.map (fun id -> CRef(Ident(loc,id))) params in
CAppExpl (loc,(None,Ident(loc,name)),List.rev args)
| c -> c
(* Commands of the interface *)
(* 1| Constant definitions *)
let definition_message id =
if_verbose message ((string_of_id id) ^ " is defined")
let constant_entry_of_com (bl,com,comtypopt,opacity,boxed) =
let sigma = Evd.empty in
let env = Global.env() in
match comtypopt with
None ->
let b = abstract_constr_expr com bl in
let j = interp_constr_judgment sigma env b in
{ const_entry_body = j.uj_val;
const_entry_type = None;
const_entry_opaque = opacity;
const_entry_boxed = boxed }
| Some comtyp ->
(* We use a cast to avoid troubles with evars in comtyp *)
(* that can only be resolved knowing com *)
let b = abstract_constr_expr (mkCastC (com, Rawterm.CastConv (DEFAULTcast,comtyp))) bl in
let (body,typ) = destSubCast (interp_constr sigma env b) in
{ const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = opacity;
const_entry_boxed = boxed }
let red_constant_entry bl ce = function
| None -> ce
| Some red ->
let body = ce.const_entry_body in
{ ce with const_entry_body =
under_binders (Global.env()) (fst (reduction_of_red_expr red))
(local_binders_length bl)
body }
let declare_global_definition ident ce local =
let kn = declare_constant ident (DefinitionEntry ce,IsDefinition Definition) in
if local = Local && Options.is_verbose() then
msg_warning (pr_id ident ++ str" is declared as a global definition");
definition_message ident;
ConstRef kn
let declare_definition ident (local,boxed,dok) bl red_option c typopt hook =
let ce = constant_entry_of_com (bl,c,typopt,false,boxed) in
let ce' = red_constant_entry bl ce red_option in
let r = match local with
| Local when Lib.sections_are_opened () ->
let c =
SectionLocalDef(ce'.const_entry_body,ce'.const_entry_type,false) in
let _ = declare_variable ident (Lib.cwd(),c,IsDefinition Definition) in
definition_message ident;
if Pfedit.refining () then
msgerrnl (str"Warning: Local definition " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
declare_global_definition ident ce' local in
hook local r
let syntax_definition ident c local onlyparse =
let c = snd (interp_aconstr [] [] c) in
Syntax_def.declare_syntactic_definition local ident onlyparse c
(* 2| Variable/Hypothesis/Parameter/Axiom declarations *)
let assumption_message id =
if_verbose message ((string_of_id id) ^ " is assumed")
let declare_one_assumption is_coe (local,kind) c (_,ident) =
let r = match local with
| Local when Lib.sections_are_opened () ->
let _ =
declare_variable ident
(Lib.cwd(), SectionLocalAssum c, IsAssumption kind) in
assumption_message ident;
if is_verbose () & Pfedit.refining () then
msgerrnl (str"Warning: Variable " ++ pr_id ident ++
str" is not visible from current goals");
VarRef ident
| (Global|Local) ->
let kn =
declare_constant ident (ParameterEntry c, IsAssumption kind) in
assumption_message ident;
if local=Local & Options.is_verbose () then
msg_warning (pr_id ident ++ str" is declared as a parameter" ++
str" because it is at a global level");
ConstRef kn in
if is_coe then Class.try_add_new_coercion r local
let declare_assumption idl is_coe k bl c =
if not (Pfedit.refining ()) then
let c = generalize_constr_expr c bl in
let c = interp_type Evd.empty (Global.env()) c in
List.iter (declare_one_assumption is_coe k c) idl
else
errorlabstrm "Command.Assumption"
(str "Cannot declare an assumption while in proof editing mode.")
(* 3a| Elimination schemes for mutual inductive definitions *)
open Indrec
let non_type_eliminations =
[ (InProp,elimination_suffix InProp);
(InSet,elimination_suffix InSet) ]
let declare_one_elimination ind =
let (mib,mip) = Global.lookup_inductive ind in
let mindstr = string_of_id mip.mind_typename in
let declare s c t =
let id = id_of_string s in
let kn = Declare.declare_internal_constant id
(DefinitionEntry
{ const_entry_body = c;
const_entry_type = t;
const_entry_opaque = false;
const_entry_boxed = Options.boxed_definitions() },
Decl_kinds.IsDefinition Definition) in
definition_message id;
kn
in
let env = Global.env () in
let sigma = Evd.empty in
let elim_scheme = Indrec.build_indrec env sigma ind in
let npars =
(* if a constructor of [ind] contains a recursive call, the scheme
is generalized only wrt recursively uniform parameters *)
if (Inductiveops.mis_is_recursive_subset [snd ind] mip.mind_recargs)
then
mib.mind_nparams_rec
else
mib.mind_nparams in
let make_elim s = Indrec.instantiate_indrec_scheme s npars elim_scheme in
let kelim = elim_sorts (mib,mip) in
(* in case the inductive has a type elimination, generates only one
induction scheme, the other ones share the same code with the
apropriate type *)
if List.mem InType kelim then
let elim = make_elim (new_sort_in_family InType) in
let cte = declare (mindstr^(Indrec.elimination_suffix InType)) elim None in
let c = mkConst cte in
let t = type_of_constant (Global.env()) cte in
List.iter (fun (sort,suff) ->
let (t',c') =
Indrec.instantiate_type_indrec_scheme (new_sort_in_family sort)
npars c t in
let _ = declare (mindstr^suff) c' (Some t') in ())
non_type_eliminations
else (* Impredicative or logical inductive definition *)
List.iter
(fun (sort,suff) ->
if List.mem sort kelim then
let elim = make_elim (new_sort_in_family sort) in
let _ = declare (mindstr^suff) elim None in ())
non_type_eliminations
let declare_eliminations sp =
let mib = Global.lookup_mind sp in
if mib.mind_finite then
for i = 0 to Array.length mib.mind_packets - 1 do
declare_one_elimination (sp,i)
done
(* 3b| Mutual inductive definitions *)
let compute_interning_datas env l nal typl =
let mk_interning_data na typ =
let idl, impl =
if is_implicit_args() then
let impl = compute_implicits env typ in
let sub_impl,_ = list_chop (List.length l) impl in
let sub_impl' = List.filter is_status_implicit sub_impl in
(List.map name_of_implicit sub_impl', impl)
else
([],[]) in
(na, (idl, impl, compute_arguments_scope typ)) in
(l, List.map2 mk_interning_data nal typl)
let declare_interning_data (_,impls) (df,c,scope) =
silently (Metasyntax.add_notation_interpretation df impls c) scope
let push_named_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_named (id,None,t) env)
env idl tl
let push_types env idl tl =
List.fold_left2 (fun env id t -> Environ.push_rel (Name id,None,t) env)
env idl tl
type inductive_expr = {
ind_name : identifier;
ind_arity : constr_expr;
ind_lc : (identifier * constr_expr) list
}
let minductive_message = function
| [] -> error "no inductive definition"
| [x] -> (pr_id x ++ str " is defined")
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are defined")
let check_all_names_different indl =
let get_names ind = ind.ind_name::List.map fst ind.ind_lc in
if not (list_distinct (List.flatten (List.map get_names indl))) then
error "Two inductive objects have the same name"
let mk_mltype_data isevars env assums arity indname =
let is_ml_type = is_sort env (Evd.evars_of !isevars) arity in
(is_ml_type,indname,assums)
let prepare_param = function
| (na,None,t) -> out_name na, LocalAssum t
| (na,Some b,_) -> out_name na, LocalDef b
let interp_ind_arity isevars env ind =
interp_type_evars isevars env ind.ind_arity
let interp_cstrs isevars env impls mldata arity ind =
let cnames,ctyps = List.split ind.ind_lc in
(* Complete conclusions of constructor types if given in ML-style syntax *)
let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
(* Interpret the constructor types *)
let ctyps'' = List.map (interp_type_evars isevars env ~impls) ctyps' in
(cnames, ctyps'')
let interp_mutual paramsl indl notations finite =
check_all_names_different indl;
let env0 = Global.env() in
let isevars = ref (Evd.create_evar_defs Evd.empty) in
let env_params, ctx_params = interp_context_evars isevars env0 paramsl in
let indnames = List.map (fun ind -> ind.ind_name) indl in
(* Names of parameters as arguments of the inductive type (defs removed) *)
let assums = List.filter(fun (_,b,_) -> b=None) ctx_params in
let params = List.map (fun (na,_,_) -> out_name na) assums in
(* Interpret the arities *)
let arities = List.map (interp_ind_arity isevars env_params) indl in
let fullarities = List.map (fun c -> it_mkProd_or_LetIn c ctx_params) arities in
let env_ar = push_types env0 indnames fullarities in
let env_ar_params = push_rel_context ctx_params env_ar in
(* Compute interpretation metadatas *)
let impls = compute_interning_datas env0 params indnames fullarities in
let mldatas = List.map2 (mk_mltype_data isevars env_params params) arities indnames in
let constructors =
States.with_heavy_rollback (fun () ->
(* Temporary declaration of notations and scopes *)
List.iter (declare_interning_data impls) notations;
(* Interpret the constructor types *)
list_map3 (interp_cstrs isevars env_ar_params impls) mldatas arities indl)
() in
(* Instantiate evars and check all are resolved *)
let isevars,_ = consider_remaining_unif_problems env_params !isevars in
let sigma = Evd.evars_of isevars in
let constructors = List.map (fun (idl,cl) -> (idl,List.map (nf_evar sigma) cl)) constructors in
let ctx_params = Sign.map_rel_context (nf_evar sigma) ctx_params in
let arities = List.map (nf_evar sigma) arities in
List.iter (check_evars env_params Evd.empty isevars) arities;
Sign.iter_rel_context (check_evars env0 Evd.empty isevars) ctx_params;
List.iter (fun (_,ctyps) ->
List.iter (check_evars env_ar_params Evd.empty isevars) ctyps)
constructors;
(* Build the inductive entries *)
let entries = list_map3 (fun ind arity (cnames,ctypes) -> {
mind_entry_typename = ind.ind_name;
mind_entry_arity = arity;
mind_entry_consnames = cnames;
mind_entry_lc = ctypes
}) indl arities constructors in
(* Build the mutual inductive entry *)
{ mind_entry_params = List.map prepare_param ctx_params;
mind_entry_record = false;
mind_entry_finite = finite;
mind_entry_inds = entries }
let eq_constr_expr c1 c2 =
try let _ = Constrextern.check_same_type c1 c2 in true with _ -> false
(* Very syntactical equality *)
let eq_local_binder d1 d2 = match d1,d2 with
| LocalRawAssum (nal1,c1), LocalRawAssum (nal2,c2) ->
List.length nal1 = List.length nal2 &&
List.for_all2 (fun (_,na1) (_,na2) -> na1 = na2) nal1 nal2 &&
eq_constr_expr c1 c2
| LocalRawDef ((_,id1),c1), LocalRawDef ((_,id2),c2) ->
id1 = id2 && eq_constr_expr c1 c2
| _ ->
false
let eq_local_binders bl1 bl2 =
List.length bl1 = List.length bl2 && List.for_all2 eq_local_binder bl1 bl2
let extract_coercions indl =
let mkqid (_,((_,id),_)) = make_short_qualid id in
let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
let extract_params indl =
let paramsl = List.map (fun (_,params,_,_) -> params) indl in
match paramsl with
| [] -> anomaly "empty list of inductive types"
| params::paramsl ->
if not (List.for_all (eq_local_binders params) paramsl) then error
"Parameters should be syntactically the same for each inductive type";
params
let prepare_inductive ntnl indl =
let indl =
List.map (fun ((_,indname),_,ar,lc) -> {
ind_name = indname;
ind_arity = ar;
ind_lc = List.map (fun (_,((_,id),t)) -> (id,t)) lc
}) indl in
List.fold_right option_cons ntnl [], indl
let declare_mutual_with_eliminations isrecord mie =
let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
let (_,kn) = declare_mind isrecord mie in
if_verbose ppnl (minductive_message names);
declare_eliminations kn;
kn
let build_mutual l finite =
let indl,ntnl = List.split l in
let paramsl = extract_params indl in
let coes = extract_coercions indl in
let notations,indl = prepare_inductive ntnl indl in
let mie = interp_mutual paramsl indl notations finite in
(* Declare the mutual inductive block with its eliminations *)
ignore (declare_mutual_with_eliminations false mie);
(* Declare the possible notations of inductive types *)
List.iter (declare_interning_data ([],[])) notations;
(* Declare the coercions *)
List.iter (fun qid -> Class.try_add_new_coercion (locate qid) Global) coes
(* 3c| Fixpoints and co-fixpoints *)
let recursive_message = function
| [] -> anomaly "no recursive definition"
| [id] -> pr_id id ++ str " is recursively defined"
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are recursively defined")
let corecursive_message = function
| [] -> error "no corecursive definition"
| [id] -> pr_id id ++ str " is corecursively defined"
| l -> hov 0 (prlist_with_sep pr_coma pr_id l ++
spc () ++ str "are corecursively defined")
let recursive_message isfix =
if isfix=Fixpoint then recursive_message else corecursive_message
(* An (unoptimized) function that maps preorders to partial orders...
Input: a list of associations (x,[y1;...;yn]), all yi distincts
and different of x, meaning x<=y1, ..., x<=yn
Output: a list of associations (x,Inr [y1;...;yn]), collecting all
distincts yi greater than x, _or_, (x, Inl y) meaning that
x is in the same class as y (in which case, x occurs
nowhere else in the association map)
partial_order : ('a * 'a list) list -> ('a * ('a,'a list) union) list
*)
let rec partial_order = function
| [] -> []
| (x,xge)::rest ->
let rec browse res xge' = function
| [] ->
let res = List.map (function
| (z, Inr zge) when List.mem x zge -> (z, Inr (list_union zge xge'))
| r -> r) res in
(x,Inr xge')::res
| y::xge ->
let rec link y =
try match List.assoc y res with
| Inl z -> link z
| Inr yge ->
if List.mem x yge then
let res = List.remove_assoc y res in
let res = List.map (function
| (z, Inl t) ->
if t = y then (z, Inl x) else (z, Inl t)
| (z, Inr zge) ->
if List.mem y zge then
(z, Inr (list_add_set x (list_remove y zge)))
else
(z, Inr zge)) res in
browse ((y,Inl x)::res) xge' (list_union xge (list_remove x yge))
else
browse res (list_add_set y (list_union xge' yge)) xge
with Not_found -> browse res (list_add_set y xge') xge
in link y
in browse (partial_order rest) [] xge
let non_full_mutual_message x xge y yge kind rest =
let reason =
if List.mem x yge then
string_of_id y^" depends on "^string_of_id x^" but not conversely"
else if List.mem y xge then
string_of_id x^" depends on "^string_of_id y^" but not conversely"
else
string_of_id y^" and "^string_of_id x^" are not mutually dependent" in
let e = if rest <> [] then "e.g.: "^reason else reason in
let k = if kind=Fixpoint then "fixpoint" else "cofixpoint" in
let w =
if kind=Fixpoint then "Well-foundedness check may fail unexpectedly.\n"
else "" in
"Not a fully mutually defined "^k^"\n("^e^").\n"^w
let check_mutuality env kind fixl =
let names = List.map fst fixl in
let preorder =
List.map (fun (id,def) ->
(id, List.filter (fun id' -> id<>id' & occur_var env id' def) names))
fixl in
let po = partial_order preorder in
match List.filter (function (_,Inr _) -> true | _ -> false) po with
| (x,Inr xge)::(y,Inr yge)::rest ->
if_verbose warning (non_full_mutual_message x xge y yge kind rest)
| _ -> ()
type fixpoint_kind =
| IsFixpoint of (int option * recursion_order_expr) list
| IsCoFixpoint
type fixpoint_expr = {
fix_name : identifier;
fix_binders : local_binder list;
fix_body : constr_expr;
fix_type : constr_expr
}
let interp_fix_type isevars env fix =
interp_type_evars isevars env
(generalize_constr_expr fix.fix_type fix.fix_binders)
let interp_fix_body isevars env impls fix fixtype =
interp_casted_constr_evars isevars env ~impls
(abstract_constr_expr fix.fix_body fix.fix_binders) fixtype
let declare_fix boxed kind f def t =
let ce = {
const_entry_body = def;
const_entry_type = Some t;
const_entry_opaque = false;
const_entry_boxed = boxed
} in
let kn = declare_constant f (DefinitionEntry ce,IsDefinition kind) in
ConstRef kn
let prepare_recursive_declaration fixnames fixtypes fixdefs =
let defs = List.map (subst_vars (List.rev fixnames)) fixdefs in
let names = List.map (fun id -> Name id) fixnames in
(Array.of_list names, Array.of_list fixtypes, Array.of_list defs)
let compute_guardness_evidence (n,_) fixl fixtype =
match n with
| Some n -> n
| None ->
(* Recursive argument was not given by the user :
We check that there is only one inductive argument *)
let m = local_binders_length fixl.fix_binders in
let ctx = fst (Sign.decompose_prod_n_assum m fixtype) in
let isIndApp t = isInd (fst (decompose_app (strip_head_cast t))) in
(* This could be more precise (e.g. do some delta) *)
let lb = List.rev_map (fun (_,_,t) -> isIndApp t) ctx in
try (list_unique_index true lb) - 1
with Not_found -> error "the recursive argument needs to be specified"
let interp_recursive fixkind l boxed =
let env = Global.env() in
let fixl, ntnl = List.split l in
let kind = if fixkind <> IsCoFixpoint then Fixpoint else CoFixpoint in
let fixnames = List.map (fun fix -> fix.fix_name) fixl in
(* Interp arities allowing for unresolved types *)
let isevars = ref (Evd.create_evar_defs Evd.empty) in
let fixtypes = List.map (interp_fix_type isevars env) fixl in
let env_rec = push_named_types env fixnames fixtypes in
(* Get interpretation metadatas *)
let impls = compute_interning_datas env [] fixnames fixtypes in
let notations = List.fold_right option_cons ntnl [] in
(* Interp bodies with rollback because temp use of notations/implicit *)
let fixdefs =
States.with_heavy_rollback (fun () ->
List.iter (declare_interning_data impls) notations;
List.map2 (interp_fix_body isevars env_rec impls) fixl fixtypes)
() in
(* Instantiate evars and check all are resolved *)
let isevars,_ = consider_remaining_unif_problems env_rec !isevars in
let fixdefs = List.map (nf_evar (Evd.evars_of isevars)) fixdefs in
let fixtypes = List.map (nf_evar (Evd.evars_of isevars)) fixtypes in
List.iter (check_evars env_rec Evd.empty isevars) fixdefs;
List.iter (check_evars env Evd.empty isevars) fixtypes;
check_mutuality env kind (List.combine fixnames fixdefs);
(* Build the fix declaration block *)
let fixdecls = prepare_recursive_declaration fixnames fixtypes fixdefs in
let fixdecls =
match fixkind with
| IsFixpoint wfl ->
let fixwf = list_map3 compute_guardness_evidence wfl fixl fixtypes in
list_map_i (fun i _ -> mkFix ((Array.of_list fixwf,i),fixdecls)) 0 l
| IsCoFixpoint ->
list_map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 l
in
(* Declare the recursive definitions *)
ignore (list_map3 (declare_fix boxed kind) fixnames fixdecls fixtypes);
if_verbose ppnl (recursive_message kind fixnames);
(* Declare notations *)
List.iter (declare_interning_data ([],[])) notations
let build_recursive l b =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
let fixl = List.map (fun ((id,_,bl,typ,def),ntn) ->
({fix_name = id; fix_binders = bl; fix_body = def; fix_type = typ},ntn))
l in
interp_recursive (IsFixpoint g) fixl b
let build_corecursive l b =
let fixl = List.map (fun ((id,bl,typ,def),ntn) ->
({fix_name = id; fix_binders = bl; fix_body = def; fix_type = typ},ntn))
l in
interp_recursive IsCoFixpoint fixl b
(* 3d| Schemes *)
let build_scheme lnamedepindsort =
let lrecnames = List.map (fun ((_,f),_,_,_) -> f) lnamedepindsort
and sigma = Evd.empty
and env0 = Global.env() in
let lrecspec =
List.map
(fun (_,dep,indid,sort) ->
let ind = Nametab.global_inductive indid in
let (mib,mip) = Global.lookup_inductive ind in
(ind,mib,mip,dep,interp_elimination_sort sort))
lnamedepindsort
in
let listdecl = Indrec.build_mutual_indrec env0 sigma lrecspec in
let rec declare decl fi lrecref =
let decltype = Retyping.get_type_of env0 Evd.empty decl in
let decltype = refresh_universes decltype in
let ce = { const_entry_body = decl;
const_entry_type = Some decltype;
const_entry_opaque = false;
const_entry_boxed = Options.boxed_definitions() } in
let kn = declare_constant fi (DefinitionEntry ce, IsDefinition Scheme) in
ConstRef kn :: lrecref
in
let _ = List.fold_right2 declare listdecl lrecnames [] in
if_verbose ppnl (recursive_message Fixpoint lrecnames)
let rec get_concl n t =
if n = 0 then t
else
match kind_of_term t with
Prod (_,_,t) -> get_concl (pred n) t
| _ -> raise (Invalid_argument "get_concl")
let cut_last l =
let rec aux acc = function
hd :: [] -> List.rev acc, hd
| hd :: tl -> aux (hd :: acc) tl
| [] -> raise (Invalid_argument "cut_last")
in aux [] l
let build_combined_scheme name schemes =
let env = Global.env () in
let defs =
List.map (fun x ->
let refe = Ident x in
let qualid = qualid_of_reference refe in
let cst = Nametab.locate_constant (snd qualid) in
qualid, cst, Typeops.type_of_constant env cst)
schemes
in
let (qid, c, t) = List.hd defs in
let nargs =
let (_, arity, _) = destProd t in
nb_prod arity
in
let prods = nb_prod t - nargs in
let defs, (qid, c, t) = cut_last defs in
let (args, concl) = decompose_prod_n prods t in
let concls = List.map (fun (_, cst, t) -> cst, get_concl prods t) defs in
let coqand = Coqlib.build_coq_and () and coqconj = Coqlib.build_coq_conj () in
let relargs = rel_vect 0 prods in
let concl_typ, concl_bod =
List.fold_right
(fun (cst, x) (acct, accb) ->
mkApp (coqand, [| x; acct |]),
mkApp (coqconj, [| x; acct; mkApp(mkConst cst, relargs); accb |]))
concls (concl, mkApp (mkConst c, relargs))
in
let ctx = List.map (fun (x, y) -> x, None, y) args in
let typ = it_mkProd_wo_LetIn concl_typ ctx in
let body = it_mkLambda_or_LetIn concl_bod ctx in
let ce = { const_entry_body = body;
const_entry_type = Some typ;
const_entry_opaque = false;
const_entry_boxed = Options.boxed_definitions() } in
let _ = declare_constant (snd name) (DefinitionEntry ce, IsDefinition Scheme) in
if_verbose ppnl (recursive_message Fixpoint [snd name])
(* 4| Goal declaration *)
let start_proof id kind c hook =
let sign = Global.named_context () in
let sign = clear_proofs sign in
Pfedit.start_proof id kind sign c hook
let start_proof_com sopt kind (bl,t) hook =
let id = match sopt with
| Some id ->
(* We check existence here: it's a bit late at Qed time *)
if Nametab.exists_cci (Lib.make_path id) or is_section_variable id then
errorlabstrm "start_proof" (pr_id id ++ str " already exists");
id
| None ->
next_global_ident_away false (id_of_string "Unnamed_thm")
(Pfedit.get_all_proof_names ())
in
let env = Global.env () in
let c = interp_type Evd.empty env (generalize_constr_expr t bl) in
let _ = Typeops.infer_type env c in
start_proof id kind c hook
let save id const (locality,kind) hook =
let {const_entry_body = pft;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
let l,r = match locality with
| Local when Lib.sections_are_opened () ->
let k = logical_kind_of_goal_kind kind in
let c = SectionLocalDef (pft, tpo, opacity) in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local, VarRef id)
| Local ->
let k = logical_kind_of_goal_kind kind in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn)
| Global ->
let k = logical_kind_of_goal_kind kind in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn) in
Pfedit.delete_current_proof ();
definition_message id;
hook l r
let save_named opacity =
let id,(const,persistence,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
save id const persistence hook
let check_anonymity id save_ident =
if atompart_of_id id <> "Unnamed_thm" then
error "This command can only be used for unnamed theorem"
(*
message("Overriding name "^(string_of_id id)^" and using "^save_ident)
*)
let save_anonymous opacity save_ident =
let id,(const,persistence,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
save save_ident const persistence hook
let save_anonymous_with_strength kind opacity save_ident =
let id,(const,_,hook) = Pfedit.cook_proof () in
let const = { const with const_entry_opaque = opacity } in
check_anonymity id save_ident;
(* we consider that non opaque behaves as local for discharge *)
save save_ident const (Global, Proof kind) hook
let admit () =
let (id,k,typ,hook) = Pfedit.current_proof_statement () in
(* Contraire aux besoins d'interactivité...
if k <> IsGlobal (Proof Conjecture) then
error "Only statements declared as conjecture can be admitted";
*)
let kn =
declare_constant id (ParameterEntry typ, IsAssumption Conjectural) in
Pfedit.delete_current_proof ();
assumption_message id;
hook Global (ConstRef kn)
let get_current_context () =
try Pfedit.get_current_goal_context ()
with e when Logic.catchable_exception e ->
(Evd.empty, Global.env())
|