summaryrefslogtreecommitdiff
path: root/tools/coqdoc/index.mll
blob: ec89da2f3dff34572874e96092fbe3b2e260ee42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: index.mll 8617 2006-03-08 10:47:12Z notin $ i*)

{

open Filename
open Lexing 
open Printf

open Cdglobals

type loc = int

type entry_type = 
  | Library
  | Module
  | Definition
  | Inductive
  | Constructor
  | Lemma
  | Variable
  | Axiom
  | TacticDefinition

type index_entry = 
  | Def of string * entry_type
  | Ref of coq_module * string
  | Mod of coq_module * string

let table = Hashtbl.create 97

let current_module = ref ""

let add_def loc ty id = Hashtbl.add table (!current_module, loc) (Def (id, ty))

let add_ref m loc m' id = Hashtbl.add table (m, loc) (Ref (m', id))

let add_mod m loc m' id = Hashtbl.add table (m, loc) (Mod (m', id))

let find m l = Hashtbl.find table (m, l)

let current_type = ref Library

(* Coq modules *)

let split_sp s = 
  try
    let i = String.rindex s '.' in
    String.sub s 0 i, String.sub s (i + 1) (String.length s - i - 1)
  with Not_found -> 
    "", s

let modules = Hashtbl.create 97
let local_modules = Hashtbl.create 97

let add_module m =
  let _,id = split_sp m in
  Hashtbl.add modules id m;
  Hashtbl.add local_modules m ()

type module_kind = Local | Coqlib | Unknown

let coq_module m =
  String.length m >= 4 && String.sub m 0 4 = "Coq."

let find_module m =
  if Hashtbl.mem local_modules m then 
    Local
  else if coq_module m then
    Coqlib
  else
    Unknown

let ref_module loc s =
  try
    let n = String.length s in
    let i = String.rindex s ' ' in 
    let id = String.sub s (i+1) (n-i-1) in
    add_mod !current_module (loc+i+1) (Hashtbl.find modules id) id
  with Not_found -> 
    ()

(* Building indexes *)

type 'a index = { 
  idx_name : string;
  idx_entries : (char * (string * 'a) list) list;
  idx_size : int }
		  
let map f i = 
  { i with idx_entries = 
      List.map 
	(fun (c,l) -> (c, List.map (fun (s,x) -> (s,f s x)) l)) 
	i.idx_entries }

let compare_entries (s1,_) (s2,_) = Alpha.compare_string s1 s2

let sort_entries el =
  let t = Hashtbl.create 97 in
  List.iter 
    (fun c -> Hashtbl.add t c [])
    ['A'; 'B'; 'C'; 'D'; 'E'; 'F'; 'G'; 'H'; 'I'; 'J'; 'K'; 'L'; 'M'; 'N'; 
     'O'; 'P'; 'Q'; 'R'; 'S'; 'T'; 'U'; 'V'; 'W'; 'X'; 'Y'; 'Z'; '_'];  
  List.iter 
    (fun ((s,_) as e) -> 
       let c = Alpha.norm_char s.[0] in 
       let l = try Hashtbl.find t c with Not_found -> [] in
       Hashtbl.replace t c (e :: l)) 
    el;
  let res = ref [] in
  Hashtbl.iter 
    (fun c l -> res := (c, List.sort compare_entries l) :: !res) t;
  List.sort (fun (c1,_) (c2,_) -> Alpha.compare_char c1 c2) !res
    
let index_size = List.fold_left (fun s (_,l) -> s + List.length l) 0

let hashtbl_elements h = Hashtbl.fold (fun x y l -> (x,y)::l) h []

let type_name = function
  | Library -> "library"
  | Module -> "module"
  | Definition -> "definition"
  | Inductive -> "inductive"
  | Constructor -> "constructor"
  | Lemma -> "lemma"
  | Variable -> "variable"
  | Axiom -> "axiom"
  | TacticDefinition -> "tactic"

let all_entries () =
  let gl = ref [] in
  let add_g s m t = gl := (s,(m,t)) :: !gl in
  let bt = Hashtbl.create 11 in
  let add_bt t s m =
    let l = try Hashtbl.find bt t with Not_found -> [] in
    Hashtbl.replace bt t ((s,m) :: l)
  in
  let classify (m,_) e = match e with 
    | Def (s,t) -> add_g s m t; add_bt t s m
    | Ref _ | Mod _ -> ()
  in
  Hashtbl.iter classify table;
  Hashtbl.iter (fun id m -> add_g id m Library; add_bt Library id m) modules;
  { idx_name = "global"; 
    idx_entries = sort_entries !gl; 
    idx_size = List.length !gl },
  Hashtbl.fold (fun t e l -> (t, { idx_name = type_name t; 
				   idx_entries = sort_entries e; 
				   idx_size = List.length e }) :: l) bt []

}

(*s Shortcuts for regular expressions. *)

let space = 
  [' ' '\010' '\013' '\009' '\012']
let firstchar = 
  ['$' 'A'-'Z' 'a'-'z' '_' '\192'-'\214' '\216'-'\246' '\248'-'\255']
let identchar = 
  ['$' 'A'-'Z' 'a'-'z' '_' '\192'-'\214' '\216'-'\246' '\248'-'\255' 
   '\'' '0'-'9']
let ident = 
  firstchar identchar*

let begin_hide = "(*" space* "begin" space+ "hide" space* "*)"
let end_hide = "(*" space* "end" space+ "hide" space* "*)"

(*s Indexing entry point. *)

rule traverse = parse
  | "Definition" space
      { current_type := Definition; index_ident lexbuf; traverse lexbuf }
  | "Tactic" space+ "Definition" space
      { current_type := TacticDefinition; index_ident lexbuf; traverse lexbuf }
  | ("Axiom" | "Parameter") space 
      { current_type := Axiom; index_ident lexbuf; traverse lexbuf }
  | "Fixpoint" space
      { current_type := Definition; index_ident lexbuf; fixpoint lexbuf;
	traverse lexbuf }
  | ("Lemma" | "Theorem") space
      { current_type := Lemma; index_ident lexbuf; traverse lexbuf }
  | "Inductive" space
      { current_type := Inductive; 
	index_ident lexbuf; inductive lexbuf; traverse lexbuf }
  | "Record" space
      { current_type := Inductive; index_ident lexbuf; traverse lexbuf }
  | "Module" (space+ "Type")? space
      { current_type := Module; index_ident lexbuf; traverse lexbuf }
(*i***
  | "Variable" 's'? space
      { current_type := Variable; index_idents lexbuf; traverse lexbuf }
***i*)
  | "Require" (space+ ("Export"|"Import"))? space+ ident
      { ref_module (lexeme_start lexbuf) (lexeme lexbuf); traverse lexbuf }
  | begin_hide 
      { skip_hide lexbuf; traverse lexbuf }
  | "(*" 
      { comment lexbuf; traverse lexbuf }
  | '"'
      { string lexbuf; traverse lexbuf }
  | eof          
      { () }
  | _            
      { traverse lexbuf }

(*s Index one identifier. *)

and index_ident = parse
  | space+ 
      { index_ident lexbuf }
  | ident  
      { add_def (lexeme_start lexbuf) !current_type (lexeme lexbuf) }
  | eof    
      { () }
  | _      
      { () }

(*s Index identifiers separated by blanks and/or commas. *)

and index_idents = parse
  | space+ | ','
      { index_idents lexbuf }
  | ident  
      { add_def (lexeme_start lexbuf) !current_type (lexeme lexbuf);
	index_idents lexbuf }
  | eof    
      { () }
  | _
      { skip_until_point lexbuf }

(*s Index identifiers in an inductive definition (types and constructors). *)

and inductive = parse
  | '|' | ":=" space* '|'? 
      { current_type := Constructor; index_ident lexbuf; inductive lexbuf }
  | "with" space
      { current_type := Inductive; index_ident lexbuf; inductive lexbuf }
  | '.'    
      { () }
  | eof    
      { () }
  | _      
      { inductive lexbuf }

(*s Index identifiers in a Fixpoint declaration. *)

and fixpoint = parse
  | "with" space
      { index_ident lexbuf; fixpoint lexbuf }
  | '.' 
      { () }
  | eof    
      { () }
  | _      
      { fixpoint lexbuf }

(*s Skip a possibly nested comment. *)

and comment = parse
  | "*)" { () }
  | "(*" { comment lexbuf; comment lexbuf }
  | '"'  { string lexbuf; comment lexbuf }
  | eof  { eprintf " *** Unterminated comment while indexing" }
  | _    { comment lexbuf }

(*s Skip a constant string. *)

and string = parse
  | '"'  { () }
  | eof  { eprintf " *** Unterminated string while indexing" }
  | _    { string lexbuf }

(*s Skip everything until the next dot. *)

and skip_until_point = parse
  | '.'  { () }
  | eof  { () }
  | _    { skip_until_point lexbuf }

(*s Skip everything until [(* end hide *)] *)

and skip_hide = parse
  | eof | end_hide { () }
  | _ { skip_hide lexbuf }

{
  
  let read_glob f = 
    let c = open_in f in
    let cur_mod = ref "" in
    try
      while true do
	let s = input_line c in
	let n = String.length s in
	if n > 0 then begin
	  match s.[0] with
	    | 'F' -> 
		cur_mod := String.sub s 1 (n - 1)
	    | 'R' ->
		(try
		   let i = String.index s ' ' in
		   let loc = int_of_string (String.sub s 1 (i - 1)) in
		   let sp = String.sub s (i + 1) (n - i - 1) in
		   let m',id = split_sp sp in
		   add_ref !cur_mod loc m' id
		 with Not_found -> 
		   ())
	    | _ -> ()
	end
      done
    with End_of_file -> 
      close_in c

  let scan_file f m = 
    current_module := m;
    let c = open_in f in
    let lb = from_channel c in
    traverse lb;
    close_in c
}