1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: auxiliary.v,v 1.1.2.1 2004/07/16 19:31:44 herbelin Exp $ i*)
(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
Require Export Arith.
Require BinInt.
Require Zorder.
Require Decidable.
Require Peano_dec.
Require Export Compare_dec.
Open Local Scope Z_scope.
(**********************************************************************)
(** Moving terms from one side to the other of an inequality *)
Theorem Zne_left : (x,y:Z) (Zne x y) -> (Zne (Zplus x (Zopp y)) ZERO).
Proof.
Intros x y; Unfold Zne; Unfold not; Intros H1 H2; Apply H1;
Apply Zsimpl_plus_l with (Zopp y); Rewrite Zplus_inverse_l; Rewrite Zplus_sym;
Trivial with arith.
Qed.
Theorem Zegal_left : (x,y:Z) (x=y) -> (Zplus x (Zopp y)) = ZERO.
Proof.
Intros x y H;
Apply (Zsimpl_plus_l y);Rewrite -> Zplus_permute;
Rewrite -> Zplus_inverse_r;Do 2 Rewrite -> Zero_right;Assumption.
Qed.
Theorem Zle_left : (x,y:Z) (Zle x y) -> (Zle ZERO (Zplus y (Zopp x))).
Proof.
Intros x y H; Replace ZERO with (Zplus x (Zopp x)).
Apply Zle_reg_r; Trivial.
Apply Zplus_inverse_r.
Qed.
Theorem Zle_left_rev : (x,y:Z) (Zle ZERO (Zplus y (Zopp x)))
-> (Zle x y).
Proof.
Intros x y H; Apply Zsimpl_le_plus_r with (Zopp x).
Rewrite Zplus_inverse_r; Trivial.
Qed.
Theorem Zlt_left_rev : (x,y:Z) (Zlt ZERO (Zplus y (Zopp x)))
-> (Zlt x y).
Proof.
Intros x y H; Apply Zsimpl_lt_plus_r with (Zopp x).
Rewrite Zplus_inverse_r; Trivial.
Qed.
Theorem Zlt_left :
(x,y:Z) (Zlt x y) -> (Zle ZERO (Zplus (Zplus y (NEG xH)) (Zopp x))).
Proof.
Intros x y H; Apply Zle_left; Apply Zle_S_n;
Change (Zle (Zs x) (Zs (Zpred y))); Rewrite <- Zs_pred; Apply Zlt_le_S;
Assumption.
Qed.
Theorem Zlt_left_lt :
(x,y:Z) (Zlt x y) -> (Zlt ZERO (Zplus y (Zopp x))).
Proof.
Intros x y H; Replace ZERO with (Zplus x (Zopp x)).
Apply Zlt_reg_r; Trivial.
Apply Zplus_inverse_r.
Qed.
Theorem Zge_left : (x,y:Z) (Zge x y) -> (Zle ZERO (Zplus x (Zopp y))).
Proof.
Intros x y H; Apply Zle_left; Apply Zge_le; Assumption.
Qed.
Theorem Zgt_left :
(x,y:Z) (Zgt x y) -> (Zle ZERO (Zplus (Zplus x (NEG xH)) (Zopp y))).
Proof.
Intros x y H; Apply Zlt_left; Apply Zgt_lt; Assumption.
Qed.
Theorem Zgt_left_gt :
(x,y:Z) (Zgt x y) -> (Zgt (Zplus x (Zopp y)) ZERO).
Proof.
Intros x y H; Replace ZERO with (Zplus y (Zopp y)).
Apply Zgt_reg_r; Trivial.
Apply Zplus_inverse_r.
Qed.
Theorem Zgt_left_rev : (x,y:Z) (Zgt (Zplus x (Zopp y)) ZERO)
-> (Zgt x y).
Proof.
Intros x y H; Apply Zsimpl_gt_plus_r with (Zopp y).
Rewrite Zplus_inverse_r; Trivial.
Qed.
(**********************************************************************)
(** Factorization lemmas *)
Theorem Zred_factor0 : (x:Z) x = (Zmult x (POS xH)).
Intro x; Rewrite (Zmult_n_1 x); Reflexivity.
Qed.
Theorem Zred_factor1 : (x:Z) (Zplus x x) = (Zmult x (POS (xO xH))).
Proof.
Exact Zplus_Zmult_2.
Qed.
Theorem Zred_factor2 :
(x,y:Z) (Zplus x (Zmult x y)) = (Zmult x (Zplus (POS xH) y)).
Intros x y; Pattern 1 x ; Rewrite <- (Zmult_n_1 x);
Rewrite <- Zmult_plus_distr_r; Trivial with arith.
Qed.
Theorem Zred_factor3 :
(x,y:Z) (Zplus (Zmult x y) x) = (Zmult x (Zplus (POS xH) y)).
Intros x y; Pattern 2 x ; Rewrite <- (Zmult_n_1 x);
Rewrite <- Zmult_plus_distr_r; Rewrite Zplus_sym; Trivial with arith.
Qed.
Theorem Zred_factor4 :
(x,y,z:Z) (Zplus (Zmult x y) (Zmult x z)) = (Zmult x (Zplus y z)).
Intros x y z; Symmetry; Apply Zmult_plus_distr_r.
Qed.
Theorem Zred_factor5 : (x,y:Z) (Zplus (Zmult x ZERO) y) = y.
Intros x y; Rewrite <- Zmult_n_O;Auto with arith.
Qed.
Theorem Zred_factor6 : (x:Z) x = (Zplus x ZERO).
Intro; Rewrite Zero_right; Trivial with arith.
Qed.
Theorem Zle_mult_approx:
(x,y,z:Z) (Zgt x ZERO) -> (Zgt z ZERO) -> (Zle ZERO y) ->
(Zle ZERO (Zplus (Zmult y x) z)).
Intros x y z H1 H2 H3; Apply Zle_trans with m:=(Zmult y x) ; [
Apply Zle_mult; Assumption
| Pattern 1 (Zmult y x) ; Rewrite <- Zero_right; Apply Zle_reg_l;
Apply Zlt_le_weak; Apply Zgt_lt; Assumption].
Qed.
Theorem Zmult_le_approx:
(x,y,z:Z) (Zgt x ZERO) -> (Zgt x z) ->
(Zle ZERO (Zplus (Zmult y x) z)) -> (Zle ZERO y).
Intros x y z H1 H2 H3; Apply Zlt_n_Sm_le; Apply Zmult_lt with x; [
Assumption
| Apply Zle_lt_trans with 1:=H3 ; Rewrite <- Zmult_Sm_n;
Apply Zlt_reg_l; Apply Zgt_lt; Assumption].
Qed.
V7only [
(* Compatibility *)
Require Znat.
Require Zcompare.
Notation neq := neq.
Notation Zne := Zne.
Notation OMEGA2 := Zle_0_plus.
Notation add_un_Zs := add_un_Zs.
Notation inj_S := inj_S.
Notation Zplus_S_n := Zplus_S_n.
Notation inj_plus := inj_plus.
Notation inj_mult := inj_mult.
Notation inj_neq := inj_neq.
Notation inj_le := inj_le.
Notation inj_lt := inj_lt.
Notation inj_gt := inj_gt.
Notation inj_ge := inj_ge.
Notation inj_eq := inj_eq.
Notation intro_Z := intro_Z.
Notation inj_minus1 := inj_minus1.
Notation inj_minus2 := inj_minus2.
Notation dec_eq := dec_eq.
Notation dec_Zne := dec_Zne.
Notation dec_Zle := dec_Zle.
Notation dec_Zgt := dec_Zgt.
Notation dec_Zge := dec_Zge.
Notation dec_Zlt := dec_Zlt.
Notation dec_eq_nat := dec_eq_nat.
Notation not_Zge := not_Zge.
Notation not_Zlt := not_Zlt.
Notation not_Zle := not_Zle.
Notation not_Zgt := not_Zgt.
Notation not_Zeq := not_Zeq.
Notation Zopp_one := Zopp_one.
Notation Zopp_Zmult_r := Zopp_Zmult_r.
Notation Zmult_Zopp_left := Zmult_Zopp_left.
Notation Zopp_Zmult_l := Zopp_Zmult_l.
Notation Zcompare_Zplus_compatible2 := Zcompare_Zplus_compatible2.
Notation Zcompare_Zmult_compatible := Zcompare_Zmult_compatible.
Notation Zmult_eq := Zmult_eq.
Notation Z_eq_mult := Z_eq_mult.
Notation Zmult_le := Zmult_le.
Notation Zle_ZERO_mult := Zle_ZERO_mult.
Notation Zgt_ZERO_mult := Zgt_ZERO_mult.
Notation Zle_mult := Zle_mult.
Notation Zmult_lt := Zmult_lt.
Notation Zmult_gt := Zmult_gt.
Notation Zle_Zmult_pos_right := Zle_Zmult_pos_right.
Notation Zle_Zmult_pos_left := Zle_Zmult_pos_left.
Notation Zge_Zmult_pos_right := Zge_Zmult_pos_right.
Notation Zge_Zmult_pos_left := Zge_Zmult_pos_left.
Notation Zge_Zmult_pos_compat := Zge_Zmult_pos_compat.
Notation Zle_mult_simpl := Zle_mult_simpl.
Notation Zge_mult_simpl := Zge_mult_simpl.
Notation Zgt_mult_simpl := Zgt_mult_simpl.
Notation Zgt_square_simpl := Zgt_square_simpl.
].
|