summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zsyntax.v
blob: 3c7f3a572981cce1ab12e2dd2a628c89abeea372 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Zsyntax.v,v 1.1.2.1 2004/07/16 19:31:44 herbelin Exp $ i*)

Require Export BinInt.

V7only[

Grammar znatural ident :=
  nat_id [ prim:var($id) ] -> [$id]

with number :=

with negnumber := 

with formula : constr :=
  form_expr [ expr($p) ] -> [$p]
(*| form_eq [ expr($p) "=" expr($c) ] -> [ (eq Z $p $c) ]*)
| form_eq [ expr($p) "=" expr($c) ] -> [ (Coq.Init.Logic.eq ? $p $c) ]
| form_le [ expr($p) "<=" expr($c) ] -> [ (Zle $p $c) ]
| form_lt [ expr($p) "<" expr($c) ] -> [ (Zlt $p $c) ]
| form_ge [ expr($p) ">=" expr($c) ] -> [ (Zge $p $c) ]
| form_gt [ expr($p) ">" expr($c) ] -> [ (Zgt $p $c) ]
(*| form_eq_eq [ expr($p) "=" expr($c) "=" expr($c1) ]
              -> [ (eq Z $p $c)/\(eq Z $c $c1) ]*)
| form_eq_eq [ expr($p) "=" expr($c) "=" expr($c1) ]
              -> [ (Coq.Init.Logic.eq ? $p $c)/\(Coq.Init.Logic.eq ? $c $c1) ]
| form_le_le [ expr($p) "<=" expr($c) "<=" expr($c1) ]
              -> [ (Zle $p $c)/\(Zle $c $c1) ]
| form_le_lt [ expr($p) "<=" expr($c) "<" expr($c1) ]
              -> [ (Zle $p $c)/\(Zlt $c $c1) ]
| form_lt_le [ expr($p) "<" expr($c) "<=" expr($c1) ]
              -> [ (Zlt $p $c)/\(Zle $c $c1) ]
| form_lt_lt [ expr($p) "<" expr($c) "<" expr($c1) ]
              -> [ (Zlt $p $c)/\(Zlt $c $c1) ]
(*| form_neq  [ expr($p) "<>" expr($c) ] -> [  ~(Coq.Init.Logic.eq Z $p $c) ]*)
| form_neq  [ expr($p) "<>" expr($c) ] -> [  ~(Coq.Init.Logic.eq ? $p $c) ]
| form_comp [ expr($p) "?=" expr($c) ] -> [ (Zcompare $p $c) ]

with expr : constr :=
  expr_plus [ expr($p) "+" expr($c) ] -> [ (Zplus $p $c) ]
| expr_minus [ expr($p) "-" expr($c) ] -> [ (Zminus $p $c) ]
| expr2 [ expr2($e) ] -> [$e]

with expr2 : constr :=
  expr_mult [ expr2($p) "*" expr2($c) ] -> [ (Zmult $p $c) ]
| expr1 [ expr1($e) ] -> [$e]

with expr1 : constr :=
  expr_abs [ "|" expr($c) "|" ] -> [ (Zabs $c) ]
| expr0 [ expr0($e) ] -> [$e]

with expr0 : constr :=
  expr_id [ constr:global($c) ] -> [ $c ]
| expr_com [ "[" constr:constr($c) "]" ] -> [$c]
| expr_appl [ "(" application($a) ")" ] -> [$a]
| expr_num [ number($s) ] -> [$s ]
| expr_negnum [ "-" negnumber($n) ] -> [ $n ]
| expr_inv [ "-" expr0($c) ] -> [ (Zopp $c) ] 
| expr_meta [ zmeta($m) ] -> [ $m ]

with zmeta :=
| rimpl [ "?" ] -> [ ? ]
| rmeta0 [ "?" "0" ] -> [ ?0 ]
| rmeta1 [ "?" "1" ] -> [ ?1 ]
| rmeta2 [ "?" "2" ] -> [ ?2 ]
| rmeta3 [ "?" "3" ] -> [ ?3 ]
| rmeta4 [ "?" "4" ] -> [ ?4 ]
| rmeta5 [ "?" "5" ] -> [ ?5 ]

with application : constr :=
  apply [ application($p) expr($c1) ] -> [ ($p $c1) ]
| apply_inject_nat [ "inject_nat" constr:constr($c1) ] -> [ (inject_nat $c1) ]
| pair [ expr($p) "," expr($c) ] -> [ ($p, $c) ]
| appl0 [ expr($a) ] -> [$a]
.

Grammar constr constr0 :=
  z_in_com [ "`" znatural:formula($c) "`" ] -> [$c].

Grammar constr pattern :=
  z_in_pattern [ "`" prim:bigint($c) "`" ] -> [ 'Z: $c ' ].   

(* The symbols "`" "`" must be printed just once at the top of the expressions,
  to avoid printings like |``x` + `y`` < `45`| 
  for |x + y < 45|.
  So when a Z-expression is to be printed, its sub-expresssions are
  enclosed into an ast (ZEXPR \$subexpr), which is printed like \$subexpr
  but without symbols "`" "`" around. 

  There is just one problem: NEG and Zopp have the same printing rules.
  If Zopp is opaque, we may not be able to solve a goal like
  ` -5 = -5 ` by reflexivity. (In fact, this precise Goal is solved
  by the Reflexivity tactic, but more complex problems may arise 

  SOLUTION : Print (Zopp 5) for constants and -x for variables *)

Syntax constr
  level 0:
    Zle [ (Zle $n1 $n2) ] -> 
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "<= " (ZEXPR $n2) "`"]]
  | Zlt [ (Zlt $n1 $n2) ] -> 
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "< " (ZEXPR $n2) "`" ]]
  | Zge [ (Zge $n1 $n2) ] -> 
      [[<hov 0> "`" (ZEXPR $n1) [1 0] ">= " (ZEXPR $n2) "`" ]]
  | Zgt [ (Zgt $n1 $n2) ] -> 
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "> " (ZEXPR $n2) "`" ]]
  | Zcompare [<<(Zcompare $n1 $n2)>>] ->
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "?= " (ZEXPR $n2) "`" ]]
  | Zeq [ (eq Z $n1 $n2) ] -> 
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "= " (ZEXPR $n2)"`"]]
  | Zneq [ ~(eq Z $n1 $n2) ] ->
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "<> " (ZEXPR $n2) "`"]]
  | Zle_Zle [ (Zle $n1 $n2)/\(Zle $n2 $n3) ] ->
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "<= " (ZEXPR $n2)
                                [1 0] "<= " (ZEXPR $n3) "`"]]
  | Zle_Zlt [ (Zle $n1 $n2)/\(Zlt $n2 $n3) ] ->
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "<= " (ZEXPR $n2)
                                [1 0] "< " (ZEXPR $n3) "`"]]
  | Zlt_Zle [ (Zlt $n1 $n2)/\(Zle $n2 $n3) ] ->
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "< " (ZEXPR $n2)
                                [1 0] "<= " (ZEXPR $n3) "`"]]
  | Zlt_Zlt [ (Zlt $n1 $n2)/\(Zlt $n2 $n3) ] ->
      [[<hov 0> "`" (ZEXPR $n1) [1 0] "< " (ZEXPR $n2)
                                [1 0] "< " (ZEXPR $n3) "`"]]
  | ZZero_v7 [ ZERO ] -> [ "`0`" ]
  | ZPos_v7 [ (POS $r) ] -> [$r:"positive_printer":9]
  | ZNeg_v7 [ (NEG $r) ] -> [$r:"negative_printer":9]
  ;

  level 7:
    Zplus [ (Zplus $n1 $n2) ]
      -> [ [<hov 0> "`" (ZEXPR $n1):E "+"  [0 0] (ZEXPR $n2):L "`"] ]
  | Zminus [ (Zminus $n1 $n2) ]
      -> [ [<hov 0> "`" (ZEXPR $n1):E "-" [0 0] (ZEXPR $n2):L "`"] ]
  ;

  level 6:
    Zmult [ (Zmult $n1 $n2) ]
      -> [ [<hov 0> "`" (ZEXPR $n1):E "*" [0 0] (ZEXPR $n2):L "`"] ]
  ;

  level 8:
    Zopp [ (Zopp $n1) ] -> [ [<hov 0> "`" "-" (ZEXPR $n1):E "`"] ]
  | Zopp_POS [ (Zopp (POS $r)) ] -> 
         [ [<hov 0> "`(" "Zopp" [1 0] $r:"positive_printer_inside"  ")`"] ]
  | Zopp_ZERO [ (Zopp ZERO) ] -> [ [<hov 0> "`(" "Zopp" [1 0] "0" ")`"] ]
  | Zopp_NEG [ (Zopp (NEG $r)) ] ->  
         [ [<hov 0> "`(" "Zopp" [1 0] "(" $r:"negative_printer_inside" "))`"] ]
  ;

  level 4:
    Zabs [ (Zabs $n1) ] -> [  [<hov 0> "`|" (ZEXPR $n1):E "|`"] ]
  ;

  level 0:
    escape_inside [ << (ZEXPR $r) >> ] -> [ "[" $r:E "]" ]
  ;

  level 4:
    Zappl_inside [ << (ZEXPR (APPLIST $h ($LIST $t))) >> ]
      -> [ [<hov 0> "("(ZEXPR $h):E [1 0] (ZAPPLINSIDETAIL ($LIST $t)):E ")"] ]
  | Zappl_inject_nat [ << (ZEXPR (APPLIST <<inject_nat>> $n)) >> ]
      -> [ [<hov 0> "(inject_nat" [1 1] $n:L ")"] ]
  | Zappl_inside_tail [ << (ZAPPLINSIDETAIL $h ($LIST $t)) >> ]
      -> [(ZEXPR $h):E [1 0] (ZAPPLINSIDETAIL ($LIST $t)):E] 
  | Zappl_inside_one [ << (ZAPPLINSIDETAIL $e) >> ] ->[(ZEXPR $e):E]
  | pair_inside [ << (ZEXPR <<(pair $s1 $s2 $z1 $z2)>>) >> ] 
      -> [ [<hov 0> "("(ZEXPR $z1):E "," [1 0] (ZEXPR $z2):E ")"] ]
  ;

 level 3:
    var_inside [ << (ZEXPR ($VAR $i)) >> ] -> [$i]
  | secvar_inside [ << (ZEXPR (SECVAR $i)) >> ] -> [(SECVAR $i)]
  | const_inside [ << (ZEXPR (CONST $c)) >> ] -> [(CONST $c)]
  | mutind_inside [ << (ZEXPR (MUTIND $i $n)) >> ] 
      -> [(MUTIND $i $n)]
  | mutconstruct_inside [ << (ZEXPR (MUTCONSTRUCT $c1 $c2 $c3)) >> ]
      -> [ (MUTCONSTRUCT $c1 $c2 $c3) ]

  | O_inside [ << (ZEXPR << O >>) >> ] -> [ "O" ] (* To shunt Arith printer *)

  (* Added by JCF, 9/3/98; updated HH, 11/9/01 *)
  | implicit_head_inside [ << (ZEXPR (APPLISTEXPL ($LIST $c))) >> ]
      -> [ (APPLIST ($LIST $c)) ]
  | implicit_arg_inside  [ << (ZEXPR (EXPL "!" $n $c)) >> ] -> [ ]

  ;

  level 7:
    Zplus_inside
      [ << (ZEXPR <<(Zplus $n1 $n2)>>) >> ]
      	 -> [ (ZEXPR $n1):E "+" [0 0] (ZEXPR $n2):L ]
  | Zminus_inside
      [ << (ZEXPR <<(Zminus $n1 $n2)>>) >> ]
      	 -> [ (ZEXPR $n1):E "-" [0 0] (ZEXPR $n2):L ]
  ;

  level 6:
    Zmult_inside
      [ << (ZEXPR <<(Zmult $n1 $n2)>>) >> ]
      	 -> [ (ZEXPR $n1):E "*" [0 0] (ZEXPR $n2):L ]
  ;

  level 5:
    Zopp_inside [ << (ZEXPR <<(Zopp $n1)>>) >> ] -> [ "(-" (ZEXPR $n1):E ")" ]
  ;  

  level 10:
    Zopp_POS_inside [ << (ZEXPR <<(Zopp (POS $r))>>) >> ] -> 
      	 [ [<hov 0> "Zopp" [1 0] $r:"positive_printer_inside" ] ]
  | Zopp_ZERO_inside [ << (ZEXPR <<(Zopp ZERO)>>) >> ] -> 
      	 [ [<hov 0> "Zopp" [1 0] "0"] ]
  | Zopp_NEG_inside [ << (ZEXPR <<(Zopp (NEG $r))>>) >> ] ->  
      	 [ [<hov 0> "Zopp" [1 0] $r:"negative_printer_inside" ] ]
  ;

  level 4:
    Zabs_inside [ << (ZEXPR <<(Zabs $n1)>>) >> ] -> [ "|" (ZEXPR $n1) "|"]
  ;

  level 0:
    ZZero_inside [ << (ZEXPR <<ZERO>>) >> ] -> ["0"]
  | ZPos_inside [ << (ZEXPR <<(POS $p)>>) >>] -> 
      [$p:"positive_printer_inside":9]
  | ZNeg_inside [ << (ZEXPR <<(NEG $p)>>) >>] ->
      [$p:"negative_printer_inside":9]
.
].

V7only[
(* For parsing/printing based on scopes *)
Module Z_scope.

Infix LEFTA 4 "+" Zplus : Z_scope.
Infix LEFTA 4 "-" Zminus : Z_scope.
Infix LEFTA 3 "*" Zmult : Z_scope.
Notation "- x" := (Zopp x) (at level 0): Z_scope V8only.
Infix NONA 5 "<=" Zle : Z_scope.
Infix NONA 5 "<"  Zlt : Z_scope.
Infix NONA 5 ">=" Zge : Z_scope.
Infix NONA 5 ">"  Zgt  : Z_scope.
Infix NONA 5 "?=" Zcompare : Z_scope.
Notation "x <= y <= z" := (Zle x y)/\(Zle y z)
  (at level 5, y at level 4):Z_scope
  V8only (at level 70, y at next level).
Notation "x <= y < z"  := (Zle x y)/\(Zlt y z)
  (at level 5, y at level 4):Z_scope
  V8only (at level 70, y at next level).
Notation  "x < y < z"  := (Zlt x y)/\(Zlt y z)
  (at level 5, y at level 4):Z_scope
  V8only (at level 70, y at next level).
Notation  "x < y <= z" := (Zlt x y)/\(Zle y z)
  (at level 5, y at level 4):Z_scope
  V8only (at level 70, y at next level).
Notation  "x = y = z" := x=y/\y=z : Z_scope
  V8only (at level 70, y at next level).

(* Now a polymorphic notation
Notation "x <> y" := ~(eq Z x y) (at level 5, no associativity) : Z_scope.
*)

(* Notation "| x |" (Zabs x) : Z_scope.(* "|" conflicts with THENS *)*)

(* Overwrite the printing of "`x = y`" *)
Syntax constr level 0:
  Zeq [ (eq Z $n1 $n2) ] -> [[<hov 0> $n1 [1 0] "= " $n2 ]].

Open Scope Z_scope.

End Z_scope.
].