summaryrefslogtreecommitdiff
path: root/theories7/Wellfounded/Disjoint_Union.v
blob: 04930170dbc45259f587c5f56b181bf2ed6f5c65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Disjoint_Union.v,v 1.1.2.1 2004/07/16 19:31:41 herbelin Exp $ i*)

(** Author: Cristina Cornes
    From : Constructing Recursion Operators in Type Theory                 
           L. Paulson  JSC (1986) 2, 325-355 *) 

Require Relation_Operators.

Section Wf_Disjoint_Union.
Variable A,B:Set.
Variable leA: A->A->Prop.
Variable leB: B->B->Prop.

Notation Le_AsB := (le_AsB A B leA leB).

Lemma acc_A_sum: (x:A)(Acc A leA x)->(Acc A+B Le_AsB (inl A B x)).
Proof.
 NewInduction 1.
 Apply Acc_intro;Intros y H2.
 Inversion_clear H2.
 Auto with sets.
Qed.

Lemma acc_B_sum: (well_founded A leA) ->(x:B)(Acc B leB x)
                        ->(Acc A+B Le_AsB (inr A B x)).
Proof.
 NewInduction 2.
 Apply Acc_intro;Intros y H3.
 Inversion_clear H3;Auto with sets.
 Apply acc_A_sum;Auto with sets.
Qed.


Lemma wf_disjoint_sum:
 (well_founded A leA) 
    -> (well_founded B leB) -> (well_founded A+B Le_AsB).
Proof.
 Intros.
 Unfold well_founded .
 NewDestruct a as [a|b].
 Apply (acc_A_sum a).
 Apply (H a).

 Apply (acc_B_sum H b).
 Apply (H0 b).
Qed.

End Wf_Disjoint_Union.