1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Sorting.v,v 1.1.2.1 2004/07/16 19:31:41 herbelin Exp $ i*)
Require PolyList.
Require Multiset.
Require Permutation.
Require Relations.
Set Implicit Arguments.
Section defs.
Variable A : Set.
Variable leA : (relation A).
Variable eqA : (relation A).
Local gtA := [x,y:A]~(leA x y).
Hypothesis leA_dec : (x,y:A){(leA x y)}+{(leA y x)}.
Hypothesis eqA_dec : (x,y:A){(eqA x y)}+{~(eqA x y)}.
Hypothesis leA_refl : (x,y:A) (eqA x y) -> (leA x y).
Hypothesis leA_trans : (x,y,z:A) (leA x y) -> (leA y z) -> (leA x z).
Hypothesis leA_antisym : (x,y:A)(leA x y) -> (leA y x) -> (eqA x y).
Hints Resolve leA_refl.
Hints Immediate eqA_dec leA_dec leA_antisym.
Local emptyBag := (EmptyBag A).
Local singletonBag := (SingletonBag eqA_dec).
(** [lelistA] *)
Inductive lelistA [a:A] : (list A) -> Prop :=
nil_leA : (lelistA a (nil A))
| cons_leA : (b:A)(l:(list A))(leA a b)->(lelistA a (cons b l)).
Hint constr_lelistA := Constructors lelistA.
Lemma lelistA_inv : (a,b:A)(l:(list A))
(lelistA a (cons b l)) -> (leA a b).
Proof.
Intros; Inversion H; Trivial with datatypes.
Qed.
(** definition for a list to be sorted *)
Inductive sort : (list A) -> Prop :=
nil_sort : (sort (nil A))
| cons_sort : (a:A)(l:(list A))(sort l) -> (lelistA a l) -> (sort (cons a l)).
Hint constr_sort := Constructors sort.
Lemma sort_inv : (a:A)(l:(list A))(sort (cons a l))->(sort l) /\ (lelistA a l).
Proof.
Intros; Inversion H; Auto with datatypes.
Qed.
Lemma sort_rec : (P:(list A)->Set)
(P (nil A)) ->
((a:A)(l:(list A))(sort l)->(P l)->(lelistA a l)->(P (cons a l))) ->
(y:(list A))(sort y) -> (P y).
Proof.
Induction y; Auto with datatypes.
Intros; Elim (!sort_inv a l); Auto with datatypes.
Qed.
(** merging two sorted lists *)
Inductive merge_lem [l1:(list A);l2:(list A)] : Set :=
merge_exist : (l:(list A))(sort l) ->
(meq (list_contents eqA_dec l)
(munion (list_contents eqA_dec l1) (list_contents eqA_dec l2))) ->
((a:A)(lelistA a l1)->(lelistA a l2)->(lelistA a l)) ->
(merge_lem l1 l2).
Lemma merge : (l1:(list A))(sort l1)->(l2:(list A))(sort l2)->(merge_lem l1 l2).
Proof.
Induction 1; Intros.
Apply merge_exist with l2; Auto with datatypes.
Elim H3; Intros.
Apply merge_exist with (cons a l); Simpl; Auto with datatypes.
Elim (leA_dec a a0); Intros.
(* 1 (leA a a0) *)
Cut (merge_lem l (cons a0 l0)); Auto with datatypes.
Intros (l3, l3sorted, l3contents, Hrec).
Apply merge_exist with (cons a l3); Simpl; Auto with datatypes.
Apply meq_trans with (munion (singletonBag a)
(munion (list_contents eqA_dec l)
(list_contents eqA_dec (cons a0 l0)))).
Apply meq_right; Trivial with datatypes.
Apply meq_sym; Apply munion_ass.
Intros; Apply cons_leA.
Apply lelistA_inv with l; Trivial with datatypes.
(* 2 (leA a0 a) *)
Elim H5; Simpl; Intros.
Apply merge_exist with (cons a0 l3); Simpl; Auto with datatypes.
Apply meq_trans with (munion (singletonBag a0)
(munion (munion (singletonBag a)
(list_contents eqA_dec l))
(list_contents eqA_dec l0))).
Apply meq_right; Trivial with datatypes.
Apply munion_perm_left.
Intros; Apply cons_leA; Apply lelistA_inv with l0; Trivial with datatypes.
Qed.
End defs.
Unset Implicit Arguments.
Hint constr_sort : datatypes v62 := Constructors sort.
Hint constr_lelistA : datatypes v62 := Constructors lelistA.
|