blob: 822f550a41a35b1cd6716bae20f8a73f7a2b0100 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(****************************************************************************)
(* *)
(* Naive Set Theory in Coq *)
(* *)
(* INRIA INRIA *)
(* Rocquencourt Sophia-Antipolis *)
(* *)
(* Coq V6.1 *)
(* *)
(* Gilles Kahn *)
(* Gerard Huet *)
(* *)
(* *)
(* *)
(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
(* to the Newton Institute for providing an exceptional work environment *)
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
(*i $Id: Relations_3_facts.v,v 1.1.2.1 2004/07/16 19:31:40 herbelin Exp $ i*)
Require Export Relations_1.
Require Export Relations_1_facts.
Require Export Relations_2.
Require Export Relations_2_facts.
Require Export Relations_3.
Theorem Rstar_imp_coherent :
(U: Type) (R: (Relation U)) (x: U) (y: U) (Rstar U R x y) ->
(coherent U R x y).
Proof.
Intros U R x y H'; Red.
Exists y; Auto with sets.
Qed.
Hints Resolve Rstar_imp_coherent.
Theorem coherent_symmetric :
(U: Type) (R: (Relation U)) (Symmetric U (coherent U R)).
Proof.
Unfold 1 coherent.
Intros U R; Red.
Intros x y H'; Elim H'.
Intros z H'0; Exists z; Tauto.
Qed.
Theorem Strong_confluence :
(U: Type) (R: (Relation U)) (Strongly_confluent U R) -> (Confluent U R).
Proof.
Intros U R H'; Red.
Intro x; Red; Intros a b H'0.
Unfold 1 coherent.
Generalize b; Clear b.
Elim H'0; Clear H'0.
Intros x0 b H'1; Exists b; Auto with sets.
Intros x0 y z H'1 H'2 H'3 b H'4.
Generalize (Lemma1 U R); Intro h; LApply h;
[Intro H'0; Generalize (H'0 x0 b); Intro h0; LApply h0;
[Intro H'5; Generalize (H'5 y); Intro h1; LApply h1;
[Intro h2; Elim h2; Intros z0 h3; Elim h3; Intros H'6 H'7;
Clear h h0 h1 h2 h3 | Clear h h0 h1] | Clear h h0] | Clear h]; Auto with sets.
Generalize (H'3 z0); Intro h; LApply h;
[Intro h0; Elim h0; Intros z1 h1; Elim h1; Intros H'8 H'9; Clear h h0 h1 |
Clear h]; Auto with sets.
Exists z1; Split; Auto with sets.
Apply Rstar_n with z0; Auto with sets.
Qed.
Theorem Strong_confluence_direct :
(U: Type) (R: (Relation U)) (Strongly_confluent U R) -> (Confluent U R).
Proof.
Intros U R H'; Red.
Intro x; Red; Intros a b H'0.
Unfold 1 coherent.
Generalize b; Clear b.
Elim H'0; Clear H'0.
Intros x0 b H'1; Exists b; Auto with sets.
Intros x0 y z H'1 H'2 H'3 b H'4.
Cut (exT U [t: U] (Rstar U R y t) /\ (R b t)).
Intro h; Elim h; Intros t h0; Elim h0; Intros H'0 H'5; Clear h h0.
Generalize (H'3 t); Intro h; LApply h;
[Intro h0; Elim h0; Intros z0 h1; Elim h1; Intros H'6 H'7; Clear h h0 h1 |
Clear h]; Auto with sets.
Exists z0; Split; [Assumption | Idtac].
Apply Rstar_n with t; Auto with sets.
Generalize H'1; Generalize y; Clear H'1.
Elim H'4.
Intros x1 y0 H'0; Exists y0; Auto with sets.
Intros x1 y0 z0 H'0 H'1 H'5 y1 H'6.
Red in H'.
Generalize (H' x1 y0 y1); Intro h; LApply h;
[Intro H'7; LApply H'7;
[Intro h0; Elim h0; Intros z1 h1; Elim h1; Intros H'8 H'9; Clear h H'7 h0 h1 |
Clear h] | Clear h]; Auto with sets.
Generalize (H'5 z1); Intro h; LApply h;
[Intro h0; Elim h0; Intros t h1; Elim h1; Intros H'7 H'10; Clear h h0 h1 |
Clear h]; Auto with sets.
Exists t; Split; Auto with sets.
Apply Rstar_n with z1; Auto with sets.
Qed.
Theorem Noetherian_contains_Noetherian :
(U: Type) (R, R': (Relation U)) (Noetherian U R) -> (contains U R R') ->
(Noetherian U R').
Proof.
Unfold 2 Noetherian.
Intros U R R' H' H'0 x.
Elim (H' x); Auto with sets.
Qed.
Theorem Newman :
(U: Type) (R: (Relation U)) (Noetherian U R) -> (Locally_confluent U R) ->
(Confluent U R).
Proof.
Intros U R H' H'0; Red; Intro x.
Elim (H' x); Unfold confluent.
Intros x0 H'1 H'2 y z H'3 H'4.
Generalize (Rstar_cases U R x0 y); Intro h; LApply h;
[Intro h0; Elim h0;
[Clear h h0; Intro h1 |
Intro h1; Elim h1; Intros u h2; Elim h2; Intros H'5 H'6; Clear h h0 h1 h2] |
Clear h]; Auto with sets.
Elim h1; Auto with sets.
Generalize (Rstar_cases U R x0 z); Intro h; LApply h;
[Intro h0; Elim h0;
[Clear h h0; Intro h1 |
Intro h1; Elim h1; Intros v h2; Elim h2; Intros H'7 H'8; Clear h h0 h1 h2] |
Clear h]; Auto with sets.
Elim h1; Generalize coherent_symmetric; Intro t; Red in t; Auto with sets.
Unfold Locally_confluent locally_confluent coherent in H'0.
Generalize (H'0 x0 u v); Intro h; LApply h;
[Intro H'9; LApply H'9;
[Intro h0; Elim h0; Intros t h1; Elim h1; Intros H'10 H'11;
Clear h H'9 h0 h1 | Clear h] | Clear h]; Auto with sets.
Clear H'0.
Unfold 1 coherent in H'2.
Generalize (H'2 u); Intro h; LApply h;
[Intro H'0; Generalize (H'0 y t); Intro h0; LApply h0;
[Intro H'9; LApply H'9;
[Intro h1; Elim h1; Intros y1 h2; Elim h2; Intros H'12 H'13;
Clear h h0 H'9 h1 h2 | Clear h h0] | Clear h h0] | Clear h]; Auto with sets.
Generalize Rstar_transitive; Intro T; Red in T.
Generalize (H'2 v); Intro h; LApply h;
[Intro H'9; Generalize (H'9 y1 z); Intro h0; LApply h0;
[Intro H'14; LApply H'14;
[Intro h1; Elim h1; Intros z1 h2; Elim h2; Intros H'15 H'16;
Clear h h0 H'14 h1 h2 | Clear h h0] | Clear h h0] | Clear h]; Auto with sets.
Red; (Exists z1; Split); Auto with sets.
Apply T with y1; Auto with sets.
Apply T with t; Auto with sets.
Qed.
|