blob: d2068e5d5733203108e675821c731a9ef64d64d5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Sqrt_reg.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require Ranalysis1.
Require R_sqrt.
V7only [Import R_scope.]. Open Local Scope R_scope.
(**********)
Lemma sqrt_var_maj : (h:R) ``(Rabsolu h) <= 1`` -> ``(Rabsolu ((sqrt (1+h))-1))<=(Rabsolu h)``.
Intros; Cut ``0<=1+h``.
Intro; Apply Rle_trans with ``(Rabsolu ((sqrt (Rsqr (1+h)))-1))``.
Case (total_order_T h R0); Intro.
Elim s; Intro.
Repeat Rewrite Rabsolu_left.
Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-1``).
Do 2 Rewrite Ropp_distr1;Rewrite Ropp_Ropp; Apply Rle_compatibility.
Apply Rle_Ropp1; Apply sqrt_le_1.
Apply pos_Rsqr.
Apply H0.
Pattern 2 ``1+h``; Rewrite <- Rmult_1r; Unfold Rsqr; Apply Rle_monotony.
Apply H0.
Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption.
Apply Rlt_anti_compatibility with R1; Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
Pattern 2 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1.
Apply pos_Rsqr.
Left; Apply Rlt_R0_R1.
Pattern 2 R1; Rewrite <- Rsqr_1; Apply Rsqr_incrst_1.
Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
Apply H0.
Left; Apply Rlt_R0_R1.
Apply Rlt_anti_compatibility with R1; Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
Pattern 2 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1.
Apply H0.
Left; Apply Rlt_R0_R1.
Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
Rewrite b; Rewrite Rplus_Or; Rewrite Rsqr_1; Rewrite sqrt_1; Right; Reflexivity.
Repeat Rewrite Rabsolu_right.
Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-1``); Apply Rle_compatibility.
Apply sqrt_le_1.
Apply H0.
Apply pos_Rsqr.
Pattern 1 ``1+h``; Rewrite <- Rmult_1r; Unfold Rsqr; Apply Rle_monotony.
Apply H0.
Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption.
Apply Rle_sym1; Apply Rle_anti_compatibility with R1.
Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
Pattern 1 R1; Rewrite <- sqrt_1; Apply sqrt_le_1.
Left; Apply Rlt_R0_R1.
Apply pos_Rsqr.
Pattern 1 R1; Rewrite <- Rsqr_1; Apply Rsqr_incr_1.
Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_R0_R1.
Apply H0.
Apply Rle_sym1; Left; Apply Rlt_anti_compatibility with R1.
Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
Pattern 1 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1.
Left; Apply Rlt_R0_R1.
Apply H0.
Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
Rewrite sqrt_Rsqr.
Replace ``(1+h)-1`` with h; [Right; Reflexivity | Ring].
Apply H0.
Case (total_order_T h R0); Intro.
Elim s; Intro.
Rewrite (Rabsolu_left h a) in H.
Apply Rle_anti_compatibility with ``-h``.
Rewrite Rplus_Or; Rewrite Rplus_sym; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Exact H.
Left; Rewrite b; Rewrite Rplus_Or; Apply Rlt_R0_R1.
Left; Apply gt0_plus_gt0_is_gt0.
Apply Rlt_R0_R1.
Apply r.
Qed.
(* sqrt is continuous in 1 *)
Lemma sqrt_continuity_pt_R1 : (continuity_pt sqrt R1).
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Pose alpha := (Rmin eps R1).
Exists alpha; Intros.
Split.
Unfold alpha; Unfold Rmin; Case (total_order_Rle eps R1); Intro.
Assumption.
Apply Rlt_R0_R1.
Intros; Elim H0; Intros.
Rewrite sqrt_1; Replace x with ``1+(x-1)``; [Idtac | Ring]; Apply Rle_lt_trans with ``(Rabsolu (x-1))``.
Apply sqrt_var_maj.
Apply Rle_trans with alpha.
Left; Apply H2.
Unfold alpha; Apply Rmin_r.
Apply Rlt_le_trans with alpha; [Apply H2 | Unfold alpha; Apply Rmin_l].
Qed.
(* sqrt is continuous forall x>0 *)
Lemma sqrt_continuity_pt : (x:R) ``0<x`` -> (continuity_pt sqrt x).
Intros; Generalize sqrt_continuity_pt_R1.
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Cut ``0<eps/(sqrt x)``.
Intro; Elim (H0 ? H2); Intros alp_1 H3.
Elim H3; Intros.
Pose alpha := ``alp_1*x``.
Exists (Rmin alpha x); Intros.
Split.
Change ``0<(Rmin alpha x)``; Unfold Rmin; Case (total_order_Rle alpha x); Intro.
Unfold alpha; Apply Rmult_lt_pos; Assumption.
Apply H.
Intros; Replace x0 with ``x+(x0-x)``; [Idtac | Ring]; Replace ``(sqrt (x+(x0-x)))-(sqrt x)`` with ``(sqrt x)*((sqrt (1+(x0-x)/x))-(sqrt 1))``.
Rewrite Rabsolu_mult; Rewrite (Rabsolu_right (sqrt x)).
Apply Rlt_monotony_contra with ``/(sqrt x)``.
Apply Rlt_Rinv; Apply sqrt_lt_R0; Assumption.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite Rmult_sym.
Unfold Rdiv in H5.
Case (Req_EM x x0); Intro.
Rewrite H7; Unfold Rminus Rdiv; Rewrite Rplus_Ropp_r; Rewrite Rmult_Ol; Rewrite Rplus_Or; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
Apply Rmult_lt_pos.
Assumption.
Apply Rlt_Rinv; Rewrite <- H7; Apply sqrt_lt_R0; Assumption.
Apply H5.
Split.
Unfold D_x no_cond.
Split.
Trivial.
Red; Intro.
Cut ``(x0-x)*/x==0``.
Intro.
Elim (without_div_Od ? ? H9); Intro.
Elim H7.
Apply (Rminus_eq_right ? ? H10).
Assert H11 := (without_div_Oi1 ? x H10).
Rewrite <- Rinv_l_sym in H11.
Elim R1_neq_R0; Exact H11.
Red; Intro; Rewrite H12 in H; Elim (Rlt_antirefl ? H).
Symmetry; Apply r_Rplus_plus with R1; Rewrite Rplus_Or; Unfold Rdiv in H8; Exact H8.
Unfold Rminus; Rewrite Rplus_sym; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Elim H6; Intros.
Unfold Rdiv; Rewrite Rabsolu_mult.
Rewrite Rabsolu_Rinv.
Rewrite (Rabsolu_right x).
Rewrite Rmult_sym; Apply Rlt_monotony_contra with x.
Apply H.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite Rmult_sym; Fold alpha.
Apply Rlt_le_trans with (Rmin alpha x).
Apply H9.
Apply Rmin_l.
Red; Intro; Rewrite H10 in H; Elim (Rlt_antirefl ? H).
Apply Rle_sym1; Left; Apply H.
Red; Intro; Rewrite H10 in H; Elim (Rlt_antirefl ? H).
Assert H7 := (sqrt_lt_R0 x H).
Red; Intro; Rewrite H8 in H7; Elim (Rlt_antirefl ? H7).
Apply Rle_sym1; Apply sqrt_positivity.
Left; Apply H.
Unfold Rminus; Rewrite Rmult_Rplus_distr; Rewrite Ropp_mul3; Repeat Rewrite <- sqrt_times.
Rewrite Rmult_1r; Rewrite Rmult_Rplus_distr; Rewrite Rmult_1r; Unfold Rdiv; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Reflexivity.
Red; Intro; Rewrite H7 in H; Elim (Rlt_antirefl ? H).
Left; Apply H.
Left; Apply Rlt_R0_R1.
Left; Apply H.
Elim H6; Intros.
Case (case_Rabsolu ``x0-x``); Intro.
Rewrite (Rabsolu_left ``x0-x`` r) in H8.
Rewrite Rplus_sym.
Apply Rle_anti_compatibility with ``-((x0-x)/x)``.
Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Unfold Rdiv; Rewrite <- Ropp_mul1.
Apply Rle_monotony_contra with x.
Apply H.
Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Left; Apply Rlt_le_trans with (Rmin alpha x).
Apply H8.
Apply Rmin_r.
Red; Intro; Rewrite H9 in H; Elim (Rlt_antirefl ? H).
Apply ge0_plus_ge0_is_ge0.
Left; Apply Rlt_R0_R1.
Unfold Rdiv; Apply Rmult_le_pos.
Apply Rle_sym2; Exact r.
Left; Apply Rlt_Rinv; Apply H.
Unfold Rdiv; Apply Rmult_lt_pos.
Apply H1.
Apply Rlt_Rinv; Apply sqrt_lt_R0; Apply H.
Qed.
(* sqrt is derivable for all x>0 *)
Lemma derivable_pt_lim_sqrt : (x:R) ``0<x`` -> (derivable_pt_lim sqrt x ``/(2*(sqrt x))``).
Intros; Pose g := [h:R]``(sqrt x)+(sqrt (x+h))``.
Cut (continuity_pt g R0).
Intro; Cut ``(g 0)<>0``.
Intro; Assert H2 := (continuity_pt_inv g R0 H0 H1).
Unfold derivable_pt_lim; Intros; Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2.
Elim (H2 eps H3); Intros alpha H4.
Elim H4; Intros.
Pose alpha1 := (Rmin alpha x).
Cut ``0<alpha1``.
Intro; Exists (mkposreal alpha1 H7); Intros.
Replace ``((sqrt (x+h))-(sqrt x))/h`` with ``/((sqrt x)+(sqrt (x+h)))``.
Unfold inv_fct g in H6; Replace ``2*(sqrt x)`` with ``(sqrt x)+(sqrt (x+0))``.
Apply H6.
Split.
Unfold D_x no_cond.
Split.
Trivial.
Apply not_sym; Exact H8.
Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rlt_le_trans with alpha1.
Exact H9.
Unfold alpha1; Apply Rmin_l.
Rewrite Rplus_Or; Ring.
Cut ``0<=x+h``.
Intro; Cut ``0<(sqrt x)+(sqrt (x+h))``.
Intro; Apply r_Rmult_mult with ``((sqrt x)+(sqrt (x+h)))``.
Rewrite <- Rinv_r_sym.
Rewrite Rplus_sym; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rsqr_plus_minus; Repeat Rewrite Rsqr_sqrt.
Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Rewrite <- Rinv_r_sym.
Reflexivity.
Apply H8.
Left; Apply H.
Assumption.
Red; Intro; Rewrite H12 in H11; Elim (Rlt_antirefl ? H11).
Red; Intro; Rewrite H12 in H11; Elim (Rlt_antirefl ? H11).
Apply gt0_plus_ge0_is_gt0.
Apply sqrt_lt_R0; Apply H.
Apply sqrt_positivity; Apply H10.
Case (case_Rabsolu h); Intro.
Rewrite (Rabsolu_left h r) in H9.
Apply Rle_anti_compatibility with ``-h``.
Rewrite Rplus_Or; Rewrite Rplus_sym; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Left; Apply Rlt_le_trans with alpha1.
Apply H9.
Unfold alpha1; Apply Rmin_r.
Apply ge0_plus_ge0_is_ge0.
Left; Assumption.
Apply Rle_sym2; Apply r.
Unfold alpha1; Unfold Rmin; Case (total_order_Rle alpha x); Intro.
Apply H5.
Apply H.
Unfold g; Rewrite Rplus_Or.
Cut ``0<(sqrt x)+(sqrt x)``.
Intro; Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1).
Apply gt0_plus_gt0_is_gt0; Apply sqrt_lt_R0; Apply H.
Replace g with (plus_fct (fct_cte (sqrt x)) (comp sqrt (plus_fct (fct_cte x) id))); [Idtac | Reflexivity].
Apply continuity_pt_plus.
Apply continuity_pt_const; Unfold constant fct_cte; Intro; Reflexivity.
Apply continuity_pt_comp.
Apply continuity_pt_plus.
Apply continuity_pt_const; Unfold constant fct_cte; Intro; Reflexivity.
Apply derivable_continuous_pt; Apply derivable_pt_id.
Apply sqrt_continuity_pt.
Unfold plus_fct fct_cte id; Rewrite Rplus_Or; Apply H.
Qed.
(**********)
Lemma derivable_pt_sqrt : (x:R) ``0<x`` -> (derivable_pt sqrt x).
Unfold derivable_pt; Intros.
Apply Specif.existT with ``/(2*(sqrt x))``.
Apply derivable_pt_lim_sqrt; Assumption.
Qed.
(**********)
Lemma derive_pt_sqrt : (x:R;pr:``0<x``) ``(derive_pt sqrt x (derivable_pt_sqrt ? pr)) == /(2*(sqrt x))``.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_sqrt; Assumption.
Qed.
(* We show that sqrt is continuous for all x>=0 *)
(* Remark : by definition of sqrt (as extension of Rsqrt on |R), *)
(* we could also show that sqrt is continuous for all x *)
Lemma continuity_pt_sqrt : (x:R) ``0<=x`` -> (continuity_pt sqrt x).
Intros; Case (total_order R0 x); Intro.
Apply (sqrt_continuity_pt x H0).
Elim H0; Intro.
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Exists (Rsqr eps); Intros.
Split.
Change ``0<(Rsqr eps)``; Apply Rsqr_pos_lt.
Red; Intro; Rewrite H3 in H2; Elim (Rlt_antirefl ? H2).
Intros; Elim H3; Intros.
Rewrite <- H1; Rewrite sqrt_0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite <- H1 in H5; Unfold Rminus in H5; Rewrite Ropp_O in H5; Rewrite Rplus_Or in H5.
Case (case_Rabsolu x0); Intro.
Unfold sqrt; Case (case_Rabsolu x0); Intro.
Rewrite Rabsolu_R0; Apply H2.
Assert H6 := (Rle_sym2 ? ? r0); Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H6 r)).
Rewrite Rabsolu_right.
Apply Rsqr_incrst_0.
Rewrite Rsqr_sqrt.
Rewrite (Rabsolu_right x0 r) in H5; Apply H5.
Apply Rle_sym2; Exact r.
Apply sqrt_positivity; Apply Rle_sym2; Exact r.
Left; Exact H2.
Apply Rle_sym1; Apply sqrt_positivity; Apply Rle_sym2; Exact r.
Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H1 H)).
Qed.
|