summaryrefslogtreecommitdiff
path: root/theories7/Reals/RiemannInt.v
blob: c9301b568bf557ba9b5fd4a45c200e44a7ff3c82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
 
(*i $Id: RiemannInt.v,v 1.1.2.1 2004/07/16 19:31:34 herbelin Exp $ i*)

Require Rfunctions.
Require SeqSeries.
Require Ranalysis.
Require Rbase.
Require RiemannInt_SF.
Require Classical_Prop.
Require Classical_Pred_Type.
Require Max.
V7only [Import R_scope.]. Open Local Scope R_scope.

Implicit Arguments On.

(********************************************)
(*            Riemann's Integral            *)
(********************************************)

Definition Riemann_integrable [f:R->R;a,b:R] : Type := (eps:posreal) (SigT ? [phi:(StepFun a b)](SigT ? [psi:(StepFun a b)]((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(phi t)))<=(psi t)``)/\``(Rabsolu (RiemannInt_SF psi))<eps``)).

Definition phi_sequence [un:nat->posreal;f:R->R;a,b:R;pr:(Riemann_integrable f a b)] := [n:nat](projT1 ? ? (pr (un n))).

Lemma phi_sequence_prop : (un:nat->posreal;f:R->R;a,b:R;pr:(Riemann_integrable f a b);N:nat) (SigT ? [psi:(StepFun a b)]((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-[(phi_sequence un pr N t)]))<=(psi t)``)/\``(Rabsolu (RiemannInt_SF psi))<(un N)``).
Intros; Apply (projT2 ? ? (pr (un N))).
Qed.

Lemma RiemannInt_P1 : (f:R->R;a,b:R) (Riemann_integrable f a b) -> (Riemann_integrable f b a).
Unfold Riemann_integrable; Intros; Elim (X eps); Clear X; Intros; Elim p; Clear p; Intros; Apply Specif.existT with (mkStepFun (StepFun_P6 (pre x))); Apply Specif.existT with (mkStepFun (StepFun_P6 (pre x0))); Elim p; Clear p; Intros; Split.
Intros; Apply (H t); Elim H1; Clear H1; Intros; Split; [Apply Rle_trans with (Rmin b a); Try Assumption; Right; Unfold Rmin | Apply Rle_trans with (Rmax b a); Try Assumption; Right; Unfold Rmax]; (Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse Apply Rle_antisym; [Assumption | Assumption | Auto with real | Auto with real]).
Generalize H0; Unfold RiemannInt_SF; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; (Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre x0)))) (subdivision (mkStepFun (StepFun_P6 (pre x0))))) with (Int_SF (subdivision_val x0) (subdivision x0)); [Idtac | Apply StepFun_P17 with (fe x0) a b; [Apply StepFun_P1 | Apply StepFun_P2; Apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre x0))))]]).
Apply H1.
Rewrite Rabsolu_Ropp; Apply H1.
Rewrite Rabsolu_Ropp in H1; Apply H1.
Apply H1.
Qed.

Lemma RiemannInt_P2 : (f:R->R;a,b:R;un:nat->posreal;vn,wn:nat->(StepFun a b)) (Un_cv un R0) -> ``a<=b`` -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(vn n t)))<=(wn n t)``)/\``(Rabsolu (RiemannInt_SF (wn n)))<(un n)``) -> (sigTT ? [l:R](Un_cv [N:nat](RiemannInt_SF (vn N)) l)).
Intros; Apply R_complete; Unfold Un_cv in H; Unfold Cauchy_crit; Intros; Assert H3 : ``0<eps/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H ? H3); Intros N0 H4; Exists N0; Intros; Unfold R_dist; Unfold R_dist in H4; Elim (H1 n); Elim (H1 m); Intros; Replace ``(RiemannInt_SF (vn n))-(RiemannInt_SF (vn m))`` with ``(RiemannInt_SF (vn n))+(-1)*(RiemannInt_SF (vn m))``; [Idtac | Ring]; Rewrite <- StepFun_P30; Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (vn n) (vn m)))))).
Apply StepFun_P34; Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 R1 (wn n) (wn m)))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Apply Rle_trans with ``(Rabsolu ((vn n x)-(f x)))+(Rabsolu ((f x)-(vn m x)))``.
Replace ``(vn n x)+-1*(vn m x)`` with ``((vn n x)-(f x))+((f x)-(vn m x))``; [Apply Rabsolu_triang | Ring].
Assert H12 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Assert H13 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Rewrite <- H12 in H11; Pattern 2 b in H11; Rewrite <- H13 in H11; Rewrite Rmult_1l; Apply Rplus_le.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H9.
Elim H11; Intros; Split; Left; Assumption.
Apply H7.
Elim H11; Intros; Split; Left; Assumption.
Rewrite StepFun_P30; Rewrite Rmult_1l; Apply Rlt_trans with ``(un n)+(un m)``.
Apply Rle_lt_trans with ``(Rabsolu (RiemannInt_SF (wn n)))+(Rabsolu (RiemannInt_SF (wn m)))``.
Apply Rplus_le; Apply Rle_Rabsolu.
Apply Rplus_lt; Assumption.
Apply Rle_lt_trans with ``(Rabsolu (un n))+(Rabsolu (un m))``.
Apply Rplus_le; Apply Rle_Rabsolu.
Replace (pos (un n)) with ``(un n)-0``; [Idtac | Ring]; Replace (pos (un m)) with ``(un m)-0``; [Idtac | Ring]; Rewrite (double_var eps); Apply Rplus_lt; Apply H4; Assumption.
Qed.

Lemma RiemannInt_P3 : (f:R->R;a,b:R;un:nat->posreal;vn,wn:nat->(StepFun a b)) (Un_cv un R0) -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(vn n t)))<=(wn n t)``)/\``(Rabsolu (RiemannInt_SF (wn n)))<(un n)``)->(sigTT R ([l:R](Un_cv ([N:nat](RiemannInt_SF (vn N))) l))).
Intros; Case (total_order_Rle a b); Intro.
Apply RiemannInt_P2 with f un wn; Assumption.
Assert H1 : ``b<=a``; Auto with real.
Pose vn' := [n:nat](mkStepFun (StepFun_P6 (pre (vn n)))); Pose wn' := [n:nat](mkStepFun (StepFun_P6 (pre (wn n)))); Assert H2 : (n:nat)((t:R)``(Rmin b a)<=t<=(Rmax b a)``->``(Rabsolu ((f t)-(vn' n t)))<=(wn' n t)``)/\``(Rabsolu (RiemannInt_SF (wn' n)))<(un n)``.
Intro; Elim (H0 n0); Intros; Split.
Intros; Apply (H2 t); Elim H4; Clear H4; Intros; Split; [Apply Rle_trans with (Rmin b a); Try Assumption; Right; Unfold Rmin | Apply Rle_trans with (Rmax b a); Try Assumption; Right; Unfold Rmax]; (Case (total_order_Rle a b); Case (total_order_Rle b a); Intros; Try Reflexivity Orelse Apply Rle_antisym; [Assumption | Assumption | Auto with real | Auto with real]).
Generalize H3; Unfold RiemannInt_SF; Case (total_order_Rle a b); Case (total_order_Rle b a); Unfold wn'; Intros; (Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (wn n0))))) (subdivision (mkStepFun (StepFun_P6 (pre (wn n0)))))) with (Int_SF (subdivision_val (wn n0)) (subdivision (wn n0))); [Idtac | Apply StepFun_P17 with (fe (wn n0)) a b; [Apply StepFun_P1 | Apply StepFun_P2; Apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (wn n0)))))]]).
Apply H4.
Rewrite Rabsolu_Ropp; Apply H4.
Rewrite Rabsolu_Ropp in H4; Apply H4.
Apply H4.
Assert H3 := (RiemannInt_P2 H H1 H2); Elim H3; Intros; Apply existTT with ``-x``; Unfold Un_cv; Unfold Un_cv in p; Intros; Elim (p ? H4); Intros; Exists x0; Intros; Generalize (H5 ? H6); Unfold R_dist RiemannInt_SF; Case (total_order_Rle b a); Case (total_order_Rle a b); Intros.
Elim n; Assumption.
Unfold vn' in H7; Replace (Int_SF (subdivision_val (vn n0)) (subdivision (vn n0))) with (Int_SF (subdivision_val (mkStepFun (StepFun_P6 (pre (vn n0))))) (subdivision (mkStepFun (StepFun_P6 (pre (vn n0)))))); [Unfold Rminus; Rewrite Ropp_Ropp; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Apply H7 | Symmetry; Apply StepFun_P17 with (fe (vn n0)) a b; [Apply StepFun_P1 | Apply StepFun_P2; Apply (StepFun_P1 (mkStepFun (StepFun_P6 (pre (vn n0)))))]].
Elim n1; Assumption.
Elim n2; Assumption.
Qed.

Lemma RiemannInt_exists : (f:R->R;a,b:R;pr:(Riemann_integrable f a b);un:nat->posreal) (Un_cv un R0) -> (sigTT ? [l:R](Un_cv [N:nat](RiemannInt_SF (phi_sequence un pr N)) l)).
Intros f; Intros; Apply RiemannInt_P3 with f un [n:nat](projT1 ? ? (phi_sequence_prop un pr n)); [Apply H | Intro; Apply (projT2 ? ? (phi_sequence_prop un pr n))].
Qed.

Lemma RiemannInt_P4 : (f:R->R;a,b,l:R;pr1,pr2:(Riemann_integrable f a b);un,vn:nat->posreal) (Un_cv un R0) -> (Un_cv vn R0) -> (Un_cv [N:nat](RiemannInt_SF (phi_sequence un pr1 N)) l) -> (Un_cv [N:nat](RiemannInt_SF (phi_sequence vn pr2 N)) l).
Unfold Un_cv; Unfold R_dist; Intros f; Intros; Assert H3 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H ? H3); Clear H; Intros N0 H; Elim (H0 ? H3); Clear H0; Intros N1 H0; Elim (H1 ? H3); Clear H1; Intros N2 H1; Pose N := (max (max N0 N1) N2); Exists N; Intros; Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence vn pr2 n)])-(RiemannInt_SF [(phi_sequence un pr1 n)])))+(Rabsolu ((RiemannInt_SF [(phi_sequence un pr1 n)])-l))``.
Replace ``(RiemannInt_SF [(phi_sequence vn pr2 n)])-l`` with ``((RiemannInt_SF [(phi_sequence vn pr2 n)])-(RiemannInt_SF [(phi_sequence un pr1 n)]))+((RiemannInt_SF [(phi_sequence un pr1 n)])-l)``; [Apply Rabsolu_triang | Ring].
Replace ``eps`` with ``2*eps/3+eps/3``.
Apply Rplus_lt.
Elim (phi_sequence_prop vn pr2 n); Intros psi_vn H5; Elim (phi_sequence_prop un pr1 n); Intros psi_un H6; Replace ``(RiemannInt_SF [(phi_sequence vn pr2 n)])-(RiemannInt_SF [(phi_sequence un pr1 n)])`` with ``(RiemannInt_SF [(phi_sequence vn pr2 n)])+(-1)*(RiemannInt_SF [(phi_sequence un pr1 n)])``; [Idtac | Ring]; Rewrite <- StepFun_P30.
Case (total_order_Rle a b); Intro.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (phi_sequence vn pr2 n) (phi_sequence un pr1 n)))))).
Apply StepFun_P34; Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 R1 psi_un psi_vn))).
Apply StepFun_P37; Try Assumption; Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu ([(phi_sequence vn pr2 n x)]-(f x)))+(Rabsolu ((f x)-[(phi_sequence un pr1 n x)]))``.
Replace ``[(phi_sequence vn pr2 n x)]+-1*[(phi_sequence un pr1 n x)]`` with ``([(phi_sequence vn pr2 n x)]-(f x))+((f x)-[(phi_sequence un pr1 n x)])``; [Apply Rabsolu_triang | Ring].
Assert H10 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Assert H11 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Rewrite (Rplus_sym (psi_un x)); Apply Rplus_le.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Elim H5; Intros; Apply H8.
Rewrite H10; Rewrite H11; Elim H7; Intros; Split; Left; Assumption.
Elim H6; Intros; Apply H8.
Rewrite H10; Rewrite H11; Elim H7; Intros; Split; Left; Assumption.
Rewrite StepFun_P30; Rewrite Rmult_1l; Rewrite double; Apply Rplus_lt.
Apply Rlt_trans with (pos (un n)).
Elim H6; Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi_un)).
Apply Rle_Rabsolu.
Assumption.
Replace (pos (un n)) with (Rabsolu ``(un n)-0``); [Apply H; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_trans with (max N0 N1); Apply le_max_l | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (un n))].
Apply Rlt_trans with (pos (vn n)).
Elim H5; Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi_vn)).
Apply Rle_Rabsolu; Assumption.
Assumption.
Replace (pos (vn n)) with (Rabsolu ``(vn n)-0``); [Apply H0; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_trans with (max N0 N1); [Apply le_max_r | Apply le_max_l] | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (vn n))].
Rewrite StepFun_P39; Rewrite Rabsolu_Ropp; Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 ``-1`` (phi_sequence vn pr2 n) (phi_sequence un pr1 n))))))))).
Apply StepFun_P34; Try Auto with real.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 R1 psi_vn psi_un)))))).
Apply StepFun_P37.
Auto with real.
Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu ([(phi_sequence vn pr2 n x)]-(f x)))+(Rabsolu ((f x)-[(phi_sequence un pr1 n x)]))``.
Replace ``[(phi_sequence vn pr2 n x)]+-1*[(phi_sequence un pr1 n x)]`` with ``([(phi_sequence vn pr2 n x)]-(f x))+((f x)-[(phi_sequence un pr1 n x)])``; [Apply Rabsolu_triang | Ring].
Assert H10 : (Rmin a b)==b.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Elim n0; Assumption | Reflexivity].
Assert H11 : (Rmax a b)==a.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Elim n0; Assumption | Reflexivity].
Apply Rplus_le.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Elim H5; Intros; Apply H8.
Rewrite H10; Rewrite H11; Elim H7; Intros; Split; Left; Assumption.
Elim H6; Intros; Apply H8.
Rewrite H10; Rewrite H11; Elim H7; Intros; Split; Left; Assumption.
Rewrite <- (Ropp_Ropp (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 R1 psi_vn psi_un))))))); Rewrite <- StepFun_P39; Rewrite StepFun_P30; Rewrite Rmult_1l; Rewrite double; Rewrite Ropp_distr1; Apply Rplus_lt.
Apply Rlt_trans with (pos (vn n)).
Elim H5; Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi_vn)).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu.
Assumption.
Replace (pos (vn n)) with (Rabsolu ``(vn n)-0``); [Apply H0; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_trans with (max N0 N1); [Apply le_max_r | Apply le_max_l] | Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (vn n))].
Apply Rlt_trans with (pos (un n)).
Elim H6; Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi_un)).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu; Assumption.
Assumption.
Replace (pos (un n)) with (Rabsolu ``(un n)-0``); [Apply H; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_trans with (max N0 N1); Apply le_max_l | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (un n))].
Apply H1; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_max_r.
Apply r_Rmult_mult with ``3``; [Unfold Rdiv; Rewrite Rmult_Rplus_distr; Do 2 Rewrite (Rmult_sym ``3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR].
Qed.

Lemma RinvN_pos : (n:nat) ``0</((INR n)+1)``.
Intro; Apply Rlt_Rinv; Apply ge0_plus_gt0_is_gt0; [Apply pos_INR | Apply Rlt_R0_R1].
Qed.

Definition RinvN : nat->posreal := [N:nat](mkposreal ? (RinvN_pos N)).
 
Lemma RinvN_cv : (Un_cv RinvN R0).
Unfold Un_cv; Intros; Assert H0 := (archimed ``/eps``); Elim H0; Clear H0; Intros; Assert H2 : `0<=(up (Rinv eps))`.
Apply le_IZR; Left; Apply Rlt_trans with ``/eps``; [Apply Rlt_Rinv; Assumption | Assumption].
Elim (IZN ? H2); Intros; Exists x; Intros; Unfold R_dist; Simpl; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Assert H5 : ``0<(INR n)+1``.
Apply ge0_plus_gt0_is_gt0; [Apply pos_INR | Apply Rlt_R0_R1].
Rewrite Rabsolu_right; [Idtac | Left; Change ``0</((INR n)+1)``; Apply Rlt_Rinv; Assumption]; Apply Rle_lt_trans with ``/((INR x)+1)``.
Apply Rle_Rinv.
Apply ge0_plus_gt0_is_gt0; [Apply pos_INR | Apply Rlt_R0_R1].
Assumption.
Do 2 Rewrite <- (Rplus_sym R1); Apply Rle_compatibility; Apply le_INR; Apply H4.
Rewrite <- (Rinv_Rinv eps).
Apply Rinv_lt.
Apply Rmult_lt_pos.
Apply Rlt_Rinv; Assumption.
Apply ge0_plus_gt0_is_gt0; [Apply pos_INR | Apply Rlt_R0_R1].
Apply Rlt_trans with (INR x); [Rewrite INR_IZR_INZ; Rewrite <- H3; Apply H0 | Pattern 1 (INR x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1].
Red; Intro; Rewrite H6 in H; Elim (Rlt_antirefl ? H).
Qed.

(**********) 
Definition RiemannInt [f:R->R;a,b:R;pr:(Riemann_integrable f a b)] : R := Cases
(RiemannInt_exists pr 5!RinvN RinvN_cv) of (existTT a' b') => a' end.

Lemma RiemannInt_P5 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f a b)) (RiemannInt pr1)==(RiemannInt pr2).
Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; EApply UL_sequence; [Apply u0 | Apply RiemannInt_P4 with pr2 RinvN; Apply RinvN_cv Orelse Assumption].
Qed.

(**************************************)
(* C°([a,b]) is included in L1([a,b]) *)
(**************************************)

Lemma maxN : (a,b:R;del:posreal) ``a<b`` -> (sigTT ? [n:nat]``a+(INR n)*del<b``/\``b<=a+(INR (S n))*del``).
Intros; Pose I := [n:nat]``a+(INR n)*del < b``; Assert H0 : (EX n:nat | (I n)).
Exists O; Unfold I; Rewrite Rmult_Ol; Rewrite Rplus_Or; Assumption.
Cut (Nbound I).
Intro; Assert H2 := (Nzorn H0 H1); Elim H2; Intros; Exists x; Elim p; Intros; Split.
Apply H3.
Case (total_order_T ``a+(INR (S x))*del`` b); Intro.
Elim s; Intro.
Assert H5 := (H4 (S x) a0); Elim (le_Sn_n ? H5).
Right; Symmetry; Assumption.
Left; Apply r.
Assert H1 : ``0<=(b-a)/del``.
Unfold Rdiv; Apply Rmult_le_pos; [Apply Rle_sym2; Apply Rge_minus; Apply Rle_sym1; Left; Apply H | Left; Apply Rlt_Rinv; Apply (cond_pos del)].
Elim (archimed ``(b-a)/del``); Intros; Assert H4 : `0<=(up (Rdiv (Rminus b a) del))`.
Apply le_IZR; Simpl; Left; Apply Rle_lt_trans with ``(b-a)/del``; Assumption.
Assert H5 := (IZN ? H4); Elim H5; Clear H5; Intros N H5; Unfold Nbound; Exists N; Intros; Unfold I in H6; Apply INR_le; Rewrite H5 in H2; Rewrite <- INR_IZR_INZ in H2; Left; Apply Rle_lt_trans with ``(b-a)/del``; Try Assumption; Apply Rle_monotony_contra with (pos del); [Apply (cond_pos del) | Unfold Rdiv; Rewrite <- (Rmult_sym ``/del``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite Rmult_sym; Apply Rle_anti_compatibility with a; Replace ``a+(b-a)`` with b; [Left; Assumption | Ring] | Assert H7 := (cond_pos del); Red; Intro; Rewrite H8 in H7; Elim (Rlt_antirefl ? H7)]].
Qed.

Fixpoint SubEquiN [N:nat] : R->R->posreal->Rlist :=
[x:R][y:R][del:posreal] Cases N of
| O => (cons y nil)
| (S p) => (cons x (SubEquiN p ``x+del`` y del))
end.

Definition max_N [a,b:R;del:posreal;h:``a<b``] : nat := Cases (maxN del h) of (existTT N H0) => N end.

Definition SubEqui [a,b:R;del:posreal;h:``a<b``] :Rlist := (SubEquiN (S (max_N del h)) a b del).

Lemma Heine_cor1 : (f:R->R;a,b:R) ``a<b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (eps:posreal) (sigTT ? [delta:posreal]``delta<=b-a``/\(x,y:R)``a<=x<=b``->``a<=y<=b``->``(Rabsolu (x-y)) < delta``->``(Rabsolu ((f x)-(f y))) < eps``).
Intro f; Intros; Pose E := [l:R]``0<l<=b-a``/\(x,y:R)``a <= x <= b``->``a <= y <= b``->``(Rabsolu (x-y)) < l``->``(Rabsolu ((f x)-(f y))) < eps``; Assert H1 : (bound E).
Unfold bound; Exists ``b-a``; Unfold is_upper_bound; Intros; Unfold E in H1; Elim H1; Clear H1; Intros H1 _; Elim H1; Intros; Assumption.
Assert H2 : (EXT x:R | (E x)).
Assert H2 := (Heine f [x:R]``a<=x<=b`` (compact_P3 a b) H0 eps); Elim H2; Intros; Exists (Rmin x ``b-a``); Unfold E; Split; [Split; [Unfold Rmin; Case (total_order_Rle x ``b-a``); Intro; [Apply (cond_pos x) | Apply Rlt_Rminus; Assumption] | Apply Rmin_r] | Intros; Apply H3; Try Assumption; Apply Rlt_le_trans with (Rmin x ``b-a``); [Assumption | Apply Rmin_l]].
Assert H3 := (complet E H1 H2); Elim H3; Intros; Cut ``0<x<=b-a``.
Intro; Elim H4; Clear H4; Intros; Apply existTT with (mkposreal ? H4); Split.
Apply H5.
Unfold is_lub in p; Elim p; Intros; Unfold is_upper_bound in H6; Pose D := ``(Rabsolu (x0-y))``; Elim (classic (EXT y:R | ``D<y``/\(E y))); Intro.
Elim H11; Intros; Elim H12; Clear H12; Intros; Unfold E in H13; Elim H13; Intros; Apply H15; Assumption.
Assert H12 := (not_ex_all_not ? [y:R]``D < y``/\(E y) H11); Assert H13 : (is_upper_bound E D).
Unfold is_upper_bound; Intros; Assert H14 := (H12 x1); Elim (not_and_or ``D<x1`` (E x1) H14); Intro.
Case (total_order_Rle x1 D); Intro.
Assumption.
Elim H15; Auto with real.
Elim H15; Assumption.
Assert H14 := (H7 ? H13); Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H14 H10)).
Unfold is_lub in p; Unfold is_upper_bound in p; Elim p; Clear p; Intros; Split.
Elim H2; Intros; Assert H7 := (H4 ? H6); Unfold E in H6; Elim H6; Clear H6; Intros H6 _; Elim H6; Intros; Apply Rlt_le_trans with x0; Assumption.
Apply H5; Intros; Unfold E in H6; Elim H6; Clear H6; Intros H6 _; Elim H6; Intros; Assumption.
Qed.

Lemma Heine_cor2 : (f:(R->R); a,b:R) ((x:R)``a <= x <= b``->(continuity_pt f x))->(eps:posreal)(sigTT posreal [delta:posreal]((x,y:R)``a <= x <= b``->``a <= y <= b``->``(Rabsolu (x-y)) < delta``->``(Rabsolu ((f x)-(f y))) < eps``)).
Intro f; Intros; Case (total_order_T a b); Intro.
Elim s; Intro.
Assert H0 := (Heine_cor1 a0 H eps); Elim H0; Intros; Apply existTT with x; Elim p; Intros; Apply H2; Assumption.
Apply existTT with (mkposreal ? Rlt_R0_R1); Intros; Assert H3 : x==y; [Elim H0; Elim H1; Intros; Rewrite b0 in H3; Rewrite b0 in H5; Apply Rle_antisym; Apply Rle_trans with b; Assumption | Rewrite H3; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply (cond_pos eps)].
Apply existTT with (mkposreal ? Rlt_R0_R1); Intros; Elim H0; Intros; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (Rle_trans ? ? ? H3 H4) r)).
Qed.

Lemma SubEqui_P1 : (a,b:R;del:posreal;h:``a<b``) (pos_Rl (SubEqui del h) O)==a.
Intros; Unfold SubEqui; Case (maxN del h); Intros; Reflexivity.
Qed.

Lemma SubEqui_P2 : (a,b:R;del:posreal;h:``a<b``) (pos_Rl (SubEqui del h) (pred (Rlength (SubEqui del h))))==b.
Intros; Unfold SubEqui; Case (maxN del h); Intros; Clear a0; Cut (x:nat)(a:R)(del:posreal)(pos_Rl (SubEquiN (S x) a b del) (pred (Rlength (SubEquiN (S x) a b del)))) == b; [Intro; Apply H | Induction x0; [Intros; Reflexivity | Intros; Change (pos_Rl (SubEquiN (S n) ``a0+del0`` b del0) (pred (Rlength (SubEquiN (S n) ``a0+del0`` b del0))))==b; Apply H]].
Qed.

Lemma SubEqui_P3 : (N:nat;a,b:R;del:posreal) (Rlength (SubEquiN N a b del))=(S N).
Induction N; Intros; [Reflexivity | Simpl; Rewrite H; Reflexivity].
Qed.

Lemma SubEqui_P4 : (N:nat;a,b:R;del:posreal;i:nat) (lt i (S N)) -> (pos_Rl (SubEquiN (S N) a b del) i)==``a+(INR i)*del``.
Induction N; [Intros; Inversion H; [Simpl; Ring | Elim (le_Sn_O ? H1)] | Intros; Induction i; [Simpl; Ring | Change (pos_Rl (SubEquiN (S n) ``a+del`` b del) i)==``a+(INR (S i))*del``; Rewrite H; [Rewrite S_INR; Ring | Apply lt_S_n; Apply H0]]].
Qed.

Lemma SubEqui_P5 : (a,b:R;del:posreal;h:``a<b``) (Rlength (SubEqui del h))=(S (S (max_N del h))).
Intros; Unfold SubEqui; Apply SubEqui_P3.
Qed.

Lemma SubEqui_P6 : (a,b:R;del:posreal;h:``a<b``;i:nat) (lt i (S (max_N del h))) -> (pos_Rl (SubEqui del h) i)==``a+(INR i)*del``.
Intros; Unfold SubEqui; Apply SubEqui_P4; Assumption.
Qed.

Lemma SubEqui_P7 : (a,b:R;del:posreal;h:``a<b``) (ordered_Rlist (SubEqui del h)).
Intros; Unfold ordered_Rlist; Intros; Rewrite SubEqui_P5 in H; Simpl in H; Inversion H.
Rewrite (SubEqui_P6 3!del 4!h 5!(max_N del h)).
Replace (S (max_N del h)) with (pred (Rlength (SubEqui del h))).
Rewrite SubEqui_P2; Unfold max_N; Case (maxN del h); Intros; Left; Elim a0; Intros; Assumption.
Rewrite SubEqui_P5; Reflexivity.
Apply lt_n_Sn.
Repeat Rewrite SubEqui_P6.
3:Assumption.
2:Apply le_lt_n_Sm; Assumption.
Apply Rle_compatibility; Rewrite S_INR; Rewrite Rmult_Rplus_distrl; Pattern 1 ``(INR i)*del``; Rewrite <- Rplus_Or; Apply Rle_compatibility; Rewrite Rmult_1l; Left; Apply (cond_pos del).
Qed.

Lemma SubEqui_P8 : (a,b:R;del:posreal;h:``a<b``;i:nat) (lt i (Rlength (SubEqui del h))) -> ``a<=(pos_Rl (SubEqui del h) i)<=b``.
Intros; Split.
Pattern 1 a; Rewrite <- (SubEqui_P1 del h); Apply RList_P5.
Apply SubEqui_P7.
Elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); Intros; Apply H1; Exists i; Split; [Reflexivity | Assumption].
Pattern 2 b; Rewrite <- (SubEqui_P2 del h); Apply RList_P7; [Apply SubEqui_P7 | Elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); Intros; Apply H1; Exists i; Split; [Reflexivity | Assumption]].
Qed.

Lemma SubEqui_P9 : (a,b:R;del:posreal;f:R->R;h:``a<b``) (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (Rlength (SubEqui del h))))->(constant_D_eq g (co_interval (pos_Rl (SubEqui del h) i) (pos_Rl (SubEqui del h) (S i))) (f (pos_Rl (SubEqui del h) i)))).
Intros; Apply StepFun_P38; [Apply SubEqui_P7 | Apply SubEqui_P1 | Apply SubEqui_P2].
Qed.

Lemma  RiemannInt_P6 : (f:R->R;a,b:R) ``a<b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (Riemann_integrable f a b).
Intros; Unfold Riemann_integrable; Intro; Assert H1 : ``0<eps/(2*(b-a))``.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos eps) | Apply Rlt_Rinv; Apply Rmult_lt_pos; [Sup0 | Apply Rlt_Rminus; Assumption]].
Assert H2 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Left; Assumption].
Assert H3 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Left; Assumption].
Elim (Heine_cor2 H0 (mkposreal ? H1)); Intros del H4; Elim (SubEqui_P9 del f H); Intros phi [H5 H6]; Split with phi; Split with (mkStepFun (StepFun_P4 a b ``eps/(2*(b-a))``)); Split.
2:Rewrite StepFun_P18; Unfold Rdiv; Rewrite Rinv_Rmult.
2:Do 2 Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
2:Rewrite Rmult_1r; Rewrite Rabsolu_right.
2:Apply Rlt_monotony_contra with ``2``.
2:Sup0.
2:Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
2:Rewrite Rmult_1l; Pattern 1 (pos eps); Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Apply (cond_pos eps).
2:DiscrR.
2:Apply Rle_sym1; Left; Apply Rmult_lt_pos.
2:Apply (cond_pos eps).
2:Apply Rlt_Rinv; Sup0.
2:Apply Rminus_eq_contra; Red; Intro; Clear H6; Rewrite H7 in H; Elim (Rlt_antirefl ? H).
2:DiscrR.
2:Apply Rminus_eq_contra; Red; Intro; Clear H6; Rewrite H7 in H; Elim (Rlt_antirefl ? H).
Intros; Rewrite H2 in H7; Rewrite H3 in H7; Simpl; Unfold fct_cte; Cut (t:R)``a<=t<=b``->t==b\/(EX i:nat | (lt i (pred (Rlength (SubEqui del H))))/\(co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t)).
Intro; Elim (H8 ? H7); Intro.
Rewrite H9; Rewrite H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption.
Elim H9; Clear H9; Intros I [H9 H10]; Assert H11 := (H6 I H9 t H10); Rewrite H11; Left; Apply H4.
Assumption.
Apply SubEqui_P8; Apply lt_trans with (pred (Rlength (SubEqui del H))).
Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H9; Elim (lt_n_O ? H9).
Unfold co_interval in H10; Elim H10; Clear H10; Intros; Rewrite Rabsolu_right.
Rewrite SubEqui_P5 in H9; Simpl in H9; Inversion H9.
Apply Rlt_anti_compatibility with (pos_Rl (SubEqui del H) (max_N del H)).
Replace ``(pos_Rl (SubEqui del H) (max_N del H))+(t-(pos_Rl (SubEqui del H) (max_N del H)))`` with t; [Idtac | Ring]; Apply Rlt_le_trans with b.
Rewrite H14 in H12; Assert H13 : (S (max_N del H))=(pred (Rlength (SubEqui del H))).
Rewrite SubEqui_P5; Reflexivity.
Rewrite H13 in H12; Rewrite SubEqui_P2 in H12; Apply H12.
Rewrite SubEqui_P6.
2:Apply lt_n_Sn.
Unfold max_N; Case (maxN del H); Intros; Elim a0; Clear a0; Intros _ H13; Replace ``a+(INR x)*del+del`` with ``a+(INR (S x))*del``; [Assumption | Rewrite S_INR; Ring].
Apply Rlt_anti_compatibility with (pos_Rl (SubEqui del H) I); Replace ``(pos_Rl (SubEqui del H) I)+(t-(pos_Rl (SubEqui del H) I))`` with t; [Idtac | Ring]; Replace ``(pos_Rl (SubEqui del H) I)+del`` with (pos_Rl (SubEqui del H) (S I)).
Assumption.
Repeat Rewrite SubEqui_P6.
Rewrite S_INR; Ring.
Assumption.
Apply le_lt_n_Sm; Assumption.
Apply Rge_minus; Apply Rle_sym1; Assumption.
Intros; Clear H0 H1 H4 phi H5 H6 t H7; Case (Req_EM t0 b); Intro.
Left; Assumption.
Right; Pose I := [j:nat]``a+(INR j)*del<=t0``; Assert H1 : (EX n:nat | (I n)).
Exists O; Unfold I; Rewrite Rmult_Ol; Rewrite Rplus_Or; Elim H8; Intros; Assumption.
Assert H4 : (Nbound I).
Unfold Nbound; Exists (S (max_N del H)); Intros; Unfold max_N; Case (maxN del H); Intros; Elim a0; Clear a0; Intros _ H5; Apply INR_le; Apply Rle_monotony_contra with (pos del).
Apply (cond_pos del).
Apply Rle_anti_compatibility with a; Do 2 Rewrite (Rmult_sym del); Apply Rle_trans with t0; Unfold I in H4; Try Assumption; Apply Rle_trans with b; Try Assumption; Elim H8; Intros; Assumption.
Elim (Nzorn H1 H4); Intros N [H5 H6]; Assert H7 : (lt N (S (max_N del H))).
Unfold max_N; Case (maxN del H); Intros; Apply INR_lt; Apply Rlt_monotony_contra with (pos del).
Apply (cond_pos del).
Apply Rlt_anti_compatibility with a; Do 2 Rewrite (Rmult_sym del); Apply Rle_lt_trans with t0; Unfold I in H5; Try Assumption; Elim a0; Intros; Apply Rlt_le_trans with b; Try Assumption; Elim H8; Intros.
Elim H11; Intro.
Assumption.
Elim H0; Assumption.
Exists N; Split.
Rewrite SubEqui_P5; Simpl; Assumption.
Unfold co_interval; Split.
Rewrite SubEqui_P6.
Apply H5.
Assumption.
Inversion H7.
Replace (S (max_N del H)) with (pred (Rlength (SubEqui del H))).
Rewrite (SubEqui_P2 del H); Elim H8; Intros.
Elim H11; Intro.
Assumption.
Elim H0; Assumption.
Rewrite SubEqui_P5; Reflexivity.
Rewrite SubEqui_P6.
Case (total_order_Rle ``a+(INR (S N))*del`` t0); Intro.
Assert H11 := (H6 (S N) r); Elim (le_Sn_n ? H11).
Auto with real.
Apply le_lt_n_Sm; Assumption.
Qed.

Lemma RiemannInt_P7 : (f:R->R;a:R) (Riemann_integrable f a a).
Unfold Riemann_integrable; Intro f; Intros; Split with (mkStepFun (StepFun_P4 a a (f a))); Split with (mkStepFun (StepFun_P4 a a R0)); Split.
Intros; Simpl; Unfold fct_cte; Replace t with a.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Right; Reflexivity.
Generalize H; Unfold Rmin Rmax; Case (total_order_Rle a a); Intros; Elim H0; Intros; Apply Rle_antisym; Assumption.
Rewrite StepFun_P18; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Apply (cond_pos eps).
Qed.

Lemma continuity_implies_RiemannInt : (f:R->R;a,b:R) ``a<=b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (Riemann_integrable f a b).
Intros; Case (total_order_T a b); Intro; [Elim s; Intro; [Apply RiemannInt_P6; Assumption | Rewrite b0; Apply RiemannInt_P7] | Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r))].
Qed.

Lemma RiemannInt_P8 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b a)) ``(RiemannInt pr1)==-(RiemannInt pr2)``.
Intro f; Intros; EApply UL_sequence.
Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; Apply u.
Unfold RiemannInt; Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Intros; Cut (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr1 n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Cut (EXT psi2:nat->(StepFun b a) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr2 n)] t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
Intros; Elim H; Clear H; Intros psi2 H; Elim H0; Clear H0; Intros psi1 H0; Assert H1 := RinvN_cv; Unfold Un_cv; Intros; Assert H3 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Unfold Un_cv in H1; Elim (H1 ? H3); Clear H1; Intros N0 H1; Unfold R_dist in H1; Simpl in H1; Assert H4 : (n:nat)(ge n N0)->``(RinvN n)<eps/3``.
Intros; Assert H5 := (H1 ? H4); Replace (pos (RinvN n)) with ``(Rabsolu (/((INR n)+1)-0))``; [Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Left; Apply (cond_pos (RinvN n))].
Clear H1; Unfold Un_cv in u; Elim (u ? H3); Clear u; Intros N1 H1; Exists (max N0 N1); Intros; Unfold R_dist; Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)])))+(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``.
Rewrite <- (Rabsolu_Ropp ``(RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x``); Replace ``(RiemannInt_SF [(phi_sequence RinvN pr1 n)])- -x`` with ``((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))+ -((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x)``; [Apply Rabsolu_triang | Ring].
Replace eps with ``2*eps/3+eps/3``.
Apply Rplus_lt.
Rewrite (StepFun_P39 (phi_sequence RinvN pr2 n)); Replace ``(RiemannInt_SF [(phi_sequence RinvN pr1 n)])+ -(RiemannInt_SF (mkStepFun (StepFun_P6 (pre [(phi_sequence RinvN pr2 n)]))))`` with ``(RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(-1)*(RiemannInt_SF (mkStepFun (StepFun_P6 (pre [(phi_sequence RinvN pr2 n)]))))``; [Idtac | Ring]; Rewrite <- StepFun_P30.
Case (total_order_Rle a b); Intro.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (phi_sequence RinvN pr1 n) (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n))))))))).
Apply StepFun_P34; Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 ``1`` (psi1 n) (mkStepFun (StepFun_P6 (pre (psi2 n))))))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu (([(phi_sequence RinvN pr1 n)] x0)-(f x0)))+(Rabsolu ((f x0)-([(phi_sequence RinvN pr2 n)] x0)))``.
Replace ``([(phi_sequence RinvN pr1 n)] x0)+ -1*([(phi_sequence RinvN pr2 n)] x0)`` with ``(([(phi_sequence RinvN pr1 n)] x0)-(f x0))+((f x0)-([(phi_sequence RinvN pr2 n)] x0))``; [Apply Rabsolu_triang | Ring].
Assert H7 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Assert H8 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Apply Rplus_le.
Elim (H0 n); Intros; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H9; Rewrite H7; Rewrite H8.
Elim H6; Intros; Split; Left; Assumption.
Elim (H n); Intros; Apply H9; Rewrite H7; Rewrite H8.
Elim H6; Intros; Split; Left; Assumption.
Rewrite StepFun_P30; Rewrite Rmult_1l; Rewrite double; Apply Rplus_lt.
Elim (H0 n); Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))); [Apply Rle_Rabsolu | Apply Rlt_trans with (pos (RinvN n)); [Assumption | Apply H4; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_l | Assumption]]].
Elim (H n); Intros; Rewrite <- (Ropp_Ropp (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (psi2 n)))))); Rewrite <- StepFun_P39; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))); [Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu | Apply Rlt_trans with (pos (RinvN n)); [Assumption | Apply H4; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_l | Assumption]]].
Assert Hyp : ``b<=a``.
Auto with real.
Rewrite StepFun_P39; Rewrite Rabsolu_Ropp; Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P6 (StepFun_P28 ``-1`` (phi_sequence RinvN pr1 n) (mkStepFun (StepFun_P6 (pre (phi_sequence RinvN pr2 n)))))))))).
Apply StepFun_P34; Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 ``1`` (mkStepFun (StepFun_P6 (pre (psi1 n)))) (psi2 n)))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu (([(phi_sequence RinvN pr1 n)] x0)-(f x0)))+(Rabsolu ((f x0)-([(phi_sequence RinvN pr2 n)] x0)))``.
Replace ``([(phi_sequence RinvN pr1 n)] x0)+ -1*([(phi_sequence RinvN pr2 n)] x0)`` with ``(([(phi_sequence RinvN pr1 n)] x0)-(f x0))+((f x0)-([(phi_sequence RinvN pr2 n)] x0))``; [Apply Rabsolu_triang | Ring].
Assert H7 : (Rmin a b)==b.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Elim n0; Assumption | Reflexivity].
Assert H8 : (Rmax a b)==a.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Elim n0; Assumption | Reflexivity].
Apply Rplus_le.
Elim (H0 n); Intros; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H9; Rewrite H7; Rewrite H8.
Elim H6; Intros; Split; Left; Assumption.
Elim (H n); Intros; Apply H9; Rewrite H7; Rewrite H8; Elim H6; Intros; Split; Left; Assumption.
Rewrite StepFun_P30; Rewrite Rmult_1l; Rewrite double; Apply Rplus_lt.
Elim (H0 n); Intros; Rewrite <- (Ropp_Ropp (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (psi1 n)))))); Rewrite <- StepFun_P39; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))); [Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu | Apply Rlt_trans with (pos (RinvN n)); [Assumption | Apply H4; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_l | Assumption]]].
Elim (H n); Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))); [Apply Rle_Rabsolu | Apply Rlt_trans with (pos (RinvN n)); [Assumption | Apply H4; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_l | Assumption]]].
Unfold R_dist in H1; Apply H1; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_r | Assumption].
Apply r_Rmult_mult with ``3``; [Unfold Rdiv; Rewrite Rmult_Rplus_distr; Do 2 Rewrite (Rmult_sym ``3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR].
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Rewrite Rmin_sym; Rewrite RmaxSym; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)).
Qed.

Lemma RiemannInt_P9 : (f:R->R;a:R;pr:(Riemann_integrable f a a)) ``(RiemannInt pr)==0``.
Intros; Assert H := (RiemannInt_P8 pr pr); Apply r_Rmult_mult with ``2``; [Rewrite Rmult_Or; Rewrite double; Pattern 2 (RiemannInt pr); Rewrite H; Apply Rplus_Ropp_r | DiscrR].
Qed.

Lemma Req_EM_T :(r1,r2:R) (sumboolT (r1==r2) ``r1<>r2``).
Intros; Elim (total_order_T r1 r2);Intros; [Elim a;Intro; [Right; Red; Intro; Rewrite H in a0; Elim (Rlt_antirefl ``r2`` a0) | Left;Assumption] | Right; Red; Intro; Rewrite H in b; Elim (Rlt_antirefl ``r2`` b)].
Qed.

(* L1([a,b]) is a vectorial space *)
Lemma RiemannInt_P10 : (f,g:R->R;a,b,l:R) (Riemann_integrable f a b) -> (Riemann_integrable g a b) -> (Riemann_integrable [x:R]``(f x)+l*(g x)`` a b).
Unfold Riemann_integrable; Intros f g; Intros; Case (Req_EM_T l R0); Intro.
Elim (X eps); Intros; Split with x; Elim p; Intros; Split with x0; Elim p0; Intros; Split; Try Assumption; Rewrite e; Intros; Rewrite Rmult_Ol; Rewrite Rplus_Or; Apply H; Assumption.
Assert H : ``0<eps/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos eps) | Apply Rlt_Rinv; Sup0].
Assert H0 : ``0<eps/(2*(Rabsolu l))``.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos eps) | Apply Rlt_Rinv; Apply Rmult_lt_pos; [Sup0 | Apply Rabsolu_pos_lt; Assumption]].
Elim (X (mkposreal ? H)); Intros; Elim (X0 (mkposreal ? H0)); Intros; Split with (mkStepFun (StepFun_P28 l x x0)); Elim p0; Elim p; Intros; Split with (mkStepFun (StepFun_P28 (Rabsolu l) x1 x2)); Elim p1; Elim p2; Clear p1 p2 p0 p X X0; Intros; Split.
Intros; Simpl; Apply Rle_trans with ``(Rabsolu ((f t)-(x t)))+(Rabsolu (l*((g t)-(x0 t))))``.
Replace ``(f t)+l*(g t)-((x t)+l*(x0 t))`` with ``((f t)-(x t))+ l*((g t)-(x0 t))``; [Apply Rabsolu_triang | Ring].
Apply Rplus_le; [Apply H3; Assumption | Rewrite Rabsolu_mult; Apply Rle_monotony; [Apply Rabsolu_pos | Apply H1; Assumption]].
Rewrite StepFun_P30; Apply Rle_lt_trans with ``(Rabsolu (RiemannInt_SF x1))+(Rabsolu ((Rabsolu l)*(RiemannInt_SF x2)))``.
Apply Rabsolu_triang.
Rewrite (double_var eps); Apply Rplus_lt.
Apply H4.
Rewrite Rabsolu_mult; Rewrite Rabsolu_Rabsolu; Apply Rlt_monotony_contra with ``/(Rabsolu l)``.
Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym; [Rewrite Rmult_1l; Replace ``/(Rabsolu l)*eps/2`` with ``eps/(2*(Rabsolu l))``; [Apply H2 | Unfold Rdiv; Rewrite Rinv_Rmult; [Ring | DiscrR | Apply Rabsolu_no_R0; Assumption]] | Apply Rabsolu_no_R0; Assumption].
Qed.

Lemma RiemannInt_P11 : (f:R->R;a,b,l:R;un:nat->posreal;phi1,phi2,psi1,psi2:nat->(StepFun a b)) (Un_cv un R0) -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(phi1 n t)))<=(psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n)))<(un n)``) -> ((n:nat)((t:R)``(Rmin a b)<=t<=(Rmax a b)``->``(Rabsolu ((f t)-(phi2 n t)))<=(psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n)))<(un n)``) -> (Un_cv [N:nat](RiemannInt_SF (phi1 N)) l) -> (Un_cv [N:nat](RiemannInt_SF (phi2 N)) l).
Unfold Un_cv; Intro f; Intros; Intros.
Case (total_order_Rle a b); Intro Hyp.
Assert H4 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H ? H4); Clear H; Intros N0 H.
Elim (H2 ? H4); Clear H2; Intros N1 H2.
Pose N := (max N0 N1); Exists N; Intros; Unfold R_dist.
Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF (phi2 n))-(RiemannInt_SF (phi1 n))))+(Rabsolu ((RiemannInt_SF (phi1 n))-l))``.
Replace ``(RiemannInt_SF (phi2 n))-l`` with ``((RiemannInt_SF (phi2 n))-(RiemannInt_SF (phi1 n)))+((RiemannInt_SF (phi1 n))-l)``; [Apply Rabsolu_triang | Ring].
Replace ``eps`` with ``2*eps/3+eps/3``.
Apply Rplus_lt.
Replace ``(RiemannInt_SF (phi2 n))-(RiemannInt_SF (phi1 n))`` with ``(RiemannInt_SF (phi2 n))+(-1)*(RiemannInt_SF (phi1 n))``; [Idtac | Ring].
Rewrite <- StepFun_P30.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (phi2 n) (phi1 n)))))).
Apply StepFun_P34; Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 R1 (psi1 n) (psi2 n)))).
Apply StepFun_P37; Try Assumption; Intros; Simpl; Rewrite Rmult_1l.
Apply Rle_trans with ``(Rabsolu ((phi2 n x)-(f x)))+(Rabsolu ((f x)-(phi1 n x)))``.
Replace ``(phi2 n x)+-1*(phi1 n x)`` with ``((phi2 n x)-(f x))+((f x)-(phi1 n x))``; [Apply Rabsolu_triang | Ring].
Rewrite (Rplus_sym (psi1 n x)); Apply Rplus_le.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Elim (H1 n); Intros; Apply H7.
Assert H10 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Assert H11 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Rewrite H10; Rewrite H11; Elim H6; Intros; Split; Left; Assumption.
Elim (H0 n); Intros; Apply H7; Assert H10 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Assert H11 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Rewrite H10; Rewrite H11; Elim H6; Intros; Split; Left; Assumption.
Rewrite StepFun_P30; Rewrite Rmult_1l; Rewrite double; Apply Rplus_lt.
Apply Rlt_trans with (pos (un n)).
Elim (H0 n); Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))).
Apply Rle_Rabsolu.
Assumption.
Replace (pos (un n)) with (R_dist (un n) R0).
Apply H; Unfold ge; Apply le_trans with N; Try Assumption.
Unfold N; Apply le_max_l.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right.
Apply Rle_sym1; Left; Apply (cond_pos (un n)).
Apply Rlt_trans with (pos (un n)).
Elim (H1 n); Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))).
Apply Rle_Rabsolu; Assumption.
Assumption.
Replace (pos (un n)) with (R_dist (un n) R0).
Apply H; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_max_l.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (un n)).
Unfold R_dist in H2; Apply H2; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_max_r.
Apply r_Rmult_mult with ``3``; [Unfold Rdiv; Rewrite Rmult_Rplus_distr; Do 2 Rewrite (Rmult_sym ``3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR].
Assert H4 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H ? H4); Clear H; Intros N0 H.
Elim (H2 ? H4); Clear H2; Intros N1 H2.
Pose N := (max N0 N1); Exists N; Intros; Unfold R_dist.
Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF (phi2 n))-(RiemannInt_SF (phi1 n))))+(Rabsolu ((RiemannInt_SF (phi1 n))-l))``.
Replace ``(RiemannInt_SF (phi2 n))-l`` with ``((RiemannInt_SF (phi2 n))-(RiemannInt_SF (phi1 n)))+((RiemannInt_SF (phi1 n))-l)``; [Apply Rabsolu_triang | Ring].
Assert Hyp_b : ``b<=a``.
Auto with real.
Replace ``eps`` with ``2*eps/3+eps/3``.
Apply Rplus_lt.
Replace ``(RiemannInt_SF (phi2 n))-(RiemannInt_SF (phi1 n))`` with ``(RiemannInt_SF (phi2 n))+(-1)*(RiemannInt_SF (phi1 n))``; [Idtac | Ring].
Rewrite <- StepFun_P30.
Rewrite StepFun_P39.
Rewrite Rabsolu_Ropp.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 ``-1`` (phi2 n) (phi1 n))))))))).
Apply StepFun_P34; Try Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P6 (pre (mkStepFun (StepFun_P28 R1 (psi1 n) (psi2 n))))))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Rewrite Rmult_1l.
Apply Rle_trans with ``(Rabsolu ((phi2 n x)-(f x)))+(Rabsolu ((f x)-(phi1 n x)))``.
Replace ``(phi2 n x)+-1*(phi1 n x)`` with ``((phi2 n x)-(f x))+((f x)-(phi1 n x))``; [Apply Rabsolu_triang | Ring].
Rewrite (Rplus_sym (psi1 n x)); Apply Rplus_le.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Elim (H1 n); Intros; Apply H7.
Assert H10 : (Rmin a b)==b.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Elim Hyp; Assumption | Reflexivity].
Assert H11 : (Rmax a b)==a.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Elim Hyp; Assumption | Reflexivity].
Rewrite H10; Rewrite H11; Elim H6; Intros; Split; Left; Assumption.
Elim (H0 n); Intros; Apply H7; Assert H10 : (Rmin a b)==b.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Elim Hyp; Assumption | Reflexivity].
Assert H11 : (Rmax a b)==a.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Elim Hyp; Assumption | Reflexivity].
Rewrite H10; Rewrite H11; Elim H6; Intros; Split; Left; Assumption.
Rewrite <- (Ropp_Ropp (RiemannInt_SF
     (mkStepFun
     (StepFun_P6 (pre (mkStepFun (StepFun_P28 R1 (psi1 n) (psi2 n)))))))).
Rewrite <- StepFun_P39.
Rewrite StepFun_P30.
Rewrite Rmult_1l; Rewrite double.
Rewrite Ropp_distr1; Apply Rplus_lt.
Apply Rlt_trans with (pos (un n)).
Elim (H0 n); Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu.
Assumption.
Replace (pos (un n)) with (R_dist (un n) R0).
Apply H; Unfold ge; Apply le_trans with N; Try Assumption.
Unfold N; Apply le_max_l.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right.
Apply Rle_sym1; Left; Apply (cond_pos (un n)).
Apply Rlt_trans with (pos (un n)).
Elim (H1 n); Intros; Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu; Assumption.
Assumption.
Replace (pos (un n)) with (R_dist (un n) R0).
Apply H; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_max_l.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (un n)).
Unfold R_dist in H2; Apply H2; Unfold ge; Apply le_trans with N; Try Assumption; Unfold N; Apply le_max_r.
Apply r_Rmult_mult with ``3``; [Unfold Rdiv; Rewrite Rmult_Rplus_distr; Do 2 Rewrite (Rmult_sym ``3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR].
Qed.

Lemma RiemannInt_P12 : (f,g:R->R;a,b,l:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b);pr3:(Riemann_integrable [x:R]``(f x)+l*(g x)`` a b)) ``a<=b`` -> ``(RiemannInt pr3)==(RiemannInt pr1)+l*(RiemannInt pr2)``.
Intro f; Intros; Case (Req_EM l R0); Intro.
Pattern 2 l; Rewrite H0; Rewrite Rmult_Ol; Rewrite Rplus_Or; Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Intros; EApply UL_sequence; [Apply u0 | Pose psi1 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Pose psi2 := [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2; [Apply RinvN_cv | Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)) | Intro; Assert H1 : ((t:R) ``(Rmin a b) <= t``/\``t <= (Rmax a b)`` -> (Rle (Rabsolu (Rminus ``(f t)+l*(g t)`` (phi_sequence RinvN pr3 n t))) (psi2 n t))) /\ ``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``; [Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n)) | Elim H1; Intros; Split; Try Assumption; Intros; Replace (f t) with ``(f t)+l*(g t)``; [Apply H2; Assumption | Rewrite H0; Ring]] | Assumption]].
EApply UL_sequence.
Unfold RiemannInt; Case (RiemannInt_exists pr3 5!RinvN RinvN_cv); Intros; Apply u.
Unfold Un_cv; Intros; Unfold RiemannInt; Case (RiemannInt_exists pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists pr2 5!RinvN RinvN_cv); Unfold Un_cv; Intros; Assert H2 : ``0<eps/5``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (u0 ? H2); Clear u0; Intros N0 H3; Assert H4 := RinvN_cv; Unfold Un_cv in H4; Elim (H4 ? H2); Clear H4 H2; Intros N1 H4; Assert H5 : ``0<eps/(5*(Rabsolu l))``. 
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rmult_lt_pos; [Sup0 | Apply Rabsolu_pos_lt; Assumption]].
Elim (u ? H5); Clear u; Intros N2 H6; Assert H7 := RinvN_cv; Unfold Un_cv in H7; Elim (H7 ? H5); Clear H7 H5; Intros N3 H5; Unfold R_dist in H3 H4 H5 H6; Pose N := (max (max N0 N1) (max N2 N3)).
Assert H7 : (n:nat) (ge n N1)->``(RinvN n)< eps/5``.
Intros; Replace (pos (RinvN n)) with ``(Rabsolu ((RinvN n)-0))``; [Unfold RinvN; Apply H4; Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Left; Apply (cond_pos (RinvN n))].
Clear H4; Assert H4 := H7; Clear H7; Assert H7 : (n:nat) (ge n N3)->``(RinvN n)< eps/(5*(Rabsolu l))``.
Intros; Replace (pos (RinvN n)) with ``(Rabsolu ((RinvN n)-0))``; [Unfold RinvN; Apply H5; Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Left; Apply (cond_pos (RinvN n))].
Clear H5; Assert H5 := H7; Clear H7; Exists N; Intros; Unfold R_dist.
Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0))+(Rabsolu l)*(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``.
Apply Rle_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(Rabsolu (((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0)+l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x)))``.
Replace ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])-(x0+l*x)`` with ``(((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0)+l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``; [Apply Rabsolu_triang | Ring].
Rewrite Rplus_assoc; Apply Rle_compatibility; Rewrite <- Rabsolu_mult; Replace ``(RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0+l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x)`` with ``((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x0)+(l*((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x))``; [Apply Rabsolu_triang | Ring].
Replace eps with ``3*eps/5+eps/5+eps/5``.
Repeat Apply Rplus_lt.
Assert H7 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr1 n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n0)).
Assert H8 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((g t)-([(phi_sequence RinvN pr2 n)] t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n0)).
Assert H9 : (EXT psi3:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu (((f t)+l*(g t))-([(phi_sequence RinvN pr3 n)] t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n0)).
Elim H7; Clear H7; Intros psi1 H7; Elim H8; Clear H8; Intros psi2 H8; Elim H9; Clear H9; Intros psi3 H9; Replace ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))`` with ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])+(-1)*((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+l*(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))``; [Idtac | Ring]; Do 2 Rewrite <- StepFun_P30; Assert H10 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Assert H11 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Rewrite H10 in H7; Rewrite H10 in H8; Rewrite H10 in H9; Rewrite H11 in H7; Rewrite H11 in H8; Rewrite H11 in H9; Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (phi_sequence RinvN pr3 n) (mkStepFun (StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n)))))))).
Apply StepFun_P34; Assumption.
Apply Rle_lt_trans with (RiemannInt_SF (mkStepFun (StepFun_P28 R1 (psi3 n) (mkStepFun (StepFun_P28 (Rabsolu l) (psi1 n) (psi2 n)))))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Rewrite Rmult_1l.
Apply Rle_trans with ``(Rabsolu (([(phi_sequence RinvN pr3 n)] x1)-((f x1)+l*(g x1))))+(Rabsolu (((f x1)+l*(g x1))+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1))))``.
Replace ``([(phi_sequence RinvN pr3 n)] x1)+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1))`` with ``(([(phi_sequence RinvN pr3 n)] x1)-((f x1)+l*(g x1)))+(((f x1)+l*(g x1))+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1)))``; [Apply Rabsolu_triang | Ring].
Rewrite Rplus_assoc; Apply Rplus_le.
Elim (H9 n); Intros; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply H13.
Elim H12; Intros; Split; Left; Assumption. 
Apply Rle_trans with ``(Rabsolu ((f x1)-([(phi_sequence RinvN pr1 n)] x1)))+(Rabsolu l)*(Rabsolu ((g x1)-([(phi_sequence RinvN pr2 n)] x1)))``.
Rewrite <- Rabsolu_mult; Replace ``((f x1)+(l*(g x1)+ -1*(([(phi_sequence RinvN pr1 n)] x1)+l*([(phi_sequence RinvN pr2 n)] x1))))`` with ``((f x1)-([(phi_sequence RinvN pr1 n)] x1))+l*((g x1)-([(phi_sequence RinvN pr2 n)] x1))``; [Apply Rabsolu_triang | Ring].
Apply Rplus_le.
Elim (H7 n); Intros; Apply H13.
Elim H12; Intros; Split; Left; Assumption.
Apply Rle_monotony; [Apply Rabsolu_pos | Elim (H8 n); Intros; Apply H13; Elim H12; Intros; Split; Left; Assumption].
Do 2 Rewrite StepFun_P30; Rewrite Rmult_1l; Replace ``3*eps/5`` with ``eps/5+(eps/5+eps/5)``; [Repeat Apply Rplus_lt | Ring].
Apply Rlt_trans with (pos (RinvN n)); [Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi3 n))); [Apply Rle_Rabsolu | Elim (H9 n); Intros; Assumption] | Apply H4; Unfold ge; Apply le_trans with N; [Apply le_trans with (max N0 N1); [Apply le_max_r | Unfold N; Apply le_max_l] | Assumption]].
Apply Rlt_trans with (pos (RinvN n)); [Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))); [Apply Rle_Rabsolu | Elim (H7 n); Intros; Assumption] | Apply H4; Unfold ge; Apply le_trans with N; [Apply le_trans with (max N0 N1); [Apply le_max_r | Unfold N; Apply le_max_l] | Assumption]].
Apply Rlt_monotony_contra with ``/(Rabsolu l)``.
Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Replace ``/(Rabsolu l)*eps/5`` with ``eps/(5*(Rabsolu l))``.
Apply Rlt_trans with (pos (RinvN n)); [Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))); [Apply Rle_Rabsolu | Elim (H8 n); Intros; Assumption] | Apply H5; Unfold ge; Apply le_trans with N; [Apply le_trans with (max N2 N3); [Apply le_max_r | Unfold N; Apply le_max_r] | Assumption]].
Unfold Rdiv; Rewrite Rinv_Rmult; [Ring | DiscrR | Apply Rabsolu_no_R0; Assumption].
Apply Rabsolu_no_R0; Assumption.
Apply H3; Unfold ge; Apply le_trans with (max N0 N1); [Apply le_max_l | Apply le_trans with N; [Unfold N; Apply le_max_l | Assumption]].
Apply Rlt_monotony_contra with ``/(Rabsolu l)``.
Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Replace ``/(Rabsolu l)*eps/5`` with ``eps/(5*(Rabsolu l))``.
Apply H6; Unfold ge; Apply le_trans with (max N2 N3); [Apply le_max_l | Apply le_trans with N; [Unfold N; Apply le_max_r | Assumption]].
Unfold Rdiv; Rewrite Rinv_Rmult; [Ring | DiscrR | Apply Rabsolu_no_R0; Assumption].
Apply Rabsolu_no_R0; Assumption.
Apply r_Rmult_mult with ``5``; [Unfold Rdiv; Do 2 Rewrite Rmult_Rplus_distr; Do 3 Rewrite (Rmult_sym ``5``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR]. 
Qed.

Lemma RiemannInt_P13 : (f,g:R->R;a,b,l:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b);pr3:(Riemann_integrable [x:R]``(f x)+l*(g x)`` a b)) ``(RiemannInt pr3)==(RiemannInt pr1)+l*(RiemannInt pr2)``.
Intros; Case (total_order_Rle a b); Intro; [Apply RiemannInt_P12; Assumption | Assert H : ``b<=a``; [Auto with real | Replace (RiemannInt pr3) with (Ropp (RiemannInt (RiemannInt_P1 pr3))); [Idtac | Symmetry; Apply RiemannInt_P8]; Replace (RiemannInt pr2) with (Ropp (RiemannInt (RiemannInt_P1 pr2))); [Idtac | Symmetry; Apply RiemannInt_P8]; Replace (RiemannInt pr1) with (Ropp (RiemannInt (RiemannInt_P1 pr1))); [Idtac | Symmetry; Apply RiemannInt_P8]; Rewrite (RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2) (RiemannInt_P1 pr3) H); Ring]].
Qed.

Lemma RiemannInt_P14 : (a,b,c:R) (Riemann_integrable (fct_cte c) a b).
Unfold Riemann_integrable; Intros; Split with (mkStepFun (StepFun_P4 a b c)); Split with (mkStepFun (StepFun_P4 a b R0)); Split; [Intros; Simpl; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold fct_cte; Right; Reflexivity | Rewrite StepFun_P18; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Apply (cond_pos eps)].
Qed.

Lemma RiemannInt_P15 : (a,b,c:R;pr:(Riemann_integrable (fct_cte c) a b)) ``(RiemannInt pr)==c*(b-a)``.
Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!(fct_cte c) 2!a 3!b pr 5!RinvN RinvN_cv); Intros; EApply UL_sequence.
Apply u.
Pose phi1 := [N:nat](phi_sequence RinvN 2!(fct_cte c) 3!a 4!b pr N); Change (Un_cv [N:nat](RiemannInt_SF (phi1 N)) ``c*(b-a)``); Pose f := (fct_cte c); Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr n)).
Elim H1; Clear H1; Intros psi1 H1; Pose phi2 := [n:nat](mkStepFun (StepFun_P4 a b c)); Pose psi2 := [n:nat](mkStepFun (StepFun_P4 a b R0)); Apply RiemannInt_P11 with f RinvN phi2 psi2 psi1; Try Assumption.
Apply RinvN_cv.
Intro; Split.
Intros; Unfold f; Simpl; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold fct_cte; Right; Reflexivity.
Unfold psi2; Rewrite StepFun_P18; Rewrite Rmult_Ol; Rewrite Rabsolu_R0; Apply (cond_pos (RinvN n)).
Unfold Un_cv; Intros; Split with O; Intros; Unfold R_dist; Unfold phi2; Rewrite StepFun_P18; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H.
Qed.

Lemma RiemannInt_P16 : (f:R->R;a,b:R) (Riemann_integrable f a b) -> (Riemann_integrable [x:R](Rabsolu (f x)) a b).
Unfold Riemann_integrable; Intro f; Intros; Elim (X eps); Clear X; Intros phi [psi [H H0]]; Split with (mkStepFun (StepFun_P32 phi)); Split with psi; Split; Try Assumption; Intros; Simpl; Apply Rle_trans with ``(Rabsolu ((f t)-(phi t)))``; [Apply Rabsolu_triang_inv2 | Apply H; Assumption].
Qed.

Lemma Rle_cv_lim : (Un,Vn:nat->R;l1,l2:R) ((n:nat)``(Un n)<=(Vn n)``) -> (Un_cv Un l1) -> (Un_cv Vn l2) -> ``l1<=l2``.
Intros; Case (total_order_Rle l1 l2); Intro.
Assumption.
Assert H2 : ``l2<l1``.
Auto with real.
Clear n; Assert H3 : ``0<(l1-l2)/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply Rlt_Rminus; Assumption | Apply Rlt_Rinv; Sup0].
Elim (H1 ? H3); Elim (H0 ? H3); Clear H0 H1; Unfold R_dist; Intros; Pose N := (max x x0); Cut ``(Vn N)<(Un N)``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? (H N) H4)).
Apply Rlt_trans with ``(l1+l2)/2``.
Apply Rlt_anti_compatibility with ``-l2``; Replace ``-l2+(l1+l2)/2`` with ``(l1-l2)/2``.
Rewrite Rplus_sym; Apply Rle_lt_trans with ``(Rabsolu ((Vn N)-l2))``.
Apply Rle_Rabsolu.
Apply H1; Unfold ge; Unfold N; Apply le_max_r.
Apply r_Rmult_mult with ``2``; [Unfold Rdiv; Do 2 Rewrite -> (Rmult_sym ``2``); Rewrite (Rmult_Rplus_distrl ``-l2`` ``(l1+l2)*/2`` ``2``); Repeat Rewrite -> Rmult_assoc; Rewrite <- Rinv_l_sym; [ Ring | DiscrR ] | DiscrR].
Apply Ropp_Rlt; Apply Rlt_anti_compatibility with l1; Replace ``l1+ -((l1+l2)/2)`` with ``(l1-l2)/2``.
Apply Rle_lt_trans with ``(Rabsolu ((Un N)-l1))``.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Apply Rle_Rabsolu.
Apply H0; Unfold ge; Unfold N; Apply le_max_l.
Apply r_Rmult_mult with ``2``; [Unfold Rdiv; Do 2 Rewrite -> (Rmult_sym ``2``); Rewrite (Rmult_Rplus_distrl ``l1`` ``-((l1+l2)*/2)`` ``2``); Rewrite <- Ropp_mul1; Repeat Rewrite -> Rmult_assoc; Rewrite <- Rinv_l_sym; [ Ring | DiscrR ] | DiscrR].
Qed.

Lemma RiemannInt_P17 : (f:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable [x:R](Rabsolu (f x)) a b)) ``a<=b`` -> ``(Rabsolu (RiemannInt pr1))<=(RiemannInt pr2)``.
Intro f; Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!([x0:R](Rabsolu (f x0))) 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; Pose phi1 := (phi_sequence RinvN pr1); Pose phi2 := [N:nat](mkStepFun (StepFun_P32 (phi1 N))); Apply Rle_cv_lim with [N:nat](Rabsolu (RiemannInt_SF (phi1 N))) [N:nat](RiemannInt_SF (phi2 N)).
Intro; Unfold phi2; Apply StepFun_P34; Assumption.
Fold phi1 in u0; Apply (continuity_seq Rabsolu [N:nat](RiemannInt_SF (phi1 N)) x0); Try Assumption.
Apply continuity_Rabsolu.
Pose phi3 := (phi_sequence RinvN pr2); Assert H0 : (EXT psi3:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((Rabsolu (f t))-((phi3 n) t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). 
Assert H1 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((Rabsolu (f t))-((phi2 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
Assert H1 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi1 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)).
Elim H1; Clear H1; Intros psi2 H1; Split with psi2; Intros; Elim (H1 n); Clear H1; Intros; Split; Try Assumption.
Intros; Unfold phi2; Simpl; Apply Rle_trans with ``(Rabsolu ((f t)-((phi1 n) t)))``.
Apply Rabsolu_triang_inv2.
Apply H1; Assumption.
Elim H0; Clear H0; Intros psi3 H0; Elim H1; Clear H1; Intros psi2 H1; Apply RiemannInt_P11 with [x:R](Rabsolu (f x)) RinvN phi3 psi3 psi2; Try Assumption; Apply RinvN_cv.
Qed.

Lemma RiemannInt_P18 : (f,g:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b)) ``a<=b`` -> ((x:R)``a<x<b``->``(f x)==(g x)``) -> ``(RiemannInt pr1)==(RiemannInt pr2)``.
Intro f; Intros; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!g 2!a 3!b pr2 5!RinvN RinvN_cv); Intros; EApply UL_sequence.
Apply u0.
Pose phi1 := [N:nat](phi_sequence RinvN 2!f 3!a 4!b pr1 N); Change (Un_cv [N:nat](RiemannInt_SF (phi1 N)) x); Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-((phi1 n) t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)). 
Elim H1; Clear H1; Intros psi1 H1; Pose phi2 := [N:nat](phi_sequence RinvN 2!g 3!a 4!b pr2 N).
Pose phi2_aux := [N:nat][x:R](Cases (Req_EM_T x a) of
    | (leftT _) => (f a)
    | (rightT _) => (Cases (Req_EM_T x b) of
	| (leftT _) => (f b)
	| (rightT _) => (phi2 N x) end) end).
Cut (N:nat)(IsStepFun (phi2_aux N) a b).
Intro; Pose phi2_m := [N:nat](mkStepFun (X N)).
Assert H2 : (EXT psi2:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((g t)-((phi2 n) t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). 
Elim H2; Clear H2; Intros psi2 H2; Apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1; Try Assumption. 
Apply RinvN_cv.
Intro; Elim (H2 n); Intros; Split; Try Assumption.
Intros; Unfold phi2_m; Simpl; Unfold phi2_aux; Case (Req_EM_T t a); Case (Req_EM_T t b); Intros.
Rewrite e0; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rle_trans with ``(Rabsolu ((g t)-((phi2 n) t)))``.
Apply Rabsolu_pos.
Pattern 3 a; Rewrite <- e0; Apply H3; Assumption.
Rewrite e; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rle_trans with ``(Rabsolu ((g t)-((phi2 n) t)))``.
Apply Rabsolu_pos.
Pattern 3 a; Rewrite <- e; Apply H3; Assumption.
Rewrite e; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rle_trans with ``(Rabsolu ((g t)-((phi2 n) t)))``.
Apply Rabsolu_pos.
Pattern 3 b; Rewrite <- e; Apply H3; Assumption.
Replace (f t) with (g t).
Apply H3; Assumption.
Symmetry; Apply H0; Elim H5; Clear H5; Intros.
Assert H7 : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n2; Assumption].
Assert H8 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n2; Assumption].
Rewrite H7 in H5; Rewrite H8 in H6; Split.
Elim H5; Intro; [Assumption | Elim n1; Symmetry; Assumption].
Elim H6; Intro; [Assumption | Elim n0; Assumption].
Cut (N:nat)(RiemannInt_SF (phi2_m N))==(RiemannInt_SF (phi2 N)).
Intro; Unfold Un_cv; Intros; Elim (u ? H4); Intros; Exists x1; Intros; Rewrite (H3 n); Apply H5; Assumption.
Intro; Apply Rle_antisym.
Apply StepFun_P37; Try Assumption.
Intros; Unfold phi2_m; Simpl; Unfold phi2_aux; Case (Req_EM_T x1 a); Case (Req_EM_T x1 b); Intros.
Elim H3; Intros; Rewrite e0 in H4; Elim (Rlt_antirefl ? H4).
Elim H3; Intros; Rewrite e in H4; Elim (Rlt_antirefl ? H4).
Elim H3; Intros; Rewrite e in H5; Elim (Rlt_antirefl ? H5).
Right; Reflexivity.
Apply StepFun_P37; Try Assumption.
Intros; Unfold phi2_m; Simpl; Unfold phi2_aux; Case (Req_EM_T x1 a); Case (Req_EM_T x1 b); Intros.
Elim H3; Intros; Rewrite e0 in H4; Elim (Rlt_antirefl ? H4).
Elim H3; Intros; Rewrite e in H4; Elim (Rlt_antirefl ? H4).
Elim H3; Intros; Rewrite e in H5; Elim (Rlt_antirefl ? H5).
Right; Reflexivity.
Intro; Assert H2 := (pre (phi2 N)); Unfold IsStepFun in H2; Unfold is_subdivision in H2; Elim H2; Clear H2; Intros l [lf H2]; Split with l; Split with lf; Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Unfold adapted_couple; Repeat Split; Try Assumption.
Intros; Assert H9 := (H8 i H2); Unfold constant_D_eq open_interval in H9; Unfold constant_D_eq open_interval; Intros; Rewrite <- (H9 x1 H7); Assert H10 : ``a<=(pos_Rl l i)``.
Replace a with (Rmin a b).
Rewrite <- H5; Elim (RList_P6 l); Intros; Apply H10.
Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength l)); [Assumption | Apply lt_pred_n_n].
Apply neq_O_lt; Intro; Rewrite <- H12 in H6; Discriminate.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert H11 : ``(pos_Rl l (S i))<=b``.
Replace b with (Rmax a b).
Rewrite <- H4; Elim (RList_P6 l); Intros; Apply H11.
Assumption.
Apply lt_le_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Intro; Rewrite <- H13 in H6; Discriminate.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Elim H7; Clear H7; Intros; Unfold phi2_aux; Case (Req_EM_T x1 a); Case (Req_EM_T x1 b); Intros.
Rewrite e in H12; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H12)).
Rewrite e in H7; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H10 H7)).
Rewrite e in H12; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H12)).
Reflexivity.
Qed.

Lemma RiemannInt_P19 : (f,g:R->R;a,b:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable g a b)) ``a<=b`` -> ((x:R)``a<x<b``->``(f x)<=(g x)``) -> ``(RiemannInt pr1)<=(RiemannInt pr2)``.
Intro f; Intros; Apply Rle_anti_compatibility with ``-(RiemannInt pr1)``; Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Apply Rle_trans with (Rabsolu (RiemannInt (RiemannInt_P10 ``-1`` pr2 pr1))).
Apply Rabsolu_pos.
Replace ``(RiemannInt pr2)+ -(RiemannInt pr1)`` with (RiemannInt (RiemannInt_P16 (RiemannInt_P10 ``-1`` pr2 pr1))).
Apply (RiemannInt_P17 (RiemannInt_P10 ``-1`` pr2 pr1) (RiemannInt_P16 (RiemannInt_P10 ``-1`` pr2 pr1))); Assumption.
Replace ``(RiemannInt pr2)+-(RiemannInt pr1)`` with (RiemannInt (RiemannInt_P10 ``-1`` pr2 pr1)).
Apply RiemannInt_P18; Try Assumption.
Intros; Apply Rabsolu_right.
Apply Rle_sym1; Apply Rle_anti_compatibility with (f x); Rewrite Rplus_Or; Replace ``(f x)+((g x)+ -1*(f x))`` with (g x); [Apply H0; Assumption | Ring].
Rewrite (RiemannInt_P12 pr2 pr1 (RiemannInt_P10 ``-1`` pr2 pr1)); [Ring | Assumption].
Qed.

Lemma FTC_P1 : (f:R->R;a,b:R) ``a<=b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> ((x:R)``a<=x``->``x<=b``->(Riemann_integrable f a x)).
Intros; Apply continuity_implies_RiemannInt; [Assumption | Intros; Apply H0; Elim H3; Intros; Split; Assumption Orelse Apply Rle_trans with x; Assumption].
Qed.
V7only [Notation FTC_P2 := Rle_refl.].

Definition primitive [f:R->R;a,b:R;h:``a<=b``;pr:((x:R)``a<=x``->``x<=b``->(Riemann_integrable f a x))] : R->R := [x:R] Cases (total_order_Rle a x) of
   | (leftT r) => Cases (total_order_Rle x b) of
          | (leftT r0) => (RiemannInt (pr x r r0))
          | (rightT _) => ``(f b)*(x-b)+(RiemannInt (pr b h (FTC_P2 b)))`` end
   | (rightT _) => ``(f a)*(x-a)`` end.

Lemma RiemannInt_P20 : (f:R->R;a,b:R;h:``a<=b``;pr:((x:R)``a<=x``->``x<=b``->(Riemann_integrable f a x));pr0:(Riemann_integrable f a b)) ``(RiemannInt pr0)==(primitive h pr b)-(primitive h pr a)``.
Intros; Replace (primitive h pr a) with R0.
Replace (RiemannInt pr0) with (primitive h pr b).
Ring.
Unfold primitive; Case (total_order_Rle a b); Case (total_order_Rle b b); Intros; [Apply RiemannInt_P5 | Elim n; Right; Reflexivity | Elim n; Assumption | Elim n0; Assumption].
Symmetry; Unfold primitive; Case (total_order_Rle a a); Case (total_order_Rle a b); Intros; [Apply RiemannInt_P9 | Elim n; Assumption | Elim n; Right; Reflexivity | Elim n0; Right; Reflexivity].
Qed.

Lemma RiemannInt_P21 : (f:R->R;a,b,c:R) ``a<=b``-> ``b<=c`` -> (Riemann_integrable f a b) -> (Riemann_integrable f b c) -> (Riemann_integrable f a c).
Unfold Riemann_integrable; Intros f a b c Hyp1 Hyp2 X X0 eps.
Assert H : ``0<eps/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos eps) | Apply Rlt_Rinv; Sup0].
Elim (X (mkposreal ? H)); Clear X; Intros phi1 [psi1 H1]; Elim (X0 (mkposreal ? H)); Clear X0; Intros phi2 [psi2 H2].
Pose phi3 := [x:R] Cases (total_order_Rle a x) of
  | (leftT _) => Cases (total_order_Rle x b) of
    | (leftT _) => (phi1 x)
    | (rightT _) => (phi2 x) end
  | (rightT _) => R0 end.
Pose psi3 := [x:R] Cases (total_order_Rle a x) of
  | (leftT _) => Cases (total_order_Rle x b) of
    | (leftT _) => (psi1 x)
    | (rightT _) => (psi2 x) end
  | (rightT _) => R0 end.
Cut (IsStepFun phi3 a c).
Intro; Cut (IsStepFun psi3 a b).
Intro; Cut (IsStepFun psi3 b c).
Intro; Cut (IsStepFun psi3 a c).
Intro; Split with (mkStepFun X); Split with (mkStepFun X2); Simpl; Split.
Intros; Unfold phi3 psi3; Case (total_order_Rle t b); Case (total_order_Rle a t); Intros.
Elim H1; Intros; Apply H3.
Replace (Rmin a b) with a.
Replace (Rmax a b) with b.
Split; Assumption.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Elim n; Replace a with (Rmin a c).
Elim H0; Intros; Assumption.
Unfold Rmin; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n0; Apply Rle_trans with b; Assumption].
Elim H2; Intros; Apply H3.
Replace (Rmax b c) with (Rmax a c).
Elim H0; Intros; Split; Try Assumption.
Replace (Rmin b c) with b.
Auto with real.
Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n0; Assumption].
Unfold Rmax; Case (total_order_Rle a c); Case (total_order_Rle b c); Intros; Try (Elim n0; Assumption Orelse Elim n0; Apply Rle_trans with b; Assumption).
Reflexivity.
Elim n; Replace a with (Rmin a c).
Elim H0; Intros; Assumption.
Unfold Rmin; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n1; Apply Rle_trans with b; Assumption].
Rewrite <- (StepFun_P43 X0 X1 X2).
Apply Rle_lt_trans with ``(Rabsolu (RiemannInt_SF (mkStepFun X0)))+(Rabsolu (RiemannInt_SF (mkStepFun X1)))``.
Apply Rabsolu_triang.
Rewrite (double_var eps); Replace (RiemannInt_SF (mkStepFun X0)) with (RiemannInt_SF psi1).
Replace (RiemannInt_SF (mkStepFun X1)) with (RiemannInt_SF psi2).
Apply Rplus_lt.
Elim H1; Intros; Assumption.
Elim H2; Intros; Assumption.
Apply Rle_antisym.
Apply StepFun_P37; Try Assumption.
Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H0)) | Right; Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]].
Apply StepFun_P37; Try Assumption.
Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H0)) | Right; Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]].
Apply Rle_antisym.
Apply StepFun_P37; Try Assumption.
Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Right; Reflexivity | Elim n; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption].
Apply StepFun_P37; Try Assumption.
Simpl; Intros; Unfold psi3; Elim H0; Clear H0; Intros; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Right; Reflexivity | Elim n; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption].
Apply StepFun_P46 with b; Assumption.
Assert H3 := (pre psi2); Unfold IsStepFun in H3; Unfold is_subdivision in H3; Elim H3; Clear H3; Intros l1 [lf1 H3]; Split with l1; Split with lf1; Unfold adapted_couple in H3; Decompose [and] H3; Clear H3; Unfold adapted_couple; Repeat Split; Try Assumption.
Intros; Assert H9 := (H8 i H3); Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9; Intros; Rewrite <- (H9 x H7); Unfold psi3; Assert H10 : ``b<x``.
Apply Rle_lt_trans with (pos_Rl l1 i).
Replace b with (Rmin b c).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H10; Try Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate. 
Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n; Assumption].
Elim H7; Intros; Assumption.
Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H10)) | Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]].
Assert H3 := (pre psi1); Unfold IsStepFun in H3; Unfold is_subdivision in H3; Elim H3; Clear H3; Intros l1 [lf1 H3]; Split with l1; Split with lf1; Unfold adapted_couple in H3; Decompose [and] H3; Clear H3; Unfold adapted_couple; Repeat Split; Try Assumption.
Intros; Assert H9 := (H8 i H3); Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9; Intros; Rewrite <- (H9 x H7); Unfold psi3; Assert H10 : ``x<=b``.
Apply Rle_trans with (pos_Rl l1 (S i)).
Elim H7; Intros; Left; Assumption.
Replace b with (Rmax a b).
Rewrite <- H4; Elim (RList_P6 l1); Intros; Apply H10; Try Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate. 
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert H11 : ``a<=x``.
Apply Rle_trans with (pos_Rl l1 i).
Replace a with (Rmin a b).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H11; Try Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H6; Discriminate. 
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Left; Elim H7; Intros; Assumption.
Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; Reflexivity Orelse Elim n; Assumption.
Apply StepFun_P46 with b.
Assert H3 := (pre phi1); Unfold IsStepFun in H3; Unfold is_subdivision in H3; Elim H3; Clear H3; Intros l1 [lf1 H3]; Split with l1; Split with lf1; Unfold adapted_couple in H3; Decompose [and] H3; Clear H3; Unfold adapted_couple; Repeat Split; Try Assumption.
Intros; Assert H9 := (H8 i H3); Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9; Intros; Rewrite <- (H9 x H7); Unfold psi3; Assert H10 : ``x<=b``.
Apply Rle_trans with (pos_Rl l1 (S i)).
Elim H7; Intros; Left; Assumption.
Replace b with (Rmax a b).
Rewrite <- H4; Elim (RList_P6 l1); Intros; Apply H10; Try Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate. 
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert H11 : ``a<=x``.
Apply Rle_trans with (pos_Rl l1 i).
Replace a with (Rmin a b).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H11; Try Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H6; Discriminate. 
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Left; Elim H7; Intros; Assumption.
Unfold phi3; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; Reflexivity Orelse Elim n; Assumption.
Assert H3 := (pre phi2); Unfold IsStepFun in H3; Unfold is_subdivision in H3; Elim H3; Clear H3; Intros l1 [lf1 H3]; Split with l1; Split with lf1; Unfold adapted_couple in H3; Decompose [and] H3; Clear H3; Unfold adapted_couple; Repeat Split; Try Assumption.
Intros; Assert H9 := (H8 i H3); Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9; Intros; Rewrite <- (H9 x H7); Unfold psi3; Assert H10 : ``b<x``.
Apply Rle_lt_trans with (pos_Rl l1 i).
Replace b with (Rmin b c).
Rewrite <- H5; Elim (RList_P6 l1); Intros; Apply H10; Try Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength l1)); Try Assumption; Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H12 in H6; Discriminate. 
Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n; Assumption].
Elim H7; Intros; Assumption.
Unfold phi3; Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r H10)) | Reflexivity | Elim n; Apply Rle_trans with b; [Assumption | Left; Assumption] | Elim n0; Apply Rle_trans with b; [Assumption | Left; Assumption]].
Qed.

Lemma RiemannInt_P22 : (f:R->R;a,b,c:R) (Riemann_integrable f a b) -> ``a<=c<=b`` -> (Riemann_integrable f a c).
Unfold Riemann_integrable; Intros; Elim (X eps); Clear X; Intros phi [psi H0]; Elim H; Elim H0; Clear H H0; Intros; Assert H3 : (IsStepFun phi a c).
Apply StepFun_P44 with b.
Apply (pre phi).
Split; Assumption.
Assert H4 : (IsStepFun psi a c).
Apply StepFun_P44 with b.
Apply (pre psi).
Split; Assumption.
Split with (mkStepFun H3); Split with (mkStepFun H4); Split.
Simpl; Intros; Apply H.
Replace (Rmin a b) with (Rmin a c).
Elim H5; Intros; Split; Try Assumption.
Apply Rle_trans with (Rmax a c); Try Assumption.
Replace (Rmax a b) with b.
Replace (Rmax a c) with c.
Assumption.
Unfold Rmax; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Unfold Rmin; Case (total_order_Rle a c); Case (total_order_Rle a b); Intros; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption | Elim n; Assumption | Elim n0; Assumption].
Rewrite Rabsolu_right.
Assert H5 : (IsStepFun psi c b).
Apply StepFun_P46 with a.
Apply StepFun_P6; Assumption.
Apply (pre psi).
Replace (RiemannInt_SF (mkStepFun H4)) with ``(RiemannInt_SF psi)-(RiemannInt_SF (mkStepFun H5))``.
Apply Rle_lt_trans with (RiemannInt_SF psi).
Unfold Rminus; Pattern 2 (RiemannInt_SF psi); Rewrite <- Rplus_Or; Apply Rle_compatibility; Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b R0))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``.
Apply Rabsolu_pos.
Apply H.
Replace (Rmin a b) with a.
Replace (Rmax a b) with b.
Elim H6; Intros; Split; Left.
Apply Rle_lt_trans with c; Assumption.
Assumption.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Rewrite StepFun_P18; Ring.
Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi)).
Apply Rle_Rabsolu.
Assumption.
Assert H6 : (IsStepFun psi a b).
Apply (pre psi).
Replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
Rewrite <- (StepFun_P43 H4 H5 H6); Ring.
Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro.
EApply StepFun_P17.
Apply StepFun_P1.
Simpl; Apply StepFun_P1.
Apply eq_Ropp; EApply StepFun_P17.
Apply StepFun_P1.
Simpl; Apply StepFun_P1.
Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c R0))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``.
Apply Rabsolu_pos.
Apply H.
Replace (Rmin a b) with a.
Replace (Rmax a b) with b.
Elim H5; Intros; Split; Left.
Assumption.
Apply Rlt_le_trans with c; Assumption.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Rewrite StepFun_P18; Ring.
Qed.

Lemma RiemannInt_P23 : (f:R->R;a,b,c:R) (Riemann_integrable f a b) -> ``a<=c<=b`` -> (Riemann_integrable f c b).
Unfold Riemann_integrable; Intros; Elim (X eps); Clear X; Intros phi [psi H0]; Elim H; Elim H0; Clear H H0; Intros; Assert H3 : (IsStepFun phi c b).
Apply StepFun_P45 with a.
Apply (pre phi).
Split; Assumption.
Assert H4 : (IsStepFun psi c b).
Apply StepFun_P45 with a.
Apply (pre psi).
Split; Assumption.
Split with (mkStepFun H3); Split with (mkStepFun H4); Split.
Simpl; Intros; Apply H.
Replace (Rmax a b) with (Rmax c b).
Elim H5; Intros; Split; Try Assumption.
Apply Rle_trans with (Rmin c b); Try Assumption.
Replace (Rmin a b) with a.
Replace (Rmin c b) with c.
Assumption.
Unfold Rmin; Case (total_order_Rle c b); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Unfold Rmax; Case (total_order_Rle c b); Case (total_order_Rle a b); Intros; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption | Elim n; Assumption | Elim n0; Assumption].
Rewrite Rabsolu_right.
Assert H5 : (IsStepFun psi a c).
Apply StepFun_P46 with b.
Apply (pre psi).
Apply StepFun_P6; Assumption.
Replace (RiemannInt_SF (mkStepFun H4)) with ``(RiemannInt_SF psi)-(RiemannInt_SF (mkStepFun H5))``.
Apply Rle_lt_trans with (RiemannInt_SF psi).
Unfold Rminus; Pattern 2 (RiemannInt_SF psi); Rewrite <- Rplus_Or; Apply Rle_compatibility; Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 a c R0))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``.
Apply Rabsolu_pos.
Apply H.
Replace (Rmin a b) with a.
Replace (Rmax a b) with b.
Elim H6; Intros; Split; Left.
Assumption.
Apply Rlt_le_trans with c; Assumption.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Rewrite StepFun_P18; Ring.
Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF psi)).
Apply Rle_Rabsolu.
Assumption.
Assert H6 : (IsStepFun psi a b).
Apply (pre psi).
Replace (RiemannInt_SF psi) with (RiemannInt_SF (mkStepFun H6)).
Rewrite <- (StepFun_P43 H5 H4 H6); Ring.
Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro.
EApply StepFun_P17.
Apply StepFun_P1.
Simpl; Apply StepFun_P1.
Apply eq_Ropp; EApply StepFun_P17.
Apply StepFun_P1.
Simpl; Apply StepFun_P1.
Apply Rle_sym1; Replace R0 with (RiemannInt_SF (mkStepFun (StepFun_P4 c b R0))).
Apply StepFun_P37; Try Assumption.
Intros; Simpl; Unfold fct_cte; Apply Rle_trans with ``(Rabsolu ((f x)-(phi x)))``.
Apply Rabsolu_pos.
Apply H.
Replace (Rmin a b) with a.
Replace (Rmax a b) with b.
Elim H5; Intros; Split; Left.
Apply Rle_lt_trans with c; Assumption.
Assumption.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Apply Rle_trans with c; Assumption].
Rewrite StepFun_P18; Ring.
Qed.

Lemma RiemannInt_P24 : (f:R->R;a,b,c:R) (Riemann_integrable f a b) -> (Riemann_integrable f b c) -> (Riemann_integrable f a c).
Intros; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros.
Apply RiemannInt_P21 with b; Assumption.
Case (total_order_Rle a c); Intro.
Apply RiemannInt_P22 with b; Try Assumption.
Split; [Assumption | Auto with real].
Apply RiemannInt_P1; Apply RiemannInt_P22 with b.
Apply RiemannInt_P1; Assumption.
Split; Auto with real.
Case (total_order_Rle a c); Intro.
Apply RiemannInt_P23 with b; Try Assumption.
Split; Auto with real.
Apply RiemannInt_P1; Apply RiemannInt_P23 with b.
Apply RiemannInt_P1; Assumption.
Split; [Assumption | Auto with real].
Apply RiemannInt_P1; Apply RiemannInt_P21 with b; Auto with real Orelse Apply RiemannInt_P1; Assumption.
Qed.

Lemma RiemannInt_P25 : (f:R->R;a,b,c:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b c);pr3:(Riemann_integrable f a c)) ``a<=b``->``b<=c``->``(RiemannInt pr1)+(RiemannInt pr2)==(RiemannInt pr3)``.
Intros f a b c pr1 pr2 pr3 Hyp1 Hyp2; Unfold RiemannInt; Case (RiemannInt_exists 1!f 2!a 3!b pr1 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!b 3!c pr2 5!RinvN RinvN_cv); Case (RiemannInt_exists 1!f 2!a 3!c pr3 5!RinvN RinvN_cv); Intros; Symmetry; EApply UL_sequence.
Apply u.
Unfold Un_cv; Intros; Assert H0 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (u1 ? H0); Clear u1; Intros N1 H1; Elim (u0 ? H0); Clear u0; Intros N2 H2; Cut (Un_cv [n:nat]``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))`` R0).
Intro; Elim (H3 ? H0); Clear H3; Intros N3 H3; Pose N0 := (max (max N1 N2) N3); Exists N0; Intros; Unfold R_dist; Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))))+(Rabsolu (((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))-(x1+x0)))``.
Replace ``(RiemannInt_SF [(phi_sequence RinvN pr3 n)])-(x1+x0)`` with ``((RiemannInt_SF [(phi_sequence RinvN pr3 n)])-((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)])))+(((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))-(x1+x0))``; [Apply Rabsolu_triang | Ring].
Replace eps with ``eps/3+eps/3+eps/3``.
Rewrite Rplus_assoc; Apply Rplus_lt.
Unfold R_dist in H3; Cut (ge n N3).
Intro; Assert H6 := (H3 ? H5); Unfold Rminus in H6; Rewrite Ropp_O in H6; Rewrite Rplus_Or in H6; Apply H6.
Unfold ge; Apply le_trans with N0; [Unfold N0; Apply le_max_r | Assumption].
Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x1))+(Rabsolu ((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x0))``.
Replace ``((RiemannInt_SF [(phi_sequence RinvN pr1 n)])+(RiemannInt_SF [(phi_sequence RinvN pr2 n)]))-(x1+x0)`` with ``((RiemannInt_SF [(phi_sequence RinvN pr1 n)])-x1)+((RiemannInt_SF [(phi_sequence RinvN pr2 n)])-x0)``; [Apply Rabsolu_triang | Ring].
Apply Rplus_lt.
Unfold R_dist in H1; Apply H1.
Unfold ge; Apply le_trans with N0; [Apply le_trans with (max N1 N2); [Apply le_max_l | Unfold N0; Apply le_max_l] | Assumption].
Unfold R_dist in H2; Apply H2.
Unfold ge; Apply le_trans with N0; [Apply le_trans with (max N1 N2); [Apply le_max_r | Unfold N0; Apply le_max_l] | Assumption].
Apply r_Rmult_mult with ``3``; [Unfold Rdiv; Repeat Rewrite Rmult_Rplus_distr; Do 2 Rewrite (Rmult_sym ``3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR].
Clear x u x0 x1 eps H H0 N1 H1 N2 H2; Assert H1 : (EXT psi1:nat->(StepFun a b) | (n:nat) ((t:R)``(Rmin a b) <= t``/\``t <= (Rmax a b)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr1 n)] t)))<= (psi1 n t)``)/\``(Rabsolu (RiemannInt_SF (psi1 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr1 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr1 n)). 
Assert H2 : (EXT psi2:nat->(StepFun b c) | (n:nat) ((t:R)``(Rmin b c) <= t``/\``t <= (Rmax b c)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr2 n)] t)))<= (psi2 n t)``)/\``(Rabsolu (RiemannInt_SF (psi2 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr2 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr2 n)). 
Assert H3 : (EXT psi3:nat->(StepFun a c) | (n:nat) ((t:R)``(Rmin a c) <= t``/\``t <= (Rmax a c)``->``(Rabsolu ((f t)-([(phi_sequence RinvN pr3 n)] t)))<= (psi3 n t)``)/\``(Rabsolu (RiemannInt_SF (psi3 n))) < (RinvN n)``).
Split with [n:nat](projT1 ? ? (phi_sequence_prop RinvN pr3 n)); Intro; Apply (projT2 ? ? (phi_sequence_prop RinvN pr3 n)). 
Elim H1; Clear H1; Intros psi1 H1; Elim H2; Clear H2; Intros psi2 H2; Elim H3; Clear H3; Intros psi3 H3; Assert H := RinvN_cv; Unfold Un_cv; Intros; Assert H4 : ``0<eps/3``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H ? H4); Clear H; Intros N0 H; Assert H5 : (n:nat)(ge n N0)->``(RinvN n)<eps/3``.
Intros; Replace (pos (RinvN n)) with ``(R_dist (mkposreal (/((INR n)+1)) (RinvN_pos n)) 0)``.
Apply H; Assumption.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rabsolu_right; Apply Rle_sym1; Left; Apply (cond_pos (RinvN n)).
Exists N0; Intros; Elim (H1 n); Elim (H2 n); Elim (H3 n); Clear H1 H2 H3; Intros; Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Pose phi1 := (phi_sequence RinvN pr1 n); Fold phi1 in H8; Pose phi2 := (phi_sequence RinvN pr2 n); Fold phi2 in H3; Pose phi3 := (phi_sequence RinvN pr3 n); Fold phi2 in H1; Assert H10 : (IsStepFun phi3 a b).
Apply StepFun_P44 with c.
Apply (pre phi3).
Split; Assumption.
Assert H11 : (IsStepFun (psi3 n) a b).
Apply StepFun_P44 with c.
Apply (pre (psi3 n)).
Split; Assumption.
Assert H12 : (IsStepFun phi3 b c).
Apply StepFun_P45 with a.
Apply (pre phi3).
Split; Assumption.
Assert H13 : (IsStepFun (psi3 n) b c).
Apply StepFun_P45 with a.
Apply (pre (psi3 n)).
Split; Assumption.
Replace (RiemannInt_SF phi3) with ``(RiemannInt_SF (mkStepFun H10))+(RiemannInt_SF (mkStepFun H12))``.
Apply Rle_lt_trans with ``(Rabsolu ((RiemannInt_SF (mkStepFun H10))-(RiemannInt_SF phi1)))+(Rabsolu ((RiemannInt_SF (mkStepFun H12))-(RiemannInt_SF phi2)))``.
Replace ``(RiemannInt_SF (mkStepFun H10))+(RiemannInt_SF (mkStepFun H12))+ -((RiemannInt_SF phi1)+(RiemannInt_SF phi2))`` with ``((RiemannInt_SF (mkStepFun H10))-(RiemannInt_SF phi1))+((RiemannInt_SF (mkStepFun H12))-(RiemannInt_SF phi2))``; [Apply Rabsolu_triang | Ring].
Replace ``(RiemannInt_SF (mkStepFun H10))-(RiemannInt_SF phi1)`` with (RiemannInt_SF (mkStepFun (StepFun_P28 ``-1`` (mkStepFun H10) phi1))).
Replace ``(RiemannInt_SF (mkStepFun H12))-(RiemannInt_SF phi2)`` with (RiemannInt_SF (mkStepFun (StepFun_P28 ``-1`` (mkStepFun H12) phi2))).
Apply Rle_lt_trans with ``(RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))))+(RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2)))))``.
Apply Rle_trans with ``(Rabsolu (RiemannInt_SF (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1))))+(RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H12) phi2)))))``.
Apply Rle_compatibility.
Apply StepFun_P34; Try Assumption.
Do 2 Rewrite <- (Rplus_sym (RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 ``-1`` (mkStepFun H12) phi2)))))); Apply Rle_compatibility; Apply StepFun_P34; Try Assumption.
Apply Rle_lt_trans with ``(RiemannInt_SF (mkStepFun (StepFun_P28 R1 (mkStepFun H11) (psi1 n))))+(RiemannInt_SF (mkStepFun (StepFun_P28 R1 (mkStepFun H13) (psi2 n))))``.
Apply Rle_trans with ``(RiemannInt_SF (mkStepFun (StepFun_P32 (mkStepFun (StepFun_P28 (-1) (mkStepFun H10) phi1)))))+(RiemannInt_SF (mkStepFun (StepFun_P28 R1 (mkStepFun H13) (psi2 n))))``.
Apply Rle_compatibility; Apply StepFun_P37; Try Assumption.
Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu ((f x)-(phi3 x)))+(Rabsolu ((f x)-(phi2 x)))``.
Rewrite <- (Rabsolu_Ropp ``(f x)-(phi3 x)``); Rewrite Ropp_distr2; Replace ``(phi3 x)+ -1*(phi2 x)`` with ``((phi3 x)-(f x))+((f x)-(phi2 x))``; [Apply Rabsolu_triang | Ring].
Apply Rplus_le.
Fold phi3 in H1; Apply H1.
Elim H14; Intros; Split.
Replace (Rmin a c) with a.
Apply Rle_trans with b; Try Assumption.
Left; Assumption.
Unfold Rmin; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n0; Apply Rle_trans with b; Assumption].
Replace (Rmax a c) with c.
Left; Assumption.
Unfold Rmax; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n0; Apply Rle_trans with b; Assumption].
Apply H3.
Elim H14; Intros; Split.
Replace (Rmin b c) with b.
Left; Assumption.
Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n0; Assumption].
Replace (Rmax b c) with c.
Left; Assumption.
Unfold Rmax; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n0; Assumption].
Do 2 Rewrite <- (Rplus_sym ``(RiemannInt_SF (mkStepFun (StepFun_P28 R1 (mkStepFun H13) (psi2 n))))``); Apply Rle_compatibility; Apply StepFun_P37; Try Assumption.
Intros; Simpl; Rewrite Rmult_1l; Apply Rle_trans with ``(Rabsolu ((f x)-(phi3 x)))+(Rabsolu ((f x)-(phi1 x)))``.
Rewrite <- (Rabsolu_Ropp ``(f x)-(phi3 x)``); Rewrite Ropp_distr2; Replace ``(phi3 x)+ -1*(phi1 x)`` with ``((phi3 x)-(f x))+((f x)-(phi1 x))``; [Apply Rabsolu_triang | Ring].
Apply Rplus_le.
Apply H1.
Elim H14; Intros; Split.
Replace (Rmin a c) with a.
Left; Assumption.
Unfold Rmin; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n0; Apply Rle_trans with b; Assumption].
Replace (Rmax a c) with c.
Apply Rle_trans with b.
Left; Assumption.
Assumption.
Unfold Rmax; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n0; Apply Rle_trans with b; Assumption].
Apply H8.
Elim H14; Intros; Split.
Replace (Rmin a b) with a.
Left; Assumption.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Replace (Rmax a b) with b.
Left; Assumption.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n0; Assumption].
Do 2 Rewrite StepFun_P30.
Do 2 Rewrite Rmult_1l; Replace ``(RiemannInt_SF (mkStepFun H11))+(RiemannInt_SF (psi1 n))+((RiemannInt_SF (mkStepFun H13))+(RiemannInt_SF (psi2 n)))`` with ``(RiemannInt_SF (psi3 n))+(RiemannInt_SF (psi1 n))+(RiemannInt_SF (psi2 n))``.
Replace eps with ``eps/3+eps/3+eps/3``.
Repeat Rewrite Rplus_assoc; Repeat Apply Rplus_lt.
Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi3 n))).
Apply Rle_Rabsolu.
Apply Rlt_trans with (pos (RinvN n)).
Assumption.
Apply H5; Assumption.
Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi1 n))).
Apply Rle_Rabsolu.
Apply Rlt_trans with (pos (RinvN n)).
Assumption.
Apply H5; Assumption.
Apply Rle_lt_trans with (Rabsolu (RiemannInt_SF (psi2 n))).
Apply Rle_Rabsolu.
Apply Rlt_trans with (pos (RinvN n)).
Assumption.
Apply H5; Assumption.
Apply r_Rmult_mult with ``3``; [Unfold Rdiv; Repeat Rewrite Rmult_Rplus_distr; Do 2 Rewrite (Rmult_sym ``3``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | DiscrR] | DiscrR].
Replace (RiemannInt_SF (psi3 n)) with (RiemannInt_SF (mkStepFun (pre (psi3 n)))).
Rewrite <- (StepFun_P43 H11 H13 (pre (psi3 n))); Ring.
Reflexivity.
Rewrite StepFun_P30; Ring.
Rewrite StepFun_P30; Ring.
Apply (StepFun_P43 H10 H12 (pre phi3)).
Qed.

Lemma RiemannInt_P26 : (f:R->R;a,b,c:R;pr1:(Riemann_integrable f a b);pr2:(Riemann_integrable f b c);pr3:(Riemann_integrable f a c)) ``(RiemannInt pr1)+(RiemannInt pr2)==(RiemannInt pr3)``.
Intros; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros.
Apply RiemannInt_P25; Assumption.
Case (total_order_Rle a c); Intro.
Assert H : ``c<=b``.
Auto with real.
Rewrite <- (RiemannInt_P25 pr3 (RiemannInt_P1 pr2) pr1 r0 H); Rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); Ring.
Assert H : ``c<=a``.
Auto with real.
Rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); Rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr3) pr1 (RiemannInt_P1 pr2) H r); Rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); Ring.
Assert H : ``b<=a``.
Auto with real.
Case (total_order_Rle a c); Intro.
Rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr1) pr3 pr2 H r0); Rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); Ring.
Assert H0 : ``c<=a``.
Auto with real.
Rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); Rewrite <- (RiemannInt_P25 pr2 (RiemannInt_P1 pr3) (RiemannInt_P1 pr1) r  H0); Rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); Ring.
Rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); Rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); Rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); Rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr2) (RiemannInt_P1 pr1) (RiemannInt_P1 pr3)); [Ring | Auto with real | Auto with real].
Qed.

Lemma RiemannInt_P27 : (f:R->R;a,b,x:R;h:``a<=b``;C0:((x:R)``a<=x<=b``->(continuity_pt f x))) ``a<x<b`` -> (derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)).
Intro f; Intros; Elim H; Clear H; Intros; Assert H1 : (continuity_pt f x).
Apply C0; Split; Left; Assumption.
Unfold derivable_pt_lim; Intros; Assert Hyp : ``0<eps/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H1 ? Hyp); Unfold dist D_x no_cond; Simpl; Unfold R_dist; Intros; Pose del := (Rmin x0 (Rmin ``b-x`` ``x-a``)); Assert H4 : ``0<del``.
Unfold del; Unfold Rmin; Case (total_order_Rle ``b-x`` ``x-a``); Intro.
Case (total_order_Rle x0 ``b-x``); Intro; [Elim H3; Intros; Assumption | Apply Rlt_Rminus; Assumption].
Case (total_order_Rle x0 ``x-a``); Intro; [Elim H3; Intros; Assumption | Apply Rlt_Rminus; Assumption].
Split with (mkposreal ? H4); Intros; Assert H7 : (Riemann_integrable f x ``x+h0``).
Case (total_order_Rle x ``x+h0``); Intro.
Apply continuity_implies_RiemannInt; Try Assumption.
Intros; Apply C0; Elim H7; Intros; Split.
Apply Rle_trans with x; [Left; Assumption | Assumption].
Apply Rle_trans with ``x+h0``.
Assumption.
Left; Apply Rlt_le_trans with ``x+del``.
Apply Rlt_compatibility; Apply Rle_lt_trans with (Rabsolu h0); [Apply Rle_Rabsolu | Apply H6].
Unfold del; Apply Rle_trans with ``x+(Rmin (b-x) (x-a))``.
Apply Rle_compatibility; Apply Rmin_r.
Pattern 2 b; Replace b with ``x+(b-x)``; [Apply Rle_compatibility; Apply Rmin_l | Ring].
Apply RiemannInt_P1; Apply continuity_implies_RiemannInt; Auto with real.
Intros; Apply C0; Elim H7; Intros; Split.
Apply Rle_trans with ``x+h0``.
Left; Apply Rle_lt_trans with ``x-del``.
Unfold del; Apply Rle_trans with ``x-(Rmin (b-x) (x-a))``.
Pattern 1 a; Replace a with ``x+(a-x)``; [Idtac | Ring].
Unfold Rminus; Apply Rle_compatibility; Apply Ropp_Rle.
Rewrite Ropp_Ropp; Rewrite Ropp_distr1; Rewrite Ropp_Ropp; Rewrite (Rplus_sym x); Apply Rmin_r.
Unfold Rminus; Apply Rle_compatibility; Apply Ropp_Rle.
Do 2 Rewrite Ropp_Ropp; Apply Rmin_r.
Unfold Rminus; Apply Rlt_compatibility; Apply Ropp_Rlt.
Rewrite Ropp_Ropp; Apply Rle_lt_trans with (Rabsolu h0); [Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu | Apply H6].
Assumption.
Apply Rle_trans with x; [Assumption | Left; Assumption].
Replace ``(primitive h (FTC_P1 h C0) (x+h0))-(primitive h (FTC_P1 h C0) x)`` with (RiemannInt H7).
Replace (f x) with ``(RiemannInt (RiemannInt_P14 x (x+h0) (f x)))/h0``.
Replace ``(RiemannInt H7)/h0-(RiemannInt (RiemannInt_P14 x (x+h0) (f x)))/h0`` with ``((RiemannInt H7)-(RiemannInt (RiemannInt_P14 x (x+h0) (f x))))/h0``.
Replace ``(RiemannInt H7)-(RiemannInt (RiemannInt_P14 x (x+h0) (f x)))`` with (RiemannInt (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x)))).
Unfold Rdiv; Rewrite Rabsolu_mult; Case (total_order_Rle x ``x+h0``); Intro.
Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x+h0) (f x)))))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply (RiemannInt_P17 (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x))) (RiemannInt_P16 (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x))))); Assumption.
Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P14 x (x+h0) (eps/2)))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply RiemannInt_P19; Try Assumption.
Intros; Replace ``(f x1)+ -1*(fct_cte (f x) x1)`` with ``(f x1)-(f x)``.
Unfold fct_cte; Case (Req_EM x x1); Intro.
Rewrite H9; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption.
Elim H3; Intros; Left; Apply H11.
Repeat Split.
Assumption.
Rewrite Rabsolu_right.
Apply Rlt_anti_compatibility with x; Replace ``x+(x1-x)`` with x1; [Idtac | Ring].
Apply Rlt_le_trans with ``x+h0``.
Elim H8; Intros; Assumption.
Apply Rle_compatibility; Apply Rle_trans with del.
Left; Apply Rle_lt_trans with (Rabsolu h0); [Apply Rle_Rabsolu | Assumption].
Unfold del; Apply Rmin_l.
Apply Rge_minus; Apply Rle_sym1; Left; Elim H8; Intros; Assumption.
Unfold fct_cte; Ring.
Rewrite RiemannInt_P15.
Rewrite Rmult_assoc; Replace ``(x+h0-x)*(Rabsolu (/h0))`` with R1.
Rewrite Rmult_1r; Unfold Rdiv; Apply Rlt_monotony_contra with ``2``; [Sup0 | Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Pattern 1 eps; Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite Rabsolu_right.
Replace ``x+h0-x`` with h0; [Idtac | Ring].
Apply Rinv_r_sym.
Assumption.
Apply Rle_sym1; Left; Apply Rlt_Rinv.
Elim r; Intro.
Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Assumption.
Elim H5; Symmetry; Apply r_Rplus_plus with x; Rewrite Rplus_Or; Assumption.
Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x+h0) (f x))))))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Replace (RiemannInt (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x)))) with ``-(RiemannInt (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x+h0) (f x)))))``.
Rewrite Rabsolu_Ropp; Apply (RiemannInt_P17 (RiemannInt_P1 (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x)))) (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x)))))); Auto with real.
Symmetry; Apply RiemannInt_P8.
Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P14 (x+h0) x (eps/2)))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply RiemannInt_P19.
Auto with real.
Intros; Replace ``(f x1)+ -1*(fct_cte (f x) x1)`` with ``(f x1)-(f x)``.
Unfold fct_cte; Case (Req_EM x x1); Intro.
Rewrite H9; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption.
Elim H3; Intros; Left; Apply H11.
Repeat Split.
Assumption.
Rewrite Rabsolu_left.
Apply Rlt_anti_compatibility with ``x1-x0``; Replace ``x1-x0+x0`` with x1; [Idtac | Ring].
Replace ``x1-x0+ -(x1-x)`` with ``x-x0``; [Idtac | Ring].
Apply Rle_lt_trans with ``x+h0``.
Unfold Rminus; Apply Rle_compatibility; Apply Ropp_Rle.
Rewrite Ropp_Ropp; Apply Rle_trans with (Rabsolu h0).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu.
Apply Rle_trans with del; [Left; Assumption | Unfold del; Apply Rmin_l].
Elim H8; Intros; Assumption.
Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Replace ``x+(x1-x)`` with x1; [Elim H8; Intros; Assumption | Ring].
Unfold fct_cte; Ring.
Rewrite RiemannInt_P15.
Rewrite Rmult_assoc; Replace ``(x-(x+h0))*(Rabsolu (/h0))`` with R1.
Rewrite Rmult_1r; Unfold Rdiv; Apply Rlt_monotony_contra with ``2``; [Sup0 | Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Pattern 1 eps; Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite Rabsolu_left.
Replace ``x-(x+h0)`` with ``-h0``; [Idtac | Ring].
Rewrite Ropp_mul1; Rewrite Ropp_mul3; Rewrite Ropp_Ropp; Apply Rinv_r_sym.
Assumption.
Apply Rlt_Rinv2.
Assert H8 : ``x+h0<x``.
Auto with real.
Apply Rlt_anti_compatibility with x; Rewrite Rplus_Or; Assumption.
Rewrite (RiemannInt_P13 H7 (RiemannInt_P14 x ``x+h0`` (f x)) (RiemannInt_P10 ``-1`` H7 (RiemannInt_P14 x ``x+h0`` (f x)))).
Ring.
Unfold Rdiv Rminus; Rewrite Rmult_Rplus_distrl; Ring.
Rewrite RiemannInt_P15; Apply r_Rmult_mult with h0; [Unfold Rdiv; Rewrite -> (Rmult_sym h0); Repeat Rewrite -> Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | Assumption] | Assumption].
Cut ``a<=x+h0``.
Cut ``x+h0<=b``.
Intros; Unfold primitive.
Case (total_order_Rle a ``x+h0``); Case (total_order_Rle ``x+h0`` b); Case (total_order_Rle a x); Case (total_order_Rle x b); Intros; Try (Elim n; Assumption Orelse Left; Assumption).
Rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r0 r) H7 (FTC_P1 h C0 r2 r1)); Ring.
Apply Rle_anti_compatibility with ``-x``; Replace ``-x+(x+h0)`` with h0; [Idtac | Ring].
Rewrite Rplus_sym; Apply Rle_trans with (Rabsolu h0).
Apply Rle_Rabsolu.
Apply Rle_trans with del; [Left; Assumption | Unfold del; Apply Rle_trans with ``(Rmin (b-x) (x-a))``; [Apply Rmin_r | Apply Rmin_l]].
Apply Ropp_Rle; Apply Rle_anti_compatibility with ``x``; Replace ``x+-(x+h0)`` with ``-h0``; [Idtac | Ring].
Apply Rle_trans with (Rabsolu h0); [Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu | Apply Rle_trans with del; [Left; Assumption | Unfold del; Apply Rle_trans with ``(Rmin (b-x) (x-a))``; Apply Rmin_r]].
Qed.

Lemma RiemannInt_P28 : (f:R->R;a,b,x:R;h:``a<=b``;C0:((x:R)``a<=x<=b``->(continuity_pt f x))) ``a<=x<=b`` -> (derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)).
Intro f; Intros; Elim h; Intro.
Elim H; Clear H; Intros; Elim H; Intro.
Elim H1; Intro.
Apply RiemannInt_P27; Split; Assumption.
Pose f_b := [x:R]``(f b)*(x-b)+(RiemannInt [(FTC_P1 h C0 h (FTC_P2 b))])``; Rewrite H3.
Assert H4 : (derivable_pt_lim f_b b (f b)).
Unfold f_b; Pattern 2 (f b); Replace (f b) with ``(f b)+0``.
Change (derivable_pt_lim (plus_fct (mult_fct (fct_cte (f b)) (minus_fct id (fct_cte b))) (fct_cte (RiemannInt (FTC_P1 h C0 h (FTC_P2 b))))) b ``(f b)+0``). 
Apply derivable_pt_lim_plus.
Pattern 2 (f b); Replace (f b) with ``0*((minus_fct id (fct_cte b)) b)+((fct_cte (f b)) b)*1``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_const.
Replace R1 with ``1-0``; [Idtac | Ring].
Apply derivable_pt_lim_minus.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte; Ring.
Apply derivable_pt_lim_const.
Ring.
Unfold derivable_pt_lim; Intros; Elim (H4 ? H5); Intros; Assert H7 : (continuity_pt f b).
Apply C0; Split; [Left; Assumption | Right; Reflexivity].
Assert H8 : ``0<eps/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H7 ? H8); Unfold D_x no_cond dist; Simpl; Unfold R_dist; Intros; Pose del := (Rmin x0 (Rmin x1 ``b-a``)); Assert H10 : ``0<del``.
Unfold del; Unfold Rmin; Case (total_order_Rle x1 ``b-a``); Intros.
Case (total_order_Rle x0 x1); Intro; [Apply (cond_pos x0) | Elim H9; Intros; Assumption].
Case (total_order_Rle x0 ``b-a``); Intro; [Apply (cond_pos x0) | Apply Rlt_Rminus; Assumption].
Split with (mkposreal ? H10); Intros; Case (case_Rabsolu h0); Intro.
Assert H14 : ``b+h0<b``.
Pattern 2 b; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
Assert H13 : (Riemann_integrable f ``b+h0`` b).
Apply continuity_implies_RiemannInt.
Left; Assumption.
Intros; Apply C0; Elim H13; Intros; Split; Try Assumption.
Apply Rle_trans with ``b+h0``; Try Assumption.
Apply Rle_anti_compatibility with ``-a-h0``.
Replace ``-a-h0+a`` with ``-h0``; [Idtac | Ring].
Replace ``-a-h0+(b+h0)`` with ``b-a``; [Idtac | Ring].
Apply Rle_trans with del.
Apply Rle_trans with (Rabsolu h0).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu.
Left; Assumption.
Unfold del; Apply Rle_trans with (Rmin x1 ``b-a``); Apply Rmin_r.
Replace ``[(primitive h (FTC_P1 h C0) (b+h0))]-[(primitive h (FTC_P1 h C0) b)]`` with ``-(RiemannInt H13)``.
Replace (f b) with ``-[(RiemannInt (RiemannInt_P14 (b+h0) b (f b)))]/h0``.
Rewrite <- Rabsolu_Ropp; Unfold Rminus; Unfold Rdiv; Rewrite Ropp_mul1; Rewrite Ropp_distr1; Repeat Rewrite Ropp_Ropp; Replace ``(RiemannInt H13)*/h0+ -(RiemannInt (RiemannInt_P14 (b+h0) b (f b)))*/h0`` with ``((RiemannInt H13)-(RiemannInt (RiemannInt_P14 (b+h0) b (f b))))/h0``.
Replace ``(RiemannInt H13)-(RiemannInt (RiemannInt_P14 (b+h0) b (f b)))`` with (RiemannInt (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 ``b+h0`` b (f b)))).
Unfold Rdiv; Rewrite Rabsolu_mult; Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b+h0) b (f b)))))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply (RiemannInt_P17 (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 ``b+h0`` b (f b))) (RiemannInt_P16 (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 ``b+h0`` b (f b))))); Left; Assumption.
Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P14 (b+h0) b (eps/2)))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply RiemannInt_P19.
Left; Assumption.
Intros; Replace ``(f x2)+ -1*(fct_cte (f b) x2)`` with ``(f x2)-(f b)``.
Unfold fct_cte; Case (Req_EM b x2); Intro.
Rewrite H16; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption.
Elim H9; Intros; Left; Apply H18.
Repeat Split.
Assumption.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr2; Rewrite Rabsolu_right.
Apply Rlt_anti_compatibility with ``x2-x1``; Replace ``x2-x1+(b-x2)`` with ``b-x1``; [Idtac | Ring].
Replace ``x2-x1+x1`` with x2; [Idtac | Ring].
Apply Rlt_le_trans with ``b+h0``.
2:Elim H15; Intros; Left; Assumption.
Unfold Rminus; Apply Rlt_compatibility; Apply Ropp_Rlt; Rewrite Ropp_Ropp; Apply Rle_lt_trans with (Rabsolu h0).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu.
Apply Rlt_le_trans with del; [Assumption | Unfold del; Apply Rle_trans with (Rmin x1 ``b-a``); [Apply Rmin_r | Apply Rmin_l]].
Apply Rle_sym1; Left; Apply Rlt_Rminus; Elim H15; Intros; Assumption.
Unfold fct_cte; Ring.
Rewrite RiemannInt_P15.
Rewrite Rmult_assoc; Replace ``(b-(b+h0))*(Rabsolu (/h0))`` with R1.
Rewrite Rmult_1r; Unfold Rdiv; Apply Rlt_monotony_contra with ``2``; [Sup0 | Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Pattern 1 eps; Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite Rabsolu_left.
Apply r_Rmult_mult with h0; [Do 2 Rewrite (Rmult_sym h0); Rewrite Rmult_assoc; Rewrite Ropp_mul1; Rewrite <- Rinv_l_sym; [ Ring | Assumption ] | Assumption].
Apply Rlt_Rinv2; Assumption.
Rewrite (RiemannInt_P13 H13 (RiemannInt_P14 ``b+h0`` b (f b)) (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 ``b+h0`` b (f b)))); Ring.
Unfold Rdiv Rminus; Rewrite Rmult_Rplus_distrl; Ring.
Rewrite RiemannInt_P15.
Rewrite <- Ropp_mul1; Apply r_Rmult_mult with h0; [Repeat Rewrite (Rmult_sym h0); Unfold Rdiv; Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Ring | Assumption] | Assumption].
Cut ``a<=b+h0``.
Cut ``b+h0<=b``.
Intros; Unfold primitive; Case (total_order_Rle a ``b+h0``); Case (total_order_Rle ``b+h0`` b); Case (total_order_Rle a b); Case (total_order_Rle b b); Intros; Try (Elim n; Right; Reflexivity) Orelse (Elim n; Left; Assumption).
Rewrite <- (RiemannInt_P26 (FTC_P1 h C0 r3 r2) H13 (FTC_P1 h C0 r1 r0)); Ring.
Elim n; Assumption.
Left; Assumption.
Apply Rle_anti_compatibility with ``-a-h0``.
Replace ``-a-h0+a`` with ``-h0``; [Idtac | Ring].
Replace ``-a-h0+(b+h0)`` with ``b-a``; [Idtac | Ring].
Apply Rle_trans with del.
Apply Rle_trans with (Rabsolu h0).
Rewrite <- Rabsolu_Ropp; Apply Rle_Rabsolu.
Left; Assumption.
Unfold del; Apply Rle_trans with (Rmin x1 ``b-a``); Apply Rmin_r.
Cut (primitive  h (FTC_P1 h C0) b)==(f_b b).
Intro; Cut (primitive  h (FTC_P1 h C0) ``b+h0``)==(f_b ``b+h0``).
Intro; Rewrite H13; Rewrite H14; Apply H6.
Assumption.
Apply Rlt_le_trans with del; [Assumption | Unfold del; Apply Rmin_l].
Assert H14 : ``b<b+h0``.
Pattern 1 b; Rewrite <- Rplus_Or; Apply Rlt_compatibility.
Assert H14 := (Rle_sym2 ? ? r); Elim H14; Intro.
Assumption.
Elim H11; Symmetry; Assumption.
Unfold primitive; Case (total_order_Rle a ``b+h0``); Case (total_order_Rle ``b+h0`` b); Intros; [Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r0 H14)) | Unfold f_b; Reflexivity | Elim n; Left; Apply Rlt_trans with b; Assumption | Elim n0; Left; Apply Rlt_trans with b; Assumption].
Unfold f_b; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rmult_Or; Rewrite Rplus_Ol; Unfold primitive; Case (total_order_Rle a b); Case (total_order_Rle b b); Intros; [Apply RiemannInt_P5 | Elim n; Right; Reflexivity | Elim n; Left; Assumption | Elim n; Right; Reflexivity].
(*****)
Pose f_a := [x:R]``(f a)*(x-a)``; Rewrite <- H2; Assert H3 : (derivable_pt_lim f_a a (f a)).
Unfold f_a; Change (derivable_pt_lim (mult_fct (fct_cte (f a)) (minus_fct id (fct_cte a))) a (f a)); Pattern 2 (f a); Replace (f a) with ``0*((minus_fct id (fct_cte a)) a)+((fct_cte (f a)) a)*1``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_const.
Replace R1 with ``1-0``; [Idtac | Ring].
Apply derivable_pt_lim_minus.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte; Ring.
Unfold derivable_pt_lim; Intros; Elim (H3 ? H4); Intros.
Assert H6 : (continuity_pt f a).
Apply C0; Split; [Right; Reflexivity | Left; Assumption].
Assert H7 : ``0<eps/2``.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Elim (H6 ? H7); Unfold D_x no_cond dist; Simpl; Unfold R_dist; Intros.
Pose del := (Rmin x0 (Rmin x1 ``b-a``)).
Assert H9 : ``0<del``.
Unfold del; Unfold Rmin.
Case (total_order_Rle x1 ``b-a``); Intros.
Case (total_order_Rle x0 x1); Intro.
Apply (cond_pos x0).
Elim H8; Intros; Assumption.
Case (total_order_Rle x0 ``b-a``); Intro.
Apply (cond_pos x0).
Apply Rlt_Rminus; Assumption.
Split with (mkposreal ? H9).
Intros; Case (case_Rabsolu h0); Intro.
Assert H12 : ``a+h0<a``.
Pattern 2 a; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
Unfold primitive.
Case (total_order_Rle a ``a+h0``); Case (total_order_Rle ``a+h0`` b); Case (total_order_Rle a a); Case (total_order_Rle a b); Intros; Try (Elim n; Left; Assumption) Orelse (Elim n; Right; Reflexivity).
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H12)).
Elim n; Left; Apply Rlt_trans with a; Assumption.
Rewrite RiemannInt_P9; Replace R0 with (f_a a).
Replace ``(f a)*(a+h0-a)`` with (f_a ``a+h0``).
Apply H5; Try Assumption.
Apply Rlt_le_trans with del; [Assumption | Unfold del; Apply Rmin_l].
Unfold f_a; Ring.
Unfold f_a; Ring.
Elim n; Left; Apply Rlt_trans with a; Assumption.
Assert H12 : ``a<a+h0``.
Pattern 1 a; Rewrite <- Rplus_Or; Apply Rlt_compatibility.
Assert H12 := (Rle_sym2 ? ? r); Elim H12; Intro.
Assumption.
Elim H10; Symmetry; Assumption.
Assert H13 : (Riemann_integrable f a ``a+h0``).
Apply continuity_implies_RiemannInt.
Left; Assumption.
Intros; Apply C0; Elim H13; Intros; Split; Try Assumption.
Apply Rle_trans with ``a+h0``; Try Assumption.
Apply Rle_anti_compatibility with ``-b-h0``.
Replace ``-b-h0+b`` with ``-h0``; [Idtac | Ring].
Replace ``-b-h0+(a+h0)`` with ``a-b``; [Idtac | Ring].
Apply Ropp_Rle; Rewrite Ropp_Ropp; Rewrite Ropp_distr2; Apply Rle_trans with del.
Apply Rle_trans with (Rabsolu h0); [Apply Rle_Rabsolu | Left; Assumption].
Unfold del; Apply Rle_trans with (Rmin x1 ``b-a``); Apply Rmin_r.
Replace ``(primitive h (FTC_P1 h C0) (a+h0))-(primitive h (FTC_P1 h C0) a)`` with ``(RiemannInt H13)``.
Replace (f a) with ``(RiemannInt (RiemannInt_P14 a (a+h0) (f a)))/h0``.
Replace ``(RiemannInt H13)/h0-(RiemannInt (RiemannInt_P14 a (a+h0) (f a)))/h0`` with ``((RiemannInt H13)-(RiemannInt (RiemannInt_P14 a (a+h0) (f a))))/h0``.
Replace ``(RiemannInt H13)-(RiemannInt (RiemannInt_P14 a (a+h0) (f a)))`` with (RiemannInt (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14  a ``a+h0`` (f a)))).
Unfold Rdiv; Rewrite Rabsolu_mult; Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a+h0) (f a)))))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply (RiemannInt_P17 (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 a ``a+h0`` (f a))) (RiemannInt_P16 (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 a ``a+h0`` (f a))))); Left; Assumption.
Apply Rle_lt_trans with ``(RiemannInt (RiemannInt_P14 a (a+h0) (eps/2)))*(Rabsolu (/h0))``.
Do 2 Rewrite <- (Rmult_sym ``(Rabsolu (/h0))``); Apply Rle_monotony.
Apply Rabsolu_pos.
Apply RiemannInt_P19.
Left; Assumption.
Intros; Replace ``(f x2)+ -1*(fct_cte (f a) x2)`` with ``(f x2)-(f a)``.
Unfold fct_cte; Case (Req_EM a x2); Intro.
Rewrite H15; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Left; Assumption.
Elim H8; Intros; Left; Apply H17; Repeat Split.
Assumption.
Rewrite Rabsolu_right.
Apply Rlt_anti_compatibility with a; Replace ``a+(x2-a)`` with x2; [Idtac | Ring].
Apply Rlt_le_trans with ``a+h0``.
Elim H14; Intros; Assumption.
Apply Rle_compatibility; Left; Apply Rle_lt_trans with (Rabsolu h0).
Apply Rle_Rabsolu.
Apply Rlt_le_trans with del; [Assumption | Unfold del; Apply Rle_trans with (Rmin x1 ``b-a``); [Apply Rmin_r | Apply Rmin_l]].
Apply Rle_sym1; Left; Apply Rlt_Rminus; Elim H14; Intros; Assumption.
Unfold fct_cte; Ring.
Rewrite RiemannInt_P15.
Rewrite Rmult_assoc; Replace ``((a+h0)-a)*(Rabsolu (/h0))`` with R1.
Rewrite Rmult_1r; Unfold Rdiv; Apply Rlt_monotony_contra with ``2``; [Sup0 | Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Pattern 1 eps; Rewrite <- Rplus_Or; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite Rabsolu_right.
Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Rewrite <- Rinv_r_sym; [ Reflexivity | Assumption ].
Apply Rle_sym1; Left; Apply Rlt_Rinv; Assert H14 := (Rle_sym2 ? ? r); Elim H14; Intro.
Assumption.
Elim H10; Symmetry; Assumption.
Rewrite (RiemannInt_P13 H13 (RiemannInt_P14 a ``a+h0`` (f a)) (RiemannInt_P10 ``-1`` H13 (RiemannInt_P14 a ``a+h0`` (f a)))); Ring.
Unfold Rdiv Rminus; Rewrite Rmult_Rplus_distrl; Ring.
Rewrite RiemannInt_P15.
Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Unfold Rdiv; Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym; [ Ring | Assumption ].
Cut ``a<=a+h0``.
Cut ``a+h0<=b``.
Intros; Unfold primitive; Case (total_order_Rle a ``a+h0``); Case (total_order_Rle ``a+h0`` b); Case (total_order_Rle a a); Case (total_order_Rle a b); Intros; Try (Elim n; Right; Reflexivity) Orelse (Elim n; Left; Assumption).
Rewrite RiemannInt_P9; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply RiemannInt_P5.
Elim n; Assumption.
Elim n; Assumption.
2:Left; Assumption.
Apply Rle_anti_compatibility with ``-a``; Replace ``-a+(a+h0)`` with h0; [Idtac | Ring].
Rewrite Rplus_sym; Apply Rle_trans with del; [Apply Rle_trans with (Rabsolu h0); [Apply Rle_Rabsolu | Left; Assumption] | Unfold del; Apply Rle_trans with (Rmin x1 ``b-a``); Apply Rmin_r].
(*****)
Assert H1 : x==a.
Rewrite <- H0 in H; Elim H; Intros; Apply Rle_antisym; Assumption.
Pose f_a := [x:R]``(f a)*(x-a)``.
Assert H2 : (derivable_pt_lim f_a a (f a)).
Unfold f_a; Change (derivable_pt_lim (mult_fct (fct_cte (f a)) (minus_fct id (fct_cte a))) a (f a)); Pattern 2 (f a); Replace (f a) with ``0*((minus_fct id (fct_cte a)) a)+((fct_cte (f a)) a)*1``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_const.
Replace R1 with ``1-0``; [Idtac | Ring].
Apply derivable_pt_lim_minus.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte; Ring.
Pose f_b := [x:R]``(f b)*(x-b)+(RiemannInt (FTC_P1 h C0 b h (FTC_P2 b)))``.
Assert H3 : (derivable_pt_lim f_b b (f b)).
Unfold f_b; Pattern 2 (f b); Replace (f b) with ``(f b)+0``.
Change (derivable_pt_lim (plus_fct (mult_fct (fct_cte (f b)) (minus_fct id (fct_cte b))) (fct_cte (RiemannInt (FTC_P1 h C0 h (FTC_P2 b))))) b ``(f b)+0``). 
Apply derivable_pt_lim_plus.
Pattern 2 (f b); Replace (f b) with ``0*((minus_fct id (fct_cte b)) b)+((fct_cte (f b)) b)*1``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_const.
Replace R1 with ``1-0``; [Idtac | Ring].
Apply derivable_pt_lim_minus.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte; Ring.
Apply derivable_pt_lim_const.
Ring.
Unfold derivable_pt_lim; Intros; Elim (H2 ? H4); Intros; Elim (H3 ? H4); Intros; Pose del := (Rmin x0 x1).
Assert H7 : ``0<del``.
Unfold del; Unfold Rmin; Case (total_order_Rle x0 x1); Intro.
Apply (cond_pos x0).
Apply (cond_pos x1).
Split with (mkposreal ? H7); Intros; Case (case_Rabsolu h0); Intro.
Assert H10 : ``a+h0<a``.
Pattern 2 a; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
Rewrite H1; Unfold primitive; Case (total_order_Rle a ``a+h0``); Case (total_order_Rle ``a+h0`` b); Case (total_order_Rle a a); Case (total_order_Rle a b); Intros;  Try (Elim n; Right; Assumption Orelse Reflexivity).
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H10)).
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r2 H10)).
Rewrite RiemannInt_P9; Replace R0 with (f_a a).
Replace ``(f a)*(a+h0-a)`` with (f_a ``a+h0``).
Apply H5; Try Assumption.
Apply Rlt_le_trans with del; Try Assumption.
Unfold del; Apply Rmin_l.
Unfold f_a; Ring.
Unfold f_a; Ring.
Elim n; Rewrite <- H0; Left; Assumption.
Assert H10 : ``a<a+h0``.
Pattern 1 a; Rewrite <- Rplus_Or; Apply Rlt_compatibility.
Assert H10 := (Rle_sym2 ? ? r); Elim H10; Intro.
Assumption.
Elim H8; Symmetry; Assumption.
Rewrite H0 in H1; Rewrite H1; Unfold primitive; Case (total_order_Rle a ``b+h0``); Case (total_order_Rle ``b+h0`` b); Case (total_order_Rle a b); Case (total_order_Rle b b); Intros;  Try (Elim n; Right; Assumption Orelse Reflexivity).
Rewrite H0 in H10; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r2 H10)).
Repeat Rewrite RiemannInt_P9.
Replace (RiemannInt (FTC_P1 h C0 r1 r0)) with (f_b b).
Fold (f_b ``b+h0``).
Apply H6; Try Assumption.
Apply Rlt_le_trans with del; Try Assumption.
Unfold del; Apply Rmin_r.
Unfold f_b; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rmult_Or; Rewrite Rplus_Ol; Apply RiemannInt_P5.
Elim n; Rewrite <- H0; Left; Assumption.
Elim n0; Rewrite <- H0; Left; Assumption.
Qed.

Lemma RiemannInt_P29 : (f:R->R;a,b;h:``a<=b``;C0:((x:R)``a<=x<=b``->(continuity_pt f x))) (antiderivative f (primitive h (FTC_P1 h C0)) a b).
Intro f; Intros; Unfold antiderivative; Split; Try Assumption; Intros; Assert H0 := (RiemannInt_P28 h C0 H); Assert H1 : (derivable_pt (primitive h (FTC_P1 h C0)) x); [Unfold derivable_pt; Split with (f x); Apply H0 | Split with H1; Symmetry; Apply derive_pt_eq_0; Apply H0].
Qed.

Lemma RiemannInt_P30 : (f:R->R;a,b:R) ``a<=b`` -> ((x:R)``a<=x<=b``->(continuity_pt f x)) -> (sigTT ? [g:R->R](antiderivative f g a b)).
Intros; Split with (primitive H (FTC_P1 H H0)); Apply RiemannInt_P29.
Qed.

Record C1_fun : Type := mkC1 {
c1 :> R->R;
diff0 : (derivable c1);
cont1 : (continuity (derive c1 diff0)) }.

Lemma RiemannInt_P31 : (f:C1_fun;a,b:R) ``a<=b`` -> (antiderivative (derive f (diff0 f)) f a b).
Intro f; Intros; Unfold antiderivative; Split; Try Assumption; Intros; Split with (diff0 f x); Reflexivity.
Qed.

Lemma RiemannInt_P32 : (f:C1_fun;a,b:R) (Riemann_integrable (derive f (diff0 f)) a b).
Intro f; Intros; Case (total_order_Rle a b); Intro; [Apply continuity_implies_RiemannInt; Try Assumption; Intros; Apply (cont1 f) | Assert H : ``b<=a``; [Auto with real | Apply RiemannInt_P1; Apply continuity_implies_RiemannInt; Try Assumption; Intros; Apply (cont1 f)]].
Qed.

Lemma RiemannInt_P33 : (f:C1_fun;a,b:R;pr:(Riemann_integrable (derive f (diff0 f)) a b)) ``a<=b`` -> (RiemannInt pr)==``(f b)-(f a)``.
Intro f; Intros; Assert H0 : (x:R)``a<=x<=b``->(continuity_pt (derive f (diff0 f)) x).
Intros; Apply (cont1 f).
Rewrite (RiemannInt_P20 H (FTC_P1 H H0) pr); Assert H1 := (RiemannInt_P29 H H0); Assert H2 := (RiemannInt_P31 f H); Elim (antiderivative_Ucte (derive f (diff0 f)) ? ? ? ? H1 H2); Intros C H3; Repeat Rewrite H3; [Ring | Split; [Right; Reflexivity | Assumption] | Split; [Assumption | Right; Reflexivity]].
Qed.

Lemma FTC_Riemann : (f:C1_fun;a,b:R;pr:(Riemann_integrable (derive f (diff0 f)) a b)) (RiemannInt pr)==``(f b)-(f a)``.
Intro f; Intros; Case (total_order_Rle a b); Intro; [Apply RiemannInt_P33; Assumption | Assert H : ``b<=a``; [Auto with real | Assert H0 := (RiemannInt_P1 pr); Rewrite (RiemannInt_P8 pr H0); Rewrite (RiemannInt_P33 H0 H); Ring]].
Qed.