summaryrefslogtreecommitdiff
path: root/theories7/Reals/Ranalysis1.v
blob: 8cb4c358a634e82e92559353d3700bf40676f2ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Ranalysis1.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require Export Rlimit.
Require Export Rderiv.
V7only [Import R_scope.]. Open Local Scope R_scope.
Implicit Variable Type f:R->R.

(****************************************************)
(**           Basic operations on functions         *)
(****************************************************)
Definition plus_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)+(f2 x)``.
Definition opp_fct [f:R->R] : R->R := [x:R] ``-(f x)``.
Definition mult_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)*(f2 x)``.
Definition mult_real_fct [a:R;f:R->R] : R->R := [x:R] ``a*(f x)``.
Definition minus_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)-(f2 x)``.
Definition div_fct [f1,f2:R->R] : R->R := [x:R] ``(f1 x)/(f2 x)``.
Definition div_real_fct [a:R;f:R->R] : R->R := [x:R] ``a/(f x)``.
Definition comp [f1,f2:R->R] : R->R := [x:R] ``(f1 (f2 x))``.
Definition inv_fct [f:R->R] : R->R := [x:R]``/(f x)``.

V8Infix "+" plus_fct : Rfun_scope.
V8Notation "- x" := (opp_fct x) : Rfun_scope.
V8Infix "*" mult_fct : Rfun_scope.
V8Infix "-" minus_fct : Rfun_scope.
V8Infix "/" div_fct : Rfun_scope.
Notation Local "f1 'o' f2" := (comp f1 f2) (at level 2, right associativity)
  : Rfun_scope 
  V8only (at level 20, right associativity).
V8Notation "/ x" := (inv_fct x) : Rfun_scope.

Delimits Scope Rfun_scope with F.

Definition fct_cte [a:R] : R->R := [x:R]a.
Definition id := [x:R]x.

(****************************************************)
(**            Variations of functions              *)
(****************************************************)
Definition increasing [f:R->R] : Prop := (x,y:R) ``x<=y``->``(f x)<=(f y)``.
Definition decreasing [f:R->R] : Prop := (x,y:R) ``x<=y``->``(f y)<=(f x)``.
Definition strict_increasing [f:R->R] : Prop := (x,y:R) ``x<y``->``(f x)<(f y)``.
Definition strict_decreasing [f:R->R] : Prop := (x,y:R) ``x<y``->``(f y)<(f x)``.
Definition constant [f:R->R] : Prop := (x,y:R) ``(f x)==(f y)``.
  
(**********) 
Definition no_cond : R->Prop := [x:R] True.

(**********)
Definition constant_D_eq [f:R->R;D:R->Prop;c:R] : Prop := (x:R) (D x) -> (f x)==c.

(***************************************************)
(**      Definition of continuity as a limit       *)
(***************************************************)

(**********)
Definition continuity_pt [f:R->R; x0:R] : Prop := (continue_in f no_cond x0).
Definition continuity [f:R->R] : Prop := (x:R) (continuity_pt f x).

Arguments Scope continuity_pt [Rfun_scope R_scope].
Arguments Scope continuity [Rfun_scope].

(**********)
Lemma continuity_pt_plus : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (plus_fct f1 f2) x0).
Unfold continuity_pt plus_fct; Unfold continue_in; Intros; Apply limit_plus; Assumption.
Qed.

Lemma continuity_pt_opp : (f:R->R; x0:R) (continuity_pt f x0) -> (continuity_pt (opp_fct f) x0).
Unfold continuity_pt opp_fct; Unfold continue_in; Intros; Apply limit_Ropp; Assumption.
Qed.
 
Lemma continuity_pt_minus : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (minus_fct f1 f2) x0).
Unfold continuity_pt minus_fct; Unfold continue_in; Intros; Apply limit_minus; Assumption.
Qed.

Lemma continuity_pt_mult : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> (continuity_pt (mult_fct f1 f2) x0).
Unfold continuity_pt mult_fct; Unfold continue_in; Intros; Apply limit_mul; Assumption.
Qed.

Lemma continuity_pt_const : (f:R->R; x0:R) (constant f) -> (continuity_pt f x0).
Unfold constant continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Intros; Exists ``1``; Split; [Apply Rlt_R0_R1 | Intros; Generalize (H x x0); Intro; Rewrite H2; Simpl; Rewrite R_dist_eq; Assumption].
Qed.

Lemma continuity_pt_scal : (f:R->R;a:R; x0:R) (continuity_pt f x0) -> (continuity_pt (mult_real_fct a f) x0).
Unfold continuity_pt mult_real_fct; Unfold continue_in; Intros; Apply (limit_mul ([x:R] a) f (D_x no_cond x0) a (f x0) x0).
Unfold limit1_in; Unfold limit_in; Intros; Exists ``1``; Split.
Apply Rlt_R0_R1.
Intros; Rewrite R_dist_eq; Assumption.
Assumption.
Qed.

Lemma continuity_pt_inv : (f:R->R; x0:R) (continuity_pt f x0) -> ~``(f x0)==0`` -> (continuity_pt (inv_fct f) x0).
Intros.
Replace (inv_fct f) with [x:R]``/(f x)``.
Unfold continuity_pt; Unfold continue_in; Intros; Apply limit_inv; Assumption.
Unfold inv_fct; Reflexivity.
Qed.
 
Lemma div_eq_inv : (f1,f2:R->R) (div_fct f1 f2)==(mult_fct f1 (inv_fct f2)).
Intros; Reflexivity.
Qed.
 
Lemma continuity_pt_div : (f1,f2:R->R; x0:R) (continuity_pt f1 x0) -> (continuity_pt f2 x0) -> ~``(f2 x0)==0`` -> (continuity_pt (div_fct f1 f2) x0).
Intros; Rewrite -> (div_eq_inv f1 f2); Apply continuity_pt_mult; [Assumption | Apply continuity_pt_inv; Assumption].
Qed.

Lemma continuity_pt_comp : (f1,f2:R->R;x:R) (continuity_pt f1 x) -> (continuity_pt f2 (f1 x)) -> (continuity_pt (comp f2 f1) x).
Unfold continuity_pt; Unfold continue_in; Intros; Unfold comp.
Cut (limit1_in [x0:R](f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1)
(f2 (f1 x)) x) -> (limit1_in [x0:R](f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x).
Intro; Apply H1.
EApply limit_comp.
Apply H.
Apply H0.
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Assert H3 := (H1 eps H2).
Elim H3; Intros.
Exists x0.
Split.
Elim H4; Intros; Assumption.
Intros; Case (Req_EM (f1 x) (f1 x1)); Intro.
Rewrite H6; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Elim H4; Intros; Apply H8.
Split.
Unfold Dgf D_x no_cond.
Split.
Split.
Trivial.
Elim H5; Unfold D_x no_cond; Intros.
Elim H9; Intros; Assumption.
Split.
Trivial.
Assumption.
Elim H5; Intros; Assumption.
Qed.

(**********) 
Lemma continuity_plus : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (plus_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_plus f1 f2 x (H x) (H0 x)).
Qed.

Lemma continuity_opp : (f:R->R) (continuity f)->(continuity (opp_fct f)).
Unfold continuity; Intros; Apply (continuity_pt_opp f x (H x)).
Qed.

Lemma continuity_minus : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (minus_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_minus f1 f2 x (H x) (H0 x)).
Qed.
 
Lemma continuity_mult : (f1,f2:R->R) (continuity f1)->(continuity f2)->(continuity (mult_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_mult f1 f2 x (H x) (H0 x)).
Qed.

Lemma continuity_const : (f:R->R) (constant f) -> (continuity f).
Unfold continuity; Intros; Apply (continuity_pt_const f x H).
Qed.

Lemma continuity_scal : (f:R->R;a:R) (continuity f) -> (continuity (mult_real_fct a f)).
Unfold continuity; Intros; Apply (continuity_pt_scal f a x (H x)).
Qed.
  
Lemma continuity_inv : (f:R->R) (continuity f)->((x:R) ~``(f x)==0``)->(continuity (inv_fct f)).
Unfold continuity; Intros; Apply (continuity_pt_inv f x (H x) (H0 x)).
Qed.

Lemma continuity_div : (f1,f2:R->R) (continuity f1)->(continuity f2)->((x:R) ~``(f2 x)==0``)->(continuity (div_fct f1 f2)).
Unfold continuity; Intros; Apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)).
Qed.
 
Lemma continuity_comp : (f1,f2:R->R) (continuity f1) -> (continuity f2) -> (continuity (comp f2 f1)).
Unfold continuity; Intros.
Apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))).
Qed.


(*****************************************************)
(**  Derivative's definition using Landau's kernel   *)
(*****************************************************)

Definition derivable_pt_lim [f:R->R;x,l:R] : Prop := ((eps:R) ``0<eps``->(EXT delta : posreal | ((h:R) ~``h==0``->``(Rabsolu h)<delta`` -> ``(Rabsolu ((((f (x+h))-(f x))/h)-l))<eps``))).

Definition derivable_pt_abs [f:R->R;x:R] : R -> Prop := [l:R](derivable_pt_lim f x l).

Definition derivable_pt [f:R->R;x:R] := (SigT R (derivable_pt_abs f x)).
Definition derivable [f:R->R] := (x:R)(derivable_pt f x).

Definition derive_pt [f:R->R;x:R;pr:(derivable_pt f x)] := (projT1 ? ? pr).
Definition derive [f:R->R;pr:(derivable f)] := [x:R](derive_pt f x (pr x)).

Arguments Scope derivable_pt_lim [Rfun_scope R_scope].
Arguments Scope derivable_pt_abs [Rfun_scope R_scope R_scope].
Arguments Scope derivable_pt [Rfun_scope R_scope].
Arguments Scope derivable [Rfun_scope].
Arguments Scope derive_pt [Rfun_scope R_scope _].
Arguments Scope derive [Rfun_scope _].

Definition antiderivative [f,g:R->R;a,b:R] : Prop := ((x:R)``a<=x<=b``->(EXT pr : (derivable_pt g x) | (f x)==(derive_pt g x pr)))/\``a<=b``.
(************************************)
(** Class of differential functions *)
(************************************)
Record Differential : Type := mkDifferential {
d1 :> R->R;
cond_diff : (derivable d1) }.
 
Record Differential_D2 : Type := mkDifferential_D2 {
d2 :> R->R;
cond_D1 : (derivable d2);
cond_D2 : (derivable (derive d2 cond_D1)) }.

(**********)
Lemma unicite_step1 : (f:R->R;x,l1,l2:R) (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l1 R0) -> (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l2 R0) -> l1 == l2.
Intros; Apply (single_limit [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l1 l2 R0); Try Assumption.
Unfold adhDa; Intros; Exists ``alp/2``.
Split.
Unfold Rdiv; Apply prod_neq_R0.
Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1).
Apply Rinv_neq_R0; DiscrR.
Unfold R_dist; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Unfold Rdiv; Rewrite Rabsolu_mult.
Replace ``(Rabsolu (/2))`` with ``/2``.
Replace (Rabsolu alp) with alp.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR]; Rewrite Rmult_1r; Rewrite double; Pattern 1 alp; Replace alp with ``alp+0``; [Idtac | Ring]; Apply Rlt_compatibility; Assumption.
Symmetry; Apply Rabsolu_right; Left; Assumption.
Symmetry; Apply Rabsolu_right; Left; Change ``0</2``; Apply Rlt_Rinv; Sup0. 
Qed.

Lemma unicite_step2 : (f:R->R;x,l:R) (derivable_pt_lim f x l) -> (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l R0).
Unfold derivable_pt_lim; Intros; Unfold limit1_in; Unfold limit_in; Intros.
Assert H1 := (H eps H0).
Elim H1 ; Intros.
Exists (pos x0).
Split.
Apply (cond_pos x0).
Simpl; Unfold R_dist; Intros.
Elim H3; Intros.
Apply H2; [Assumption |Unfold Rminus in H5; Rewrite Ropp_O in H5; Rewrite Rplus_Or in H5; Assumption].
Qed.

Lemma unicite_step3 : (f:R->R;x,l:R) (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h<>0`` l R0) -> (derivable_pt_lim f x l).
Unfold limit1_in derivable_pt_lim; Unfold limit_in; Unfold dist; Simpl; Intros.
Elim (H eps H0).
Intros; Elim H1; Intros.
Exists (mkposreal x0 H2).
Simpl; Intros; Unfold R_dist in H3; Apply (H3 h).
Split; [Assumption | Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Assumption].
Qed.

Lemma unicite_limite : (f:R->R;x,l1,l2:R) (derivable_pt_lim f x l1) -> (derivable_pt_lim f x l2) -> l1==l2.
Intros.
Assert H1 := (unicite_step2 ? ? ? H).
Assert H2 := (unicite_step2 ? ? ? H0).
Assert H3 := (unicite_step1 ? ? ? ? H1 H2).
Assumption.
Qed.

Lemma derive_pt_eq : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derive_pt f x pr)==l <-> (derivable_pt_lim f x l).
Intros; Split.
Intro; Assert H1 := (projT2 ? ? pr); Unfold derive_pt in H; Rewrite H in H1; Assumption.
Intro; Assert H1 := (projT2 ? ? pr); Unfold derivable_pt_abs in H1.
Assert H2 := (unicite_limite ? ? ? ? H H1).
Unfold derive_pt; Unfold derivable_pt_abs.
Symmetry; Assumption.
Qed.

(**********)
Lemma derive_pt_eq_0 : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derivable_pt_lim f x l) -> (derive_pt f x pr)==l.
Intros; Elim (derive_pt_eq f x l pr); Intros.
Apply (H1 H).
Qed.

(**********)
Lemma derive_pt_eq_1 : (f:R->R;x,l:R;pr:(derivable_pt f x)) (derive_pt f x pr)==l -> (derivable_pt_lim f x l).
Intros; Elim (derive_pt_eq f x l pr); Intros.
Apply (H0 H).
Qed.


(********************************************************************)
(** Equivalence of this definition with the one using limit concept *)
(********************************************************************)
Lemma derive_pt_D_in : (f,df:R->R;x:R;pr:(derivable_pt f x)) (D_in f df no_cond x) <-> (derive_pt f x pr)==(df x).
Intros; Split.
Unfold D_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Apply derive_pt_eq_0. 
Unfold derivable_pt_lim.
Intros; Elim (H eps H0); Intros alpha H1; Elim H1; Intros;  Exists (mkposreal alpha H2); Intros; Generalize (H3 ``x+h``); Intro; Cut ``x+h-x==h``; [Intro; Cut ``(D_x no_cond x (x+h))``/\``(Rabsolu (x+h-x)) < alpha``; [Intro; Generalize (H6 H8); Rewrite H7; Intro; Assumption | Split; [Unfold D_x; Split; [Unfold no_cond; Trivial | Apply Rminus_not_eq_right; Rewrite H7; Assumption] | Rewrite H7; Assumption]] | Ring].
Intro.
Assert H0 := (derive_pt_eq_1 f x (df x) pr H).
Unfold D_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H0 eps H1); Intros alpha H2; Exists (pos alpha); Split.
Apply (cond_pos alpha).
Intros; Elim H3; Intros; Unfold D_x in H4; Elim H4; Intros; Cut ``x0-x<>0``.
Intro; Generalize (H2 ``x0-x`` H8 H5); Replace ``x+(x0-x)`` with x0.
Intro; Assumption.
Ring.
Auto with real.
Qed.

Lemma derivable_pt_lim_D_in : (f,df:R->R;x:R) (D_in f df no_cond x) <-> (derivable_pt_lim f x (df x)).
Intros; Split.
Unfold D_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Unfold derivable_pt_lim.
Intros; Elim (H eps H0); Intros alpha H1; Elim H1; Intros;  Exists (mkposreal alpha H2); Intros; Generalize (H3 ``x+h``); Intro; Cut ``x+h-x==h``; [Intro; Cut ``(D_x no_cond x (x+h))``/\``(Rabsolu (x+h-x)) < alpha``; [Intro; Generalize (H6 H8); Rewrite H7; Intro; Assumption | Split; [Unfold D_x; Split; [Unfold no_cond; Trivial | Apply Rminus_not_eq_right; Rewrite H7; Assumption] | Rewrite H7; Assumption]] | Ring].
Intro.
Unfold derivable_pt_lim in H.
Unfold D_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H eps H0); Intros alpha H2; Exists (pos alpha); Split.
Apply (cond_pos alpha).
Intros.
Elim H1; Intros; Unfold D_x in H3; Elim H3; Intros; Cut ``x0-x<>0``.
Intro; Generalize (H2 ``x0-x`` H7 H4); Replace ``x+(x0-x)`` with x0.
Intro; Assumption.
Ring.
Auto with real.
Qed.


(***********************************)
(**   derivability -> continuity   *)
(***********************************)
(**********)
Lemma derivable_derive : (f:R->R;x:R;pr:(derivable_pt f x)) (EXT l : R | (derive_pt f x pr)==l).
Intros; Exists (projT1  ? ? pr).
Unfold derive_pt; Reflexivity.
Qed.

Theorem derivable_continuous_pt : (f:R->R;x:R) (derivable_pt f x) -> (continuity_pt f x).
Intros.
Generalize (derivable_derive f x X); Intro.
Elim H; Intros l H1.
Cut l==((fct_cte l) x).
Intro.
Rewrite H0 in H1.
Generalize (derive_pt_D_in f (fct_cte l) x); Intro.
Elim (H2 X); Intros.
Generalize (H4 H1); Intro.
Unfold continuity_pt.
Apply (cont_deriv f (fct_cte l) no_cond x H5).
Unfold fct_cte; Reflexivity.
Qed.

Theorem derivable_continuous : (f:R->R) (derivable f) -> (continuity f).
Unfold derivable continuity; Intros.
Apply (derivable_continuous_pt f x (X x)).
Qed.

(****************************************************************)
(**                      Main rules                             *)
(****************************************************************)

Lemma derivable_pt_lim_plus : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (plus_fct f1 f2) x ``l1+l2``).
Intros.
Apply unicite_step3.
Assert H1 := (unicite_step2 ? ? ? H).
Assert H2 := (unicite_step2 ? ? ? H0).
Unfold  plus_fct.
Cut (h:R)``((f1 (x+h))+(f2 (x+h))-((f1 x)+(f2 x)))/h``==``((f1 (x+h))-(f1 x))/h+((f2 (x+h))-(f2 x))/h``.
Intro.
Generalize(limit_plus [h':R]``((f1 (x+h'))-(f1 x))/h'`` [h':R]``((f2 (x+h'))-(f2 x))/h'`` [h:R]``h <> 0`` l1 l2 ``0`` H1 H2).
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H4 eps H5); Intros.
Exists x0.
Elim H6; Intros.
Split.
Assumption.
Intros; Rewrite H3; Apply H8; Assumption.
Intro; Unfold Rdiv; Ring.
Qed.

Lemma derivable_pt_lim_opp : (f:R->R;x,l:R) (derivable_pt_lim f x l) -> (derivable_pt_lim (opp_fct f) x (Ropp l)).
Intros.
Apply unicite_step3.
Assert H1 := (unicite_step2 ? ? ? H).
Unfold opp_fct.
Cut (h:R) ``( -(f (x+h))- -(f x))/h``==(Ropp ``((f (x+h))-(f x))/h``).
Intro.
Generalize (limit_Ropp [h:R]``((f (x+h))-(f x))/h``[h:R]``h <> 0`` l ``0`` H1).
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H2 eps H3); Intros.
Exists x0.
Elim H4; Intros.
Split.
Assumption.
Intros; Rewrite H0; Apply H6; Assumption.
Intro; Unfold Rdiv; Ring.
Qed.

Lemma derivable_pt_lim_minus : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (minus_fct f1 f2) x ``l1-l2``).
Intros.
Apply unicite_step3.
Assert H1 := (unicite_step2 ? ? ? H).
Assert H2 := (unicite_step2 ? ? ? H0).
Unfold  minus_fct.
Cut (h:R)``((f1 (x+h))-(f1 x))/h-((f2 (x+h))-(f2 x))/h``==``((f1 (x+h))-(f2 (x+h))-((f1 x)-(f2 x)))/h``.
Intro.
Generalize (limit_minus [h':R]``((f1 (x+h'))-(f1 x))/h'`` [h':R]``((f2 (x+h'))-(f2 x))/h'`` [h:R]``h <> 0`` l1 l2 ``0`` H1 H2).
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H4 eps H5); Intros.
Exists x0.
Elim H6; Intros.
Split.
Assumption.
Intros; Rewrite <- H3; Apply H8; Assumption.
Intro; Unfold Rdiv; Ring.
Qed.

Lemma derivable_pt_lim_mult : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> (derivable_pt_lim (mult_fct f1 f2) x ``l1*(f2 x)+(f1 x)*l2``).
Intros.
Assert H1 := (derivable_pt_lim_D_in f1 [y:R]l1 x).
Elim H1; Intros.
Assert H4 := (H3 H).
Assert H5 := (derivable_pt_lim_D_in f2 [y:R]l2 x).
Elim H5; Intros.
Assert H8 := (H7 H0).
Clear H1 H2 H3 H5 H6 H7.
Assert H1 := (derivable_pt_lim_D_in (mult_fct f1 f2) [y:R]``l1*(f2 x)+(f1 x)*l2`` x).
Elim H1; Intros.
Clear H1 H3.
Apply H2.
Unfold mult_fct.
Apply (Dmult no_cond [y:R]l1 [y:R]l2 f1 f2 x); Assumption.
Qed.

Lemma derivable_pt_lim_const : (a,x:R) (derivable_pt_lim (fct_cte a) x ``0``).
Intros; Unfold fct_cte derivable_pt_lim.
Intros; Exists (mkposreal ``1`` Rlt_R0_R1); Intros; Unfold Rminus; Rewrite Rplus_Ropp_r; Unfold Rdiv; Rewrite Rmult_Ol; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Qed.

Lemma derivable_pt_lim_scal : (f:R->R;a,x,l:R) (derivable_pt_lim f x l) -> (derivable_pt_lim (mult_real_fct a f) x ``a*l``).
Intros.
Assert H0 := (derivable_pt_lim_const a x).
Replace (mult_real_fct a f) with (mult_fct (fct_cte a) f).
Replace ``a*l`` with ``0*(f x)+a*l``; [Idtac | Ring].
Apply (derivable_pt_lim_mult (fct_cte a) f x ``0`` l); Assumption.
Unfold mult_real_fct mult_fct fct_cte; Reflexivity.
Qed.

Lemma derivable_pt_lim_id : (x:R) (derivable_pt_lim id x ``1``).
Intro; Unfold derivable_pt_lim.
Intros eps Heps; Exists (mkposreal eps Heps); Intros h H1 H2; Unfold id; Replace ``(x+h-x)/h-1`` with ``0``.
Rewrite Rabsolu_R0; Apply Rle_lt_trans with ``(Rabsolu h)``.
Apply Rabsolu_pos.
Assumption.
Unfold Rminus; Rewrite Rplus_assoc; Rewrite (Rplus_sym x); Rewrite Rplus_assoc.
Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym.
Symmetry; Apply Rplus_Ropp_r.
Assumption.
Qed.

Lemma derivable_pt_lim_Rsqr : (x:R) (derivable_pt_lim Rsqr x ``2*x``).
Intro; Unfold derivable_pt_lim.
Unfold Rsqr; Intros eps Heps; Exists (mkposreal eps Heps); Intros h H1 H2; Replace ``((x+h)*(x+h)-x*x)/h-2*x`` with ``h``.
Assumption.
Replace ``(x+h)*(x+h)-x*x`` with ``2*x*h+h*h``; [Idtac | Ring].
Unfold Rdiv; Rewrite Rmult_Rplus_distrl.
Repeat Rewrite Rmult_assoc.
Repeat Rewrite <- Rinv_r_sym; [Idtac | Assumption].
Ring.
Qed.

Lemma derivable_pt_lim_comp : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 (f1 x) l2) -> (derivable_pt_lim (comp f2 f1) x ``l2*l1``).
Intros; Assert H1 := (derivable_pt_lim_D_in f1 [y:R]l1 x).
Elim H1; Intros.
Assert H4 := (H3 H).
Assert H5 := (derivable_pt_lim_D_in f2 [y:R]l2 (f1 x)).
Elim H5; Intros.
Assert H8 := (H7 H0).
Clear H1 H2 H3 H5 H6 H7.
Assert H1 := (derivable_pt_lim_D_in (comp f2 f1) [y:R]``l2*l1`` x).
Elim H1; Intros.
Clear H1 H3; Apply H2.
Unfold comp; Cut (D_in [x0:R](f2 (f1 x0)) [y:R]``l2*l1`` (Dgf no_cond no_cond f1) x) -> (D_in [x0:R](f2 (f1 x0)) [y:R]``l2*l1`` no_cond x).
Intro; Apply H1.
Rewrite Rmult_sym; Apply (Dcomp no_cond no_cond [y:R]l1 [y:R]l2 f1 f2 x); Assumption.
Unfold Dgf D_in no_cond; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
Elim (H1 eps H3); Intros.
Exists x0; Intros; Split.
Elim H5; Intros; Assumption.
Intros; Elim H5; Intros; Apply H9; Split.
Unfold D_x; Split.
Split; Trivial.
Elim H6; Intros; Unfold D_x in H10; Elim H10; Intros; Assumption.
Elim H6; Intros; Assumption.
Qed.

Lemma derivable_pt_plus : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (plus_fct f1 f2) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``x0+x1``.
Apply derivable_pt_lim_plus; Assumption.
Qed.

Lemma derivable_pt_opp : (f:R->R;x:R) (derivable_pt f x) -> (derivable_pt (opp_fct f) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Apply Specif.existT with ``-x0``.
Apply derivable_pt_lim_opp; Assumption.
Qed.

Lemma derivable_pt_minus : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (minus_fct f1 f2) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``x0-x1``.
Apply derivable_pt_lim_minus; Assumption.
Qed.

Lemma derivable_pt_mult : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> (derivable_pt (mult_fct f1 f2) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``x0*(f2 x)+(f1 x)*x1``.
Apply derivable_pt_lim_mult; Assumption.
Qed.

Lemma derivable_pt_const : (a,x:R) (derivable_pt (fct_cte a) x).
Intros; Unfold derivable_pt.
Apply Specif.existT with ``0``.
Apply derivable_pt_lim_const.
Qed.

Lemma derivable_pt_scal : (f:R->R;a,x:R) (derivable_pt f x) -> (derivable_pt (mult_real_fct a f) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Apply Specif.existT with ``a*x0``.
Apply derivable_pt_lim_scal; Assumption.
Qed.

Lemma derivable_pt_id : (x:R) (derivable_pt id x).
Unfold derivable_pt; Intro.
Exists ``1``.
Apply derivable_pt_lim_id.
Qed.

Lemma derivable_pt_Rsqr : (x:R) (derivable_pt Rsqr x).
Unfold derivable_pt; Intro; Apply Specif.existT with ``2*x``.
Apply derivable_pt_lim_Rsqr.
Qed.

Lemma derivable_pt_comp : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 (f1 x)) -> (derivable_pt (comp f2 f1) x).
Unfold derivable_pt; Intros.
Elim X; Intros.
Elim X0 ;Intros.
Apply Specif.existT with ``x1*x0``.
Apply derivable_pt_lim_comp; Assumption.
Qed.

Lemma derivable_plus : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (plus_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_plus ? ? x (X ?) (X0 ?)).
Qed.

Lemma derivable_opp : (f:R->R) (derivable f) -> (derivable (opp_fct f)).
Unfold derivable; Intros.
Apply (derivable_pt_opp ? x (X ?)).
Qed.

Lemma derivable_minus : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (minus_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_minus ? ? x (X ?) (X0 ?)).
Qed.

Lemma derivable_mult : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (mult_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_mult ? ? x (X ?) (X0 ?)).
Qed.

Lemma derivable_const : (a:R) (derivable (fct_cte a)).
Unfold derivable; Intros.
Apply derivable_pt_const.
Qed.

Lemma derivable_scal : (f:R->R;a:R) (derivable f) -> (derivable (mult_real_fct a f)).
Unfold derivable; Intros.
Apply (derivable_pt_scal ? a x (X ?)).
Qed.

Lemma derivable_id : (derivable id).
Unfold derivable; Intro; Apply derivable_pt_id.
Qed.

Lemma derivable_Rsqr : (derivable Rsqr).
Unfold derivable; Intro; Apply derivable_pt_Rsqr.
Qed.

Lemma derivable_comp : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> (derivable (comp f2 f1)).
Unfold derivable; Intros.
Apply (derivable_pt_comp ? ? x (X ?) (X0 ?)).
Qed.

Lemma derive_pt_plus : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (plus_fct f1 f2) x (derivable_pt_plus ? ? ? pr1 pr2)) == (derive_pt f1 x pr1) + (derive_pt f2 x pr2)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (plus_fct f1 f2) x (derivable_pt_plus ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_plus; Assumption.
Qed.

Lemma derive_pt_opp : (f:R->R;x:R;pr1:(derivable_pt f x)) ``(derive_pt (opp_fct f) x (derivable_pt_opp ? ? pr1)) == -(derive_pt f x pr1)``.
Intros.
Assert H := (derivable_derive f x pr1).
Assert H0 := (derivable_derive (opp_fct f) x (derivable_pt_opp ? ? pr1)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Rewrite H; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Apply derivable_pt_lim_opp; Assumption.
Qed.

Lemma derive_pt_minus : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (minus_fct f1 f2) x (derivable_pt_minus ? ? ? pr1 pr2)) == (derive_pt f1 x pr1) - (derive_pt f2 x pr2)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (minus_fct f1 f2) x (derivable_pt_minus ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_minus; Assumption.
Qed.

Lemma derive_pt_mult : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x)) ``(derive_pt (mult_fct f1 f2) x (derivable_pt_mult ? ? ? pr1 pr2)) == (derive_pt f1 x pr1)*(f2 x) + (f1 x)*(derive_pt f2 x pr2)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (mult_fct f1 f2) x (derivable_pt_mult ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_mult; Assumption.
Qed.

Lemma derive_pt_const : (a,x:R) (derive_pt (fct_cte a) x (derivable_pt_const a x)) == R0.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_const.
Qed.

Lemma derive_pt_scal : (f:R->R;a,x:R;pr:(derivable_pt f x)) ``(derive_pt (mult_real_fct a f) x (derivable_pt_scal ? ? ? pr)) == a * (derive_pt f x pr)``.
Intros.
Assert H := (derivable_derive f x pr).
Assert H0 := (derivable_derive (mult_real_fct a f) x (derivable_pt_scal ? ? ? pr)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Rewrite H; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr).
Unfold derive_pt in H; Rewrite H in H3.
Apply derivable_pt_lim_scal; Assumption.
Qed.

Lemma derive_pt_id : (x:R) (derive_pt id x (derivable_pt_id ?))==R1.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_id.
Qed.

Lemma derive_pt_Rsqr : (x:R) (derive_pt Rsqr x (derivable_pt_Rsqr ?)) == ``2*x``.
Intros.
Apply derive_pt_eq_0.
Apply derivable_pt_lim_Rsqr.
Qed.

Lemma derive_pt_comp : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 (f1 x))) ``(derive_pt (comp f2 f1) x (derivable_pt_comp ? ? ? pr1 pr2)) == (derive_pt f2 (f1 x) pr2) * (derive_pt f1 x pr1)``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 (f1 x) pr2).
Assert H1 := (derivable_derive (comp f2 f1) x (derivable_pt_comp ? ? ? pr1 pr2)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_comp; Assumption.
Qed.

(* Pow *)
Definition pow_fct [n:nat] : R->R := [y:R](pow y n).

Lemma derivable_pt_lim_pow_pos : (x:R;n:nat) (lt O n) -> (derivable_pt_lim [y:R](pow y n) x ``(INR n)*(pow x (pred n))``).
Intros.
Induction n.
Elim (lt_n_n ? H).
Cut n=O\/(lt O n).
Intro; Elim H0; Intro.
Rewrite H1; Simpl.
Replace [y:R]``y*1`` with (mult_fct id (fct_cte R1)).
Replace ``1*1`` with ``1*(fct_cte R1 x)+(id x)*0``.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte id; Ring.
Reflexivity.
Replace [y:R](pow y (S n)) with [y:R]``y*(pow y n)``.
Replace (pred (S n)) with n; [Idtac | Reflexivity].
Replace [y:R]``y*(pow y n)`` with (mult_fct id [y:R](pow y n)).
Pose f := [y:R](pow y n).
Replace ``(INR (S n))*(pow x n)`` with (Rplus (Rmult R1 (f x)) (Rmult (id x) (Rmult (INR n) (pow x (pred n))))).
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_id.
Unfold f; Apply Hrecn; Assumption.
Unfold f.
Pattern 1 5 n; Replace n with (S (pred n)).
Unfold id; Rewrite S_INR; Simpl.
Ring.
Symmetry; Apply S_pred with O; Assumption.
Unfold mult_fct id; Reflexivity.
Reflexivity.
Inversion H.
Left; Reflexivity.
Right.
Apply lt_le_trans with (1).
Apply lt_O_Sn.
Assumption.
Qed.

Lemma derivable_pt_lim_pow : (x:R; n:nat) (derivable_pt_lim [y:R](pow y n) x ``(INR n)*(pow x (pred n))``).
Intros.
Induction n.
Simpl.
Rewrite Rmult_Ol.
Replace [_:R]``1`` with (fct_cte R1); [Apply derivable_pt_lim_const | Reflexivity].
Apply derivable_pt_lim_pow_pos.
Apply lt_O_Sn.
Qed.

Lemma derivable_pt_pow : (n:nat;x:R) (derivable_pt [y:R](pow y n) x).
Intros; Unfold derivable_pt.
Apply Specif.existT with ``(INR n)*(pow x (pred n))``.
Apply derivable_pt_lim_pow.
Qed.

Lemma derivable_pow : (n:nat) (derivable [y:R](pow y n)).
Intro; Unfold derivable; Intro; Apply derivable_pt_pow.
Qed.

Lemma derive_pt_pow : (n:nat;x:R) (derive_pt [y:R](pow y n) x (derivable_pt_pow n x))==``(INR n)*(pow x (pred n))``.
Intros; Apply derive_pt_eq_0.
Apply derivable_pt_lim_pow.
Qed.

Lemma pr_nu : (f:R->R;x:R;pr1,pr2:(derivable_pt f x)) (derive_pt f x pr1)==(derive_pt f x pr2). 
Intros.
Unfold derivable_pt in pr1.
Unfold derivable_pt in pr2.
Elim pr1; Intros.
Elim pr2; Intros.
Unfold derivable_pt_abs in p.
Unfold derivable_pt_abs in p0.
Simpl.
Apply (unicite_limite f x x0 x1 p p0).
Qed.


(************************************************************)
(**             Local extremum's condition                  *)
(************************************************************)

Theorem deriv_maximum : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a<c``->``c<b``->((x:R) ``a<x``->``x<b``->``(f x)<=(f c)``)->``(derive_pt f c pr)==0``.
Intros; Case (total_order R0 (derive_pt f c pr)); Intro.
Assert H3 := (derivable_derive f c pr).
Elim H3; Intros l H4; Rewrite H4 in H2.
Assert H5 := (derive_pt_eq_1 f c l pr H4).
Cut ``0<l/2``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
Elim (H5 ``l/2`` H6); Intros delta H7.
Cut ``0<(b-c)/2``.
Intro; Cut ``(Rmin delta/2 ((b-c)/2))<>0``.
Intro; Cut ``(Rabsolu (Rmin delta/2 ((b-c)/2)))<delta``.
Intro.
Assert H11 := (H7 ``(Rmin delta/2 ((b-c)/2))`` H9 H10).
Cut ``0<(Rmin (delta/2) ((b-c)/2))``.
Intro; Cut ``a<c+(Rmin (delta/2) ((b-c)/2))``.
Intro; Cut ``c+(Rmin (delta/2) ((b-c)/2))<b``.
Intro; Assert H15 := (H1 ``c+(Rmin (delta/2) ((b-c)/2))`` H13 H14).
Cut ``((f (c+(Rmin (delta/2) ((b-c)/2))))-(f c))/(Rmin (delta/2) ((b-c)/2))<=0``.
Intro; Cut ``-l<0``.
Intro; Unfold Rminus in H11.
Cut ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l<0``.
Intro; Cut ``(Rabsolu (((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l)) < l/2``.
Unfold Rabsolu; Case (case_Rabsolu ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l``); Intro.
Replace `` -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l)`` with ``l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2)))``.
Intro; Generalize (Rlt_compatibility ``-l`` ``l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2)))`` ``l/2`` H19); Repeat Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Replace ``-l+l/2`` with ``-(l/2)``.
Intro; Generalize (Rlt_Ropp ``-(((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2)))`` ``-(l/2)`` H20); Repeat Rewrite Ropp_Ropp; Intro; Generalize (Rlt_trans ``0`` ``l/2`` ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))`` H6 H21); Intro; Elim (Rlt_antirefl ``0`` (Rlt_le_trans ``0`` ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))`` ``0`` H22 H16)).
Pattern 2 l; Rewrite double_var.
Ring.
Ring.
Intro.
Assert H20 := (Rle_sym2 ``0`` ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l`` r).
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H20 H18)). 
Assumption.
Rewrite <- Ropp_O; Replace ``((f (c+(Rmin (delta/2) ((b+ -c)/2))))+ -(f c))/(Rmin (delta/2) ((b+ -c)/2))+ -l`` with ``-(l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))-(f c))/(Rmin (delta/2) ((b+ -c)/2))))``.
Apply Rgt_Ropp; Change ``0<l+ -(((f (c+(Rmin (delta/2) ((b+ -c)/2))))-(f c))/(Rmin (delta/2) ((b+ -c)/2)))``; Apply gt0_plus_ge0_is_gt0; [Assumption | Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Assumption].
Ring.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Replace ``((f (c+(Rmin (delta/2) ((b-c)/2))))-(f c))/(Rmin (delta/2) ((b-c)/2))`` with ``- (((f c)-(f (c+(Rmin (delta/2) ((b-c)/2)))))/(Rmin (delta/2) ((b-c)/2)))``.
Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Unfold Rdiv; Apply Rmult_le_pos; [Generalize (Rle_compatibility_r ``-(f (c+(Rmin (delta*/2) ((b-c)*/2))))`` ``(f (c+(Rmin (delta*/2) ((b-c)*/2))))`` (f c) H15); Rewrite Rplus_Ropp_r; Intro; Assumption | Left; Apply Rlt_Rinv; Assumption].
Unfold Rdiv.
Rewrite <- Ropp_mul1.
Repeat Rewrite <- (Rmult_sym ``/(Rmin (delta*/2) ((b-c)*/2))``).
Apply r_Rmult_mult with ``(Rmin (delta*/2) ((b-c)*/2))``.
Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_r_sym.
Repeat Rewrite Rmult_1l.
Ring.
Red; Intro.
Unfold Rdiv in H12; Rewrite H16 in H12; Elim (Rlt_antirefl ``0`` H12).
Red; Intro.
Unfold Rdiv in H12; Rewrite H16 in H12; Elim (Rlt_antirefl ``0`` H12).
Assert H14 := (Rmin_r ``(delta/2)`` ``((b-c)/2)``).
Assert H15 := (Rle_compatibility ``c`` ``(Rmin (delta/2) ((b-c)/2))`` ``(b-c)/2`` H14).
Apply Rle_lt_trans with ``c+(b-c)/2``.
Assumption.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Replace ``2*(c+(b-c)/2)`` with ``c+b``.
Replace ``2*b`` with ``b+b``.
Apply Rlt_compatibility_r; Assumption.
Ring.
Unfold Rdiv; Rewrite Rmult_Rplus_distr.
Repeat Rewrite (Rmult_sym ``2``).
Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Ring.
DiscrR.
Apply Rlt_trans with c.
Assumption.
Pattern 1 c; Rewrite <- (Rplus_Or c); Apply Rlt_compatibility; Assumption.
Cut ``0<delta/2``.
Intro; Apply (Rmin_stable_in_posreal (mkposreal ``delta/2`` H12) (mkposreal ``(b-c)/2`` H8)).
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Unfold Rabsolu; Case (case_Rabsolu (Rmin ``delta/2`` ``(b-c)/2``)).
Intro.
Cut ``0<delta/2``.
Intro.
Generalize (Rmin_stable_in_posreal (mkposreal ``delta/2`` H10) (mkposreal ``(b-c)/2`` H8)); Simpl; Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``(Rmin (delta/2) ((b-c)/2))`` ``0`` H11 r)).
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Intro; Apply Rle_lt_trans with ``delta/2``.
Apply Rmin_l.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l.
Replace ``2*delta`` with ``delta+delta``. 
Pattern 2 delta; Rewrite <- (Rplus_Or delta); Apply Rlt_compatibility.
Rewrite Rplus_Or; Apply (cond_pos delta).
Symmetry; Apply double.
DiscrR.
Cut ``0<delta/2``.
Intro; Generalize (Rmin_stable_in_posreal (mkposreal ``delta/2`` H9) (mkposreal ``(b-c)/2`` H8)); Simpl; Intro; Red; Intro; Rewrite H11 in H10; Elim (Rlt_antirefl ``0`` H10).
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Unfold Rdiv; Apply Rmult_lt_pos.
Generalize (Rlt_compatibility_r ``-c`` c b H0); Rewrite Rplus_Ropp_r; Intro; Assumption.
Apply Rlt_Rinv; Sup0.
Elim H2; Intro.
Symmetry; Assumption.
Generalize (derivable_derive f c pr); Intro; Elim H4; Intros l H5.
Rewrite H5 in H3; Generalize (derive_pt_eq_1 f c l pr H5); Intro; Cut ``0< -(l/2)``.
Intro; Elim (H6 ``-(l/2)`` H7); Intros delta H9.
Cut ``0<(c-a)/2``.
Intro; Cut ``(Rmax (-(delta/2)) ((a-c)/2))<0``.
Intro; Cut ``(Rmax (-(delta/2)) ((a-c)/2))<>0``.
Intro; Cut ``(Rabsolu (Rmax (-(delta/2)) ((a-c)/2)))<delta``.
Intro; Generalize (H9 ``(Rmax (-(delta/2)) ((a-c)/2))`` H11 H12); Intro; Cut ``a<c+(Rmax (-(delta/2)) ((a-c)/2))``.
Cut ``c+(Rmax (-(delta/2)) ((a-c)/2))<b``.
Intros; Generalize (H1 ``c+(Rmax (-(delta/2)) ((a-c)/2))`` H15 H14); Intro; Cut ``0<=((f (c+(Rmax (-(delta/2)) ((a-c)/2))))-(f c))/(Rmax (-(delta/2)) ((a-c)/2))``.
Intro; Cut ``0< -l``.
Intro; Unfold Rminus in H13; Cut ``0<((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2))+ -l``.
Intro; Cut ``(Rabsolu (((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2))+ -l)) < -(l/2)``.
Unfold Rabsolu; Case (case_Rabsolu ``((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2))+ -l``).
Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``((f (c+(Rmax ( -(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax ( -(delta/2)) ((a+ -c)/2))+ -l`` ``0`` H19 r)).
Intros; Generalize (Rlt_compatibility_r ``l`` ``(((f (c+(Rmax (-(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax (-(delta/2)) ((a+ -c)/2)))+ -l`` ``-(l/2)`` H20); Repeat Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Replace ``-(l/2)+l`` with ``l/2``.
Cut ``l/2<0``.
Intros; Generalize (Rlt_trans ``((f (c+(Rmax ( -(delta/2)) ((a+ -c)/2))))+ -(f c))/(Rmax ( -(delta/2)) ((a+ -c)/2))`` ``l/2`` ``0`` H22 H21); Intro; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``((f (c+(Rmax ( -(delta/2)) ((a-c)/2))))-(f c))/(Rmax ( -(delta/2)) ((a-c)/2))`` ``0`` H17 H23)).
Rewrite <- (Ropp_Ropp ``l/2``); Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Pattern 3 l; Rewrite double_var.
Ring.
Assumption.
Apply ge0_plus_gt0_is_gt0; Assumption.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Unfold Rdiv; Replace ``((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2))))-(f c))*/(Rmax ( -(delta*/2)) ((a-c)*/2))`` with ``(-((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2))))-(f c)))*/(-(Rmax ( -(delta*/2)) ((a-c)*/2)))``.
Apply Rmult_le_pos.
Generalize (Rle_compatibility ``-(f (c+(Rmax (-(delta*/2)) ((a-c)*/2))))`` ``(f (c+(Rmax (-(delta*/2)) ((a-c)*/2))))`` (f c) H16); Rewrite Rplus_Ropp_l; Replace ``-((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2))))-(f c))`` with ``-((f (c+(Rmax ( -(delta*/2)) ((a-c)*/2)))))+(f c)``.
Intro; Assumption.
Ring.
Left; Apply Rlt_Rinv; Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Unfold Rdiv.
Rewrite <- Ropp_Rinv.
Rewrite Ropp_mul2.
Reflexivity.
Unfold Rdiv in H11; Assumption.
Generalize (Rlt_compatibility c ``(Rmax ( -(delta/2)) ((a-c)/2))`` ``0`` H10); Rewrite Rplus_Or; Intro; Apply Rlt_trans with ``c``; Assumption.
Generalize (RmaxLess2 ``(-(delta/2))`` ``((a-c)/2)``); Intro; Generalize (Rle_compatibility c ``(a-c)/2`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` H14); Intro; Apply Rlt_le_trans with ``c+(a-c)/2``.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Replace ``2*(c+(a-c)/2)`` with ``a+c``.
Rewrite double.
Apply Rlt_compatibility; Assumption.
Ring.
Rewrite <- Rplus_assoc.
Rewrite <- double_var.
Ring.
Assumption.
Unfold Rabsolu; Case (case_Rabsolu (Rmax ``-(delta/2)`` ``(a-c)/2``)).
Intro; Generalize (RmaxLess1 ``-(delta/2)`` ``(a-c)/2``); Intro; Generalize (Rle_Ropp ``-(delta/2)`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` H12); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-(Rmax ( -(delta/2)) ((a-c)/2))`` ``delta/2`` H13); Intro; Apply Rle_lt_trans with ``delta/2``.
Assumption.
Apply Rlt_monotony_contra with ``2``. 
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double.
Pattern 2 delta; Rewrite <- (Rplus_Or delta); Apply Rlt_compatibility; Rewrite Rplus_Or; Apply (cond_pos delta).
DiscrR. 
Cut ``-(delta/2) < 0``.
Cut ``(a-c)/2<0``.
Intros; Generalize (Rmax_stable_in_negreal (mknegreal ``-(delta/2)`` H13) (mknegreal ``(a-c)/2`` H12)); Simpl; Intro; Generalize (Rle_sym2 ``0`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` r); Intro; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``(Rmax ( -(delta/2)) ((a-c)/2))`` ``0`` H15 H14)).
Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp ``(a-c)/2``); Apply Rlt_Ropp; Replace ``-((a-c)/2)`` with ``(c-a)/2``.
Assumption.
Unfold Rdiv.
Rewrite <- Ropp_mul1. 
Rewrite (Ropp_distr2 a c).
Reflexivity.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)]].
Red; Intro; Rewrite H11 in H10; Elim (Rlt_antirefl ``0`` H10).
Cut ``(a-c)/2<0``.
Intro; Cut ``-(delta/2)<0``.
Intro; Apply (Rmax_stable_in_negreal (mknegreal ``-(delta/2)`` H11) (mknegreal ``(a-c)/2`` H10)).
Rewrite <- Ropp_O; Apply Rlt_Ropp; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)]].
Rewrite <- Ropp_O; Rewrite <- (Ropp_Ropp ``(a-c)/2``); Apply Rlt_Ropp; Replace ``-((a-c)/2)`` with ``(c-a)/2``.
Assumption.
Unfold Rdiv.
Rewrite <- Ropp_mul1. 
Rewrite (Ropp_distr2 a c).
Reflexivity.
Unfold Rdiv; Apply Rmult_lt_pos; [Generalize (Rlt_compatibility_r ``-a`` a c H); Rewrite Rplus_Ropp_r; Intro; Assumption | Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)]].
Replace ``-(l/2)`` with ``(-l)/2``.
Unfold Rdiv; Apply Rmult_lt_pos.
Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Assert Hyp : ``0<2``; [Sup0 | Apply (Rlt_Rinv ``2`` Hyp)].
Unfold Rdiv; Apply Ropp_mul1.
Qed.

Theorem deriv_minimum : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a<c``->``c<b``->((x:R) ``a<x``->``x<b``->``(f c)<=(f x)``)->``(derive_pt f c pr)==0``.
Intros.
Rewrite <- (Ropp_Ropp (derive_pt f c pr)).
Apply eq_RoppO.
Rewrite <- (derive_pt_opp f c pr).
Cut (x:R)(``a<x``->``x<b``->``((opp_fct f) x)<=((opp_fct f) c)``).
Intro.
Apply (deriv_maximum (opp_fct f) a b c (derivable_pt_opp ? ? pr) H H0 H2).
Intros; Unfold opp_fct; Apply Rge_Ropp; Apply Rle_sym1.
Apply (H1 x H2 H3).
Qed.
 
Theorem deriv_constant2 : (f:R->R;a,b,c:R;pr:(derivable_pt f c)) ``a<c``->``c<b``->((x:R) ``a<x``->``x<b``->``(f x)==(f c)``)->``(derive_pt f c pr)==0``.
Intros.
EApply deriv_maximum with a b; Try Assumption.
Intros; Right; Apply (H1 x H2 H3).
Qed.

(**********)
Lemma nonneg_derivative_0 : (f:R->R;pr:(derivable f)) (increasing f) -> ((x:R) ``0<=(derive_pt f x (pr x))``).
Intros; Unfold increasing in H.
Assert H0 := (derivable_derive f x (pr x)).
Elim H0; Intros l H1.
Rewrite H1; Case (total_order R0 l); Intro.
Left; Assumption.
Elim H2; Intro.
Right; Assumption.
Assert H4 := (derive_pt_eq_1 f x l (pr x) H1).
Cut ``0< -(l/2)``.
Intro; Elim (H4 ``-(l/2)`` H5); Intros delta H6.
Cut ``delta/2<>0``/\``0<delta/2``/\``(Rabsolu delta/2)<delta``.
Intro; Decompose [and] H7; Intros; Generalize (H6 ``delta/2`` H8 H11); Cut ``0<=((f (x+delta/2))-(f x))/(delta/2)``.
Intro; Cut ``0<=((f (x+delta/2))-(f x))/(delta/2)-l``.
Intro; Unfold Rabsolu; Case (case_Rabsolu ``((f (x+delta/2))-(f x))/(delta/2)-l``).
Intro; Elim (Rlt_antirefl ``0`` (Rle_lt_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``0`` H12 r)).
Intros; Generalize (Rlt_compatibility_r l ``((f (x+delta/2))-(f x))/(delta/2)-l`` ``-(l/2)`` H13); Unfold Rminus; Replace ``-(l/2)+l`` with ``l/2``.
Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Intro; Generalize (Rle_lt_trans ``0`` ``((f (x+delta/2))-(f x))/(delta/2)`` ``l/2`` H9 H14); Intro; Cut ``l/2<0``.
Intro; Elim (Rlt_antirefl ``0`` (Rlt_trans ``0`` ``l/2`` ``0`` H15 H16)).
Rewrite <- Ropp_O in H5; Generalize (Rlt_Ropp ``-0`` ``-(l/2)`` H5); Repeat Rewrite Ropp_Ropp; Intro; Assumption.
Pattern 3 l ; Rewrite double_var.
Ring.
Unfold Rminus; Apply ge0_plus_ge0_is_ge0.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H x ``x+(delta*/2)`` H12); Intro; Generalize (Rle_compatibility ``-(f x)`` ``(f x)`` ``(f (x+delta*/2))`` H13); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption.
Left; Apply Rlt_Rinv; Assumption.
Left; Rewrite <- Ropp_O; Apply Rlt_Ropp; Assumption.
Unfold Rdiv; Apply Rmult_le_pos.
Cut ``x<=(x+(delta*/2))``.
Intro; Generalize (H x ``x+(delta*/2)`` H9); Intro; Generalize (Rle_compatibility ``-(f x)`` ``(f x)`` ``(f (x+delta*/2))`` H12); Rewrite Rplus_Ropp_l; Rewrite Rplus_sym; Intro; Assumption.
Pattern 1 x; Rewrite <- (Rplus_Or x); Apply Rle_compatibility; Left; Assumption. 
Left; Apply Rlt_Rinv; Assumption.
Split.
Unfold Rdiv; Apply prod_neq_R0.
Generalize (cond_pos delta); Intro; Red; Intro H9; Rewrite H9 in H7; Elim (Rlt_antirefl ``0`` H7).
Apply Rinv_neq_R0; DiscrR.
Split.
Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Replace ``(Rabsolu delta/2)`` with ``delta/2``.
Unfold Rdiv; Apply Rlt_monotony_contra with ``2``.
Sup0.
Rewrite (Rmult_sym ``2``).
Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym; [Idtac | DiscrR].
Rewrite Rmult_1r.
Rewrite double.
Pattern 1 (pos delta); Rewrite <- Rplus_Or.
Apply Rlt_compatibility; Apply (cond_pos delta).
Symmetry; Apply Rabsolu_right.
Left; Change ``0<delta/2``; Unfold Rdiv; Apply Rmult_lt_pos; [Apply (cond_pos delta) | Apply Rlt_Rinv; Sup0].
Unfold Rdiv; Rewrite <- Ropp_mul1; Apply Rmult_lt_pos.
Apply Rlt_anti_compatibility with l.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Assumption.
Apply Rlt_Rinv; Sup0.
Qed.