summaryrefslogtreecommitdiff
path: root/theories7/Reals/Ranalysis.v
blob: d5d84f50224c82b167a217fa24205ad18e3fe61d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
 
(*i $Id: Ranalysis.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require Rtrigo.
Require SeqSeries.
Require Export Ranalysis1.
Require Export Ranalysis2.
Require Export Ranalysis3.
Require Export Rtopology.
Require Export MVT.
Require Export PSeries_reg.
Require Export Exp_prop.
Require Export Rtrigo_reg.
Require Export Rsqrt_def.
Require Export R_sqrt.
Require Export Rtrigo_calc.
Require Export Rgeom.
Require Export RList.
Require Export Sqrt_reg.
Require Export Ranalysis4.
Require Export Rpower.
V7only [Import R_scope.]. Open Local Scope R_scope.

Axiom AppVar : R.

(**********)
Recursive Tactic Definition IntroHypG trm :=
Match trm With
|[(plus_fct ?1 ?2)] -> 
 (Match Context With
 |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2
 |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2
 | _ -> Idtac)
|[(minus_fct ?1 ?2)] -> 
 (Match Context With
 |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2
 |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2
 | _ -> Idtac)
|[(mult_fct ?1 ?2)] ->
 (Match Context With
 |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2
 |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2
 | _ -> Idtac)
|[(div_fct ?1 ?2)] -> Let aux = ?2 In
 (Match Context With
 |[_:(x0:R)``(aux x0)<>0``|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2
 |[_:(x0:R)``(aux x0)<>0``|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2
 |[|-(derivable ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1; IntroHypG ?2 | Try Assumption]
 |[|-(continuity ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1; IntroHypG ?2 | Try Assumption]
 | _ -> Idtac)
|[(comp ?1 ?2)] -> 
 (Match Context With
 |[|-(derivable ?)] -> IntroHypG ?1; IntroHypG ?2
 |[|-(continuity ?)] -> IntroHypG ?1; IntroHypG ?2
 | _ -> Idtac)
|[(opp_fct ?1)] -> 
 (Match Context With
 |[|-(derivable ?)] -> IntroHypG ?1
 |[|-(continuity ?)] -> IntroHypG ?1
 | _ -> Idtac)
|[(inv_fct ?1)] -> Let aux = ?1 In
 (Match Context With
 |[_:(x0:R)``(aux x0)<>0``|-(derivable ?)] -> IntroHypG ?1
 |[_:(x0:R)``(aux x0)<>0``|-(continuity ?)] -> IntroHypG ?1
 |[|-(derivable ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1 | Try Assumption]
 |[|-(continuity ?)] -> Cut ((x0:R)``(aux x0)<>0``); [Intro; IntroHypG ?1| Try Assumption]
 | _ -> Idtac)
|[cos] -> Idtac
|[sin] -> Idtac
|[cosh] -> Idtac
|[sinh] -> Idtac
|[exp] -> Idtac
|[Rsqr] -> Idtac
|[sqrt] -> Idtac
|[id] -> Idtac
|[(fct_cte ?)] -> Idtac
|[(pow_fct ?)] -> Idtac
|[Rabsolu] -> Idtac
|[?1] -> Let p = ?1 In
 (Match Context With
 |[_:(derivable p)|- ?] -> Idtac
 |[|-(derivable p)] -> Idtac
 |[|-(derivable ?)] -> Cut True -> (derivable p); [Intro HYPPD; Cut (derivable p); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac]
 | [_:(continuity p)|- ?] -> Idtac
 |[|-(continuity p)] -> Idtac
 |[|-(continuity ?)] -> Cut True -> (continuity p); [Intro HYPPD; Cut (continuity p); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac]
 | _ -> Idtac).

(**********)
Recursive Tactic Definition IntroHypL trm pt :=
Match trm With
|[(plus_fct ?1 ?2)] -> 
 (Match Context With
 |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 | _ -> Idtac)
|[(minus_fct ?1 ?2)] -> 
 (Match Context With
 |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 | _ -> Idtac)
|[(mult_fct ?1 ?2)] ->
 (Match Context With
 |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 | _ -> Idtac)
|[(div_fct ?1 ?2)] -> Let aux = ?2 In
 (Match Context With
 |[_:``(aux pt)<>0``|-(derivable_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[_:``(aux pt)<>0``|-(continuity_pt ? ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[_:``(aux pt)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt; IntroHypL ?2 pt
 |[id:(x0:R)``(aux x0)<>0``|-(derivable_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt; IntroHypL ?2 pt
 |[id:(x0:R)``(aux x0)<>0``|-(continuity_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt; IntroHypL ?2 pt
 |[id:(x0:R)``(aux x0)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt; IntroHypL ?2 pt
 |[|-(derivable_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt; IntroHypL ?2 pt | Try Assumption]
 |[|-(continuity_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt; IntroHypL ?2 pt | Try Assumption]
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt; IntroHypL ?2 pt | Try Assumption]
 | _ -> Idtac)
|[(comp ?1 ?2)] -> 
 (Match Context With
 |[|-(derivable_pt ? ?)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In IntroHypL ?1 pt_f1; IntroHypL ?2 pt
 |[|-(continuity_pt ? ?)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In IntroHypL ?1 pt_f1; IntroHypL ?2 pt
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In IntroHypL ?1 pt_f1; IntroHypL ?2 pt
 | _ -> Idtac)
|[(opp_fct ?1)] -> 
 (Match Context With
 |[|-(derivable_pt ? ?)] -> IntroHypL ?1 pt
 |[|-(continuity_pt ? ?)] -> IntroHypL ?1 pt
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt
 | _ -> Idtac)
|[(inv_fct ?1)] -> Let aux = ?1 In
 (Match Context With
 |[_:``(aux pt)<>0``|-(derivable_pt ? ?)] -> IntroHypL ?1 pt
 |[_:``(aux pt)<>0``|-(continuity_pt ? ?)] -> IntroHypL ?1 pt
 |[_:``(aux pt)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> IntroHypL ?1 pt
 |[id:(x0:R)``(aux x0)<>0``|-(derivable_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt
 |[id:(x0:R)``(aux x0)<>0``|-(continuity_pt ? ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt
 |[id:(x0:R)``(aux x0)<>0``|-(eqT ? (derive_pt ? ? ?) ?)] -> Generalize (id pt); Intro; IntroHypL ?1 pt
 |[|-(derivable_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt | Try Assumption]
 |[|-(continuity_pt ? ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt| Try Assumption]
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut ``(aux pt)<>0``; [Intro; IntroHypL ?1 pt | Try Assumption]
 | _ -> Idtac)
|[cos] -> Idtac
|[sin] -> Idtac
|[cosh] -> Idtac
|[sinh] -> Idtac
|[exp] -> Idtac
|[Rsqr] -> Idtac
|[id] -> Idtac
|[(fct_cte ?)] -> Idtac
|[(pow_fct ?)] -> Idtac
|[sqrt] ->
 (Match Context With
 |[|-(derivable_pt ? ?)] -> Cut ``0<pt``; [Intro | Try Assumption]
 |[|-(continuity_pt ? ?)] -> Cut ``0<=pt``; [Intro | Try Assumption]
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut ``0<pt``; [Intro | Try Assumption]
 | _ -> Idtac)
|[Rabsolu] ->
 (Match Context With
 |[|-(derivable_pt ? ?)] -> Cut ``pt<>0``; [Intro | Try Assumption]
 | _ -> Idtac)
|[?1] -> Let p = ?1 In
 (Match Context With
 |[_:(derivable_pt p pt)|- ?] -> Idtac
 |[|-(derivable_pt p pt)] -> Idtac
 |[|-(derivable_pt ? ?)] -> Cut True -> (derivable_pt p pt); [Intro HYPPD; Cut (derivable_pt p pt); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac]
 |[_:(continuity_pt p pt)|- ?] -> Idtac
 |[|-(continuity_pt p pt)] -> Idtac
 |[|-(continuity_pt ? ?)] -> Cut True -> (continuity_pt p pt); [Intro HYPPD; Cut (continuity_pt p pt); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac]
 |[|-(eqT ? (derive_pt ? ? ?) ?)] -> Cut True -> (derivable_pt p pt); [Intro HYPPD; Cut (derivable_pt p pt); [Intro; Clear HYPPD | Apply HYPPD; Clear HYPPD; Trivial] | Idtac]
 | _ -> Idtac).
 
(**********)
Recursive Tactic Definition IsDiff_pt :=
Match Context With
 (* fonctions de base *)
 [|-(derivable_pt Rsqr ?)] -> Apply derivable_pt_Rsqr
|[|-(derivable_pt id ?1)] -> Apply (derivable_pt_id ?1)
|[|-(derivable_pt (fct_cte ?) ?)] -> Apply derivable_pt_const
|[|-(derivable_pt sin ?)] -> Apply derivable_pt_sin
|[|-(derivable_pt cos ?)] -> Apply derivable_pt_cos
|[|-(derivable_pt sinh ?)] -> Apply derivable_pt_sinh
|[|-(derivable_pt cosh ?)] -> Apply derivable_pt_cosh
|[|-(derivable_pt exp ?)] -> Apply derivable_pt_exp
|[|-(derivable_pt (pow_fct ?) ?)] -> Unfold pow_fct; Apply derivable_pt_pow
|[|-(derivable_pt sqrt ?1)] -> Apply (derivable_pt_sqrt ?1); Assumption Orelse Unfold plus_fct minus_fct opp_fct mult_fct div_fct inv_fct comp id fct_cte pow_fct
|[|-(derivable_pt Rabsolu ?1)] -> Apply (derivable_pt_Rabsolu ?1); Assumption Orelse Unfold plus_fct minus_fct opp_fct mult_fct div_fct inv_fct comp id fct_cte pow_fct
 (* regles de differentiabilite *)
 (* PLUS *)
|[|-(derivable_pt (plus_fct ?1 ?2) ?3)] -> Apply (derivable_pt_plus ?1 ?2 ?3); IsDiff_pt
 (* MOINS *)
|[|-(derivable_pt (minus_fct ?1 ?2) ?3)] -> Apply (derivable_pt_minus ?1 ?2 ?3); IsDiff_pt
 (* OPPOSE *)
|[|-(derivable_pt (opp_fct ?1) ?2)] -> Apply (derivable_pt_opp ?1 ?2); IsDiff_pt
 (* MULTIPLICATION PAR UN SCALAIRE *)
|[|-(derivable_pt (mult_real_fct ?1 ?2) ?3)] -> Apply (derivable_pt_scal ?2 ?1 ?3); IsDiff_pt
 (* MULTIPLICATION *)
|[|-(derivable_pt (mult_fct ?1 ?2) ?3)] -> Apply (derivable_pt_mult ?1 ?2 ?3); IsDiff_pt
  (* DIVISION *)
 |[|-(derivable_pt (div_fct ?1 ?2) ?3)] -> Apply (derivable_pt_div ?1 ?2 ?3); [IsDiff_pt | IsDiff_pt | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp pow_fct id fct_cte]
  (* INVERSION *)
 |[|-(derivable_pt (inv_fct ?1) ?2)] -> Apply (derivable_pt_inv ?1 ?2); [Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp pow_fct id fct_cte | IsDiff_pt]
 (* COMPOSITION *)
|[|-(derivable_pt (comp ?1 ?2) ?3)] -> Apply (derivable_pt_comp ?2 ?1 ?3); IsDiff_pt
|[_:(derivable_pt ?1 ?2)|-(derivable_pt ?1 ?2)] -> Assumption
|[_:(derivable ?1) |- (derivable_pt ?1 ?2)] -> Cut (derivable ?1); [Intro HypDDPT; Apply HypDDPT | Assumption]
|[|-True->(derivable_pt ? ?)] -> Intro HypTruE; Clear HypTruE; IsDiff_pt
| _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct.

(**********)
Recursive Tactic Definition IsDiff_glob :=
Match Context With
 (* fonctions de base *)
  [|-(derivable Rsqr)] -> Apply derivable_Rsqr
 |[|-(derivable id)] -> Apply derivable_id
 |[|-(derivable (fct_cte ?))] -> Apply derivable_const
 |[|-(derivable sin)] -> Apply derivable_sin
 |[|-(derivable cos)] -> Apply derivable_cos
 |[|-(derivable cosh)] -> Apply derivable_cosh
 |[|-(derivable sinh)] -> Apply derivable_sinh
 |[|-(derivable exp)] -> Apply derivable_exp
 |[|-(derivable (pow_fct ?))] -> Unfold pow_fct; Apply derivable_pow
  (* regles de differentiabilite *)
  (* PLUS *)
 |[|-(derivable (plus_fct ?1 ?2))] -> Apply (derivable_plus ?1 ?2); IsDiff_glob
  (* MOINS *)
 |[|-(derivable (minus_fct ?1 ?2))] -> Apply (derivable_minus ?1 ?2); IsDiff_glob
  (* OPPOSE *)
 |[|-(derivable (opp_fct ?1))] -> Apply (derivable_opp ?1); IsDiff_glob
  (* MULTIPLICATION PAR UN SCALAIRE *)
 |[|-(derivable (mult_real_fct ?1 ?2))] -> Apply (derivable_scal ?2 ?1); IsDiff_glob
  (* MULTIPLICATION *)
 |[|-(derivable (mult_fct ?1 ?2))] -> Apply (derivable_mult ?1 ?2); IsDiff_glob
  (* DIVISION *)
 |[|-(derivable (div_fct ?1 ?2))] -> Apply (derivable_div ?1 ?2); [IsDiff_glob | IsDiff_glob | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct]
  (* INVERSION *)
 |[|-(derivable (inv_fct ?1))] -> Apply (derivable_inv ?1); [Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct | IsDiff_glob]
  (* COMPOSITION *)
 |[|-(derivable (comp sqrt ?))] -> Unfold derivable; Intro; Try IsDiff_pt
 |[|-(derivable (comp Rabsolu ?))] -> Unfold derivable; Intro; Try IsDiff_pt
 |[|-(derivable (comp ?1 ?2))] -> Apply (derivable_comp ?2 ?1); IsDiff_glob
 |[_:(derivable ?1)|-(derivable ?1)] -> Assumption
 |[|-True->(derivable ?)] -> Intro HypTruE; Clear HypTruE; IsDiff_glob
 | _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct.

(**********)
Recursive Tactic Definition IsCont_pt :=
Match Context With
 (* fonctions de base *)
 [|-(continuity_pt Rsqr ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_Rsqr
|[|-(continuity_pt id ?1)] -> Apply derivable_continuous_pt; Apply (derivable_pt_id ?1)
|[|-(continuity_pt (fct_cte ?) ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_const
|[|-(continuity_pt sin ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_sin
|[|-(continuity_pt cos ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_cos
|[|-(continuity_pt sinh ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_sinh
|[|-(continuity_pt cosh ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_cosh
|[|-(continuity_pt exp ?)] -> Apply derivable_continuous_pt; Apply derivable_pt_exp
|[|-(continuity_pt (pow_fct ?) ?)] -> Unfold pow_fct; Apply derivable_continuous_pt; Apply derivable_pt_pow
|[|-(continuity_pt sqrt ?1)] -> Apply continuity_pt_sqrt; Assumption Orelse Unfold plus_fct minus_fct opp_fct mult_fct div_fct inv_fct comp id fct_cte pow_fct
|[|-(continuity_pt Rabsolu ?1)] -> Apply (continuity_Rabsolu ?1)
 (* regles de differentiabilite *)
 (* PLUS *)
|[|-(continuity_pt (plus_fct ?1 ?2) ?3)] -> Apply (continuity_pt_plus ?1 ?2 ?3); IsCont_pt
 (* MOINS *)
|[|-(continuity_pt (minus_fct ?1 ?2) ?3)] -> Apply (continuity_pt_minus ?1 ?2 ?3); IsCont_pt
 (* OPPOSE *)
|[|-(continuity_pt (opp_fct ?1) ?2)] -> Apply (continuity_pt_opp ?1 ?2); IsCont_pt
 (* MULTIPLICATION PAR UN SCALAIRE *)
|[|-(continuity_pt (mult_real_fct ?1 ?2) ?3)] -> Apply (continuity_pt_scal ?2 ?1 ?3); IsCont_pt
 (* MULTIPLICATION *)
|[|-(continuity_pt (mult_fct ?1 ?2) ?3)] -> Apply (continuity_pt_mult ?1 ?2 ?3); IsCont_pt
  (* DIVISION *)
 |[|-(continuity_pt (div_fct ?1 ?2) ?3)] -> Apply (continuity_pt_div ?1 ?2 ?3); [IsCont_pt | IsCont_pt | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp id fct_cte pow_fct]
  (* INVERSION *)
 |[|-(continuity_pt (inv_fct ?1) ?2)] -> Apply (continuity_pt_inv ?1 ?2); [IsCont_pt | Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct comp id fct_cte pow_fct]
 (* COMPOSITION *)
|[|-(continuity_pt (comp ?1 ?2) ?3)] -> Apply (continuity_pt_comp ?2 ?1 ?3); IsCont_pt
|[_:(continuity_pt ?1 ?2)|-(continuity_pt ?1 ?2)] -> Assumption
|[_:(continuity ?1) |- (continuity_pt ?1 ?2)] -> Cut (continuity ?1); [Intro HypDDPT; Apply HypDDPT | Assumption]
|[_:(derivable_pt ?1 ?2)|-(continuity_pt ?1 ?2)] -> Apply derivable_continuous_pt; Assumption
|[_:(derivable ?1)|-(continuity_pt ?1 ?2)] -> Cut (continuity ?1); [Intro HypDDPT; Apply HypDDPT | Apply derivable_continuous; Assumption]
|[|-True->(continuity_pt ? ?)] -> Intro HypTruE; Clear HypTruE; IsCont_pt
| _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct.

(**********)
Recursive Tactic Definition IsCont_glob :=
Match Context With
  (* fonctions de base *)
  [|-(continuity Rsqr)] -> Apply derivable_continuous; Apply derivable_Rsqr
 |[|-(continuity id)] -> Apply derivable_continuous; Apply derivable_id
 |[|-(continuity (fct_cte ?))] -> Apply derivable_continuous; Apply derivable_const
 |[|-(continuity sin)] -> Apply derivable_continuous; Apply derivable_sin
 |[|-(continuity cos)] -> Apply derivable_continuous; Apply derivable_cos
 |[|-(continuity exp)] -> Apply derivable_continuous; Apply derivable_exp
 |[|-(continuity (pow_fct ?))] -> Unfold pow_fct; Apply derivable_continuous; Apply derivable_pow
 |[|-(continuity sinh)] -> Apply derivable_continuous; Apply derivable_sinh
 |[|-(continuity cosh)] -> Apply derivable_continuous; Apply derivable_cosh
 |[|-(continuity Rabsolu)] -> Apply continuity_Rabsolu
 (* regles de continuite *)
 (* PLUS *)
|[|-(continuity (plus_fct ?1 ?2))] -> Apply (continuity_plus ?1 ?2); Try IsCont_glob Orelse Assumption
 (* MOINS *)
|[|-(continuity (minus_fct ?1 ?2))] -> Apply (continuity_minus ?1 ?2); Try IsCont_glob Orelse Assumption
 (* OPPOSE *)
|[|-(continuity (opp_fct ?1))] -> Apply (continuity_opp ?1); Try IsCont_glob Orelse Assumption
 (* INVERSE *)
|[|-(continuity (inv_fct ?1))] -> Apply (continuity_inv ?1); Try IsCont_glob Orelse Assumption
 (* MULTIPLICATION PAR UN SCALAIRE *)
|[|-(continuity (mult_real_fct ?1 ?2))] -> Apply (continuity_scal ?2 ?1); Try IsCont_glob Orelse Assumption
 (* MULTIPLICATION *)
|[|-(continuity (mult_fct ?1 ?2))] -> Apply (continuity_mult ?1 ?2); Try IsCont_glob Orelse Assumption
  (* DIVISION *)
 |[|-(continuity (div_fct ?1 ?2))] -> Apply (continuity_div ?1 ?2); [Try IsCont_glob Orelse Assumption | Try IsCont_glob Orelse Assumption | Try Assumption Orelse Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte pow_fct]
  (* COMPOSITION *)
 |[|-(continuity (comp sqrt ?))] -> Unfold continuity_pt; Intro; Try IsCont_pt
 |[|-(continuity (comp ?1 ?2))] -> Apply (continuity_comp ?2 ?1); Try IsCont_glob Orelse Assumption
 |[_:(continuity ?1)|-(continuity ?1)] -> Assumption
 |[|-True->(continuity ?)] -> Intro HypTruE; Clear HypTruE; IsCont_glob
 |[_:(derivable ?1)|-(continuity ?1)] -> Apply derivable_continuous; Assumption
 | _ -> Try Unfold plus_fct mult_fct div_fct minus_fct opp_fct inv_fct id fct_cte comp pow_fct.

(**********)
Recursive Tactic Definition RewTerm trm :=
Match trm With
| [(Rplus ?1 ?2)] -> Let p1= (RewTerm ?1) And p2 = (RewTerm ?2) In 
  (Match p1 With
   [(fct_cte ?3)] -> 
    (Match p2 With
    | [(fct_cte ?4)] -> '(fct_cte (Rplus ?3 ?4))
    | _ -> '(plus_fct p1 p2))
  | _ -> '(plus_fct p1 p2))
| [(Rminus ?1 ?2)] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In
  (Match p1 With
   [(fct_cte ?3)] -> 
    (Match p2 With
    | [(fct_cte ?4)] -> '(fct_cte (Rminus ?3 ?4))
    | _ -> '(minus_fct p1 p2))
  | _ -> '(minus_fct p1 p2))
| [(Rdiv ?1 ?2)] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In
  (Match p1 With
   [(fct_cte ?3)] -> 
    (Match p2 With
    | [(fct_cte ?4)] -> '(fct_cte (Rdiv ?3 ?4))
    | _ -> '(div_fct p1 p2))
  | _ -> 
    (Match p2 With
    | [(fct_cte ?4)] -> '(mult_fct p1 (fct_cte (Rinv ?4)))
    | _ -> '(div_fct p1 p2)))
| [(Rmult ?1 (Rinv ?2))] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In
  (Match p1 With
   [(fct_cte ?3)] -> 
    (Match p2 With
    | [(fct_cte ?4)] -> '(fct_cte (Rdiv ?3 ?4))
    | _ -> '(div_fct p1 p2))
  | _ -> 
   (Match p2 With
   | [(fct_cte ?4)] -> '(mult_fct p1 (fct_cte (Rinv ?4)))
   | _ -> '(div_fct p1 p2)))
| [(Rmult ?1 ?2)] -> Let p1 = (RewTerm ?1) And p2 = (RewTerm ?2) In
  (Match p1 With
   [(fct_cte ?3)] -> 
    (Match p2 With
    | [(fct_cte ?4)] -> '(fct_cte (Rmult ?3 ?4))
    | _ -> '(mult_fct p1 p2))
  | _ -> '(mult_fct p1 p2))
| [(Ropp ?1)] -> Let p = (RewTerm ?1) In 
  (Match p With
   [(fct_cte ?2)] -> '(fct_cte (Ropp ?2))
   | _ -> '(opp_fct p))
| [(Rinv ?1)] -> Let p = (RewTerm ?1) In 
  (Match p With
   [(fct_cte ?2)] -> '(fct_cte (Rinv ?2))
   | _ -> '(inv_fct p))
| [(?1 AppVar)] -> '?1
| [(?1 ?2)] -> Let p = (RewTerm ?2) In 
 (Match p With
 | [(fct_cte ?3)] -> '(fct_cte (?1 ?3))
 | _ -> '(comp ?1 p))
| [AppVar] -> 'id
| [(pow AppVar ?1)] -> '(pow_fct ?1)
| [(pow ?1 ?2)] -> Let p = (RewTerm ?1) In 
 (Match p With
 | [(fct_cte ?3)] -> '(fct_cte (pow_fct ?2 ?3))
 | _ -> '(comp (pow_fct ?2) p))
| [?1]-> '(fct_cte ?1).

(**********)
Recursive Tactic Definition ConsProof trm pt :=
Match trm With
| [(plus_fct ?1 ?2)] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_plus ?1 ?2 pt p1 p2)
| [(minus_fct ?1 ?2)] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_minus ?1 ?2 pt p1 p2)
| [(mult_fct ?1 ?2)] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_mult ?1 ?2 pt p1 p2)
| [(div_fct ?1 ?2)] ->
 (Match Context With
 |[id:~((?2 pt)==R0) |- ?] -> Let p1 = (ConsProof ?1 pt) And p2 = (ConsProof ?2 pt) In '(derivable_pt_div ?1 ?2 pt p1 p2 id)
 | _ -> 'False)
| [(inv_fct ?1)] ->
 (Match Context With
 |[id:~((?1 pt)==R0) |- ?] -> Let p1 = (ConsProof ?1 pt) In '(derivable_pt_inv ?1 pt p1 id)
 | _ -> 'False)
| [(comp ?1 ?2)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In Let p1 = (ConsProof ?1 pt_f1) And p2 = (ConsProof ?2 pt) In '(derivable_pt_comp ?2 ?1 pt p2 p1)
| [(opp_fct ?1)] -> Let p1 = (ConsProof ?1 pt) In '(derivable_pt_opp ?1 pt p1)
| [sin] -> '(derivable_pt_sin pt)
| [cos] -> '(derivable_pt_cos pt)
| [sinh] -> '(derivable_pt_sinh pt)
| [cosh] -> '(derivable_pt_cosh pt)
| [exp] -> '(derivable_pt_exp pt)
| [id] -> '(derivable_pt_id pt)
| [Rsqr] -> '(derivable_pt_Rsqr pt)
| [sqrt] ->
 (Match Context With
 |[id:(Rlt R0 pt) |- ?] -> '(derivable_pt_sqrt pt id)
 | _ -> 'False)
| [(fct_cte ?1)] -> '(derivable_pt_const ?1 pt)
| [?1] -> Let aux = ?1 In
 (Match Context With
    [ id : (derivable_pt aux pt) |- ?] -> 'id
   |[ id : (derivable aux) |- ?] -> '(id pt)
   | _ -> 'False).

(**********)
Recursive Tactic Definition SimplifyDerive trm pt :=
Match trm With
| [(plus_fct ?1 ?2)] -> Try Rewrite derive_pt_plus; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt
| [(minus_fct ?1 ?2)] -> Try Rewrite derive_pt_minus; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt
| [(mult_fct ?1 ?2)] -> Try Rewrite derive_pt_mult; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt
| [(div_fct ?1 ?2)] -> Try Rewrite derive_pt_div; SimplifyDerive ?1 pt; SimplifyDerive ?2 pt
| [(comp ?1 ?2)] -> Let pt_f1 = (Eval Cbv Beta in (?2 pt)) In Try Rewrite derive_pt_comp; SimplifyDerive ?1 pt_f1; SimplifyDerive ?2 pt
| [(opp_fct ?1)] -> Try Rewrite derive_pt_opp; SimplifyDerive ?1 pt
| [(inv_fct ?1)] -> Try Rewrite derive_pt_inv; SimplifyDerive ?1 pt
| [(fct_cte ?1)] -> Try Rewrite derive_pt_const
| [id] -> Try Rewrite derive_pt_id
| [sin] -> Try Rewrite derive_pt_sin
| [cos] -> Try Rewrite derive_pt_cos
| [sinh] -> Try Rewrite derive_pt_sinh
| [cosh] -> Try Rewrite derive_pt_cosh
| [exp] -> Try Rewrite derive_pt_exp
| [Rsqr] -> Try Rewrite derive_pt_Rsqr
| [sqrt] -> Try Rewrite derive_pt_sqrt
| [?1] -> Let aux = ?1 In
  (Match Context With
    [ id : (eqT ? (derive_pt aux pt ?2) ?); H : (derivable aux) |- ? ] -> Try Replace (derive_pt aux pt (H pt)) with (derive_pt aux pt ?2); [Rewrite id | Apply pr_nu]
    |[ id : (eqT ? (derive_pt aux pt ?2) ?); H : (derivable_pt aux pt) |- ? ] -> Try Replace (derive_pt aux pt H) with (derive_pt aux pt ?2); [Rewrite id | Apply pr_nu]
    | _ -> Idtac )
| _ -> Idtac.

(**********)
Tactic Definition Reg :=
Match Context With
| [|-(derivable_pt ?1 ?2)] -> 
Let trm = Eval Cbv Beta in (?1 AppVar) In
Let aux = (RewTerm trm) In IntroHypL aux ?2; Try (Change (derivable_pt aux ?2); IsDiff_pt) Orelse IsDiff_pt
| [|-(derivable ?1)] ->
Let trm = Eval Cbv Beta in (?1 AppVar) In
Let aux = (RewTerm trm) In IntroHypG aux; Try (Change (derivable aux); IsDiff_glob) Orelse IsDiff_glob
| [|-(continuity ?1)] ->
Let trm = Eval Cbv Beta in (?1 AppVar) In
Let aux = (RewTerm trm) In IntroHypG aux; Try (Change (continuity aux); IsCont_glob) Orelse IsCont_glob
| [|-(continuity_pt ?1 ?2)] ->
Let trm = Eval Cbv Beta in (?1 AppVar) In
Let aux = (RewTerm trm) In IntroHypL aux ?2; Try (Change (continuity_pt aux ?2); IsCont_pt) Orelse IsCont_pt
| [|-(eqT ? (derive_pt ?1 ?2 ?3) ?4)] -> 
Let trm = Eval Cbv Beta in (?1 AppVar) In
Let aux = (RewTerm trm) In
IntroHypL aux ?2; Let aux2 = (ConsProof aux ?2) In Try (Replace (derive_pt ?1 ?2 ?3) with (derive_pt aux ?2 aux2); [SimplifyDerive aux ?2; Try Unfold plus_fct minus_fct mult_fct div_fct id fct_cte inv_fct opp_fct; Try Ring | Try Apply pr_nu]) Orelse IsDiff_pt.