summaryrefslogtreecommitdiff
path: root/theories7/Reals/R_sqr.v
blob: fc01a164775b5d98a10caebc85fb8e3dec1f34a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: R_sqr.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)

Require Rbase.
Require Rbasic_fun.
V7only [Import R_scope.]. Open Local Scope R_scope.

(****************************************************)
(* Rsqr : some results                              *)
(****************************************************)

Tactic Definition SqRing := Unfold Rsqr; Ring.

Lemma Rsqr_neg : (x:R) ``(Rsqr x)==(Rsqr (-x))``.
Intros; SqRing.
Qed.

Lemma Rsqr_times : (x,y:R) ``(Rsqr (x*y))==(Rsqr x)*(Rsqr y)``.
Intros; SqRing.
Qed.

Lemma Rsqr_plus : (x,y:R) ``(Rsqr (x+y))==(Rsqr x)+(Rsqr y)+2*x*y``.
Intros; SqRing.
Qed.

Lemma Rsqr_minus : (x,y:R) ``(Rsqr (x-y))==(Rsqr x)+(Rsqr y)-2*x*y``.
Intros; SqRing.
Qed.

Lemma Rsqr_neg_minus : (x,y:R) ``(Rsqr (x-y))==(Rsqr (y-x))``.
Intros; SqRing.
Qed.

Lemma Rsqr_1 : ``(Rsqr 1)==1``.
SqRing.
Qed.

Lemma Rsqr_gt_0_0 : (x:R) ``0<(Rsqr x)`` -> ~``x==0``.
Intros; Red; Intro; Rewrite H0 in H; Rewrite Rsqr_O in H; Elim (Rlt_antirefl ``0`` H).
Qed.

Lemma Rsqr_pos_lt : (x:R) ~(x==R0)->``0<(Rsqr x)``.
Intros; Case (total_order R0 x); Intro; [Unfold Rsqr; Apply Rmult_lt_pos; Assumption | Elim H0; Intro; [Elim H; Symmetry; Exact H1 | Rewrite Rsqr_neg; Generalize (Rlt_Ropp x ``0`` H1); Rewrite Ropp_O; Intro; Unfold Rsqr; Apply Rmult_lt_pos; Assumption]].
Qed.

Lemma Rsqr_div : (x,y:R) ~``y==0`` -> ``(Rsqr (x/y))==(Rsqr x)/(Rsqr y)``.
Intros; Unfold Rsqr.
Unfold Rdiv.
Rewrite Rinv_Rmult.
Repeat Rewrite Rmult_assoc.
Apply Rmult_mult_r.
Pattern 2 x; Rewrite Rmult_sym.
Repeat Rewrite Rmult_assoc.
Apply Rmult_mult_r.
Reflexivity.
Assumption.
Assumption.
Qed.

Lemma Rsqr_eq_0 : (x:R) ``(Rsqr x)==0`` -> ``x==0``.
Unfold Rsqr; Intros; Generalize (without_div_Od x x H); Intro; Elim H0; Intro ; Assumption.
Qed.

Lemma Rsqr_minus_plus : (a,b:R) ``(a-b)*(a+b)==(Rsqr a)-(Rsqr b)``.
Intros; SqRing.
Qed.

Lemma Rsqr_plus_minus : (a,b:R) ``(a+b)*(a-b)==(Rsqr a)-(Rsqr b)``.
Intros; SqRing.
Qed.

Lemma Rsqr_incr_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``0<=x`` -> ``0<=y`` -> ``x<=y``.
Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y<x``; [Intro; Unfold Rsqr in H; Generalize (Rmult_lt2 y x y x H1 H1 H2 H2); Intro; Generalize (Rle_lt_trans ``x*x`` ``y*y`` ``x*x`` H H3); Intro; Elim (Rlt_antirefl ``x*x`` H4) | Auto with real]].
Qed.

Lemma Rsqr_incr_0_var : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``0<=y`` -> ``x<=y``.
Intros; Case (total_order_Rle x y); Intro; [Assumption | Cut ``y<x``; [Intro; Unfold Rsqr in H; Generalize (Rmult_lt2 y x y x H0 H0 H1 H1); Intro; Generalize (Rle_lt_trans ``x*x`` ``y*y`` ``x*x`` H H2); Intro; Elim (Rlt_antirefl ``x*x`` H3) | Auto with real]].
Qed.

Lemma Rsqr_incr_1 : (x,y:R) ``x<=y``->``0<=x``->``0<= y``->``(Rsqr x)<=(Rsqr y)``.
Intros; Unfold Rsqr; Apply Rle_Rmult_comp; Assumption.
Qed.

Lemma Rsqr_incrst_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)``->``0<=x``->``0<=y``-> ``x<y``.
Intros; Case (total_order x y); Intro; [Assumption | Elim H2; Intro; [Rewrite H3 in H; Elim (Rlt_antirefl (Rsqr y) H) | Generalize (Rmult_lt2 y x y x H1 H1 H3 H3); Intro; Unfold Rsqr in H; Generalize (Rlt_trans ``x*x`` ``y*y`` ``x*x`` H H4); Intro; Elim (Rlt_antirefl ``x*x`` H5)]].
Qed.

Lemma Rsqr_incrst_1 : (x,y:R) ``x<y``->``0<=x``->``0<=y``->``(Rsqr x)<(Rsqr y)``.
Intros; Unfold Rsqr; Apply Rmult_lt2; Assumption.
Qed.

Lemma Rsqr_neg_pos_le_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)``->``0<=y``->``-y<=x``.
Intros; Case (case_Rabsolu x); Intro.
Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Rewrite (Rsqr_neg x) in H; Generalize (Rsqr_incr_0 (Ropp x) y H H2 H0); Intro; Rewrite <- (Ropp_Ropp x); Apply Rge_Ropp; Apply Rle_sym1; Assumption.
Apply Rle_trans with ``0``; [Rewrite <- Ropp_O; Apply Rge_Ropp; Apply Rle_sym1; Assumption | Apply Rle_sym2; Assumption].
Qed.

Lemma Rsqr_neg_pos_le_1 : (x,y:R) ``(-y)<=x`` -> ``x<=y`` -> ``0<=y`` -> ``(Rsqr x)<=(Rsqr y)``.
Intros; Case (case_Rabsolu x); Intro.
Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H2); Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H4); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption.
Generalize (Rle_sym2 ``0`` x r); Intro; Apply Rsqr_incr_1; Assumption.
Qed.

Lemma neg_pos_Rsqr_le : (x,y:R) ``(-y)<=x``->``x<=y``->``(Rsqr x)<=(Rsqr y)``.
Intros; Case (case_Rabsolu x); Intro.
Generalize (Rlt_Ropp x ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rle_Ropp ``-y`` x H); Rewrite Ropp_Ropp; Intro; Generalize (Rle_sym2 ``-x`` y H2); Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Generalize (Rle_trans ``0`` ``-x`` y H4 H3); Intro; Rewrite (Rsqr_neg x); Apply Rsqr_incr_1; Assumption.
Generalize (Rle_sym2 ``0`` x r); Intro; Generalize (Rle_trans ``0`` x y H1 H0); Intro; Apply Rsqr_incr_1; Assumption.
Qed.

Lemma Rsqr_abs : (x:R) ``(Rsqr x)==(Rsqr (Rabsolu x))``.
Intro; Unfold Rabsolu; Case (case_Rabsolu x); Intro; [Apply Rsqr_neg | Reflexivity].
Qed.

Lemma Rsqr_le_abs_0 : (x,y:R) ``(Rsqr x)<=(Rsqr y)`` -> ``(Rabsolu x)<=(Rabsolu y)``.
Intros; Apply Rsqr_incr_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos].
Qed.

Lemma Rsqr_le_abs_1 : (x,y:R) ``(Rabsolu x)<=(Rabsolu y)`` -> ``(Rsqr x)<=(Rsqr y)``.
Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incr_1 (Rabsolu x) (Rabsolu y)  H (Rabsolu_pos x) (Rabsolu_pos y)).
Qed.

Lemma Rsqr_lt_abs_0 : (x,y:R) ``(Rsqr x)<(Rsqr y)`` -> ``(Rabsolu x)<(Rabsolu y)``.
Intros; Apply Rsqr_incrst_0; Repeat Rewrite <- Rsqr_abs; [Assumption | Apply Rabsolu_pos | Apply Rabsolu_pos].
Qed.

Lemma Rsqr_lt_abs_1 : (x,y:R) ``(Rabsolu x)<(Rabsolu y)`` -> ``(Rsqr x)<(Rsqr y)``.
Intros; Rewrite (Rsqr_abs x); Rewrite (Rsqr_abs y); Apply (Rsqr_incrst_1 (Rabsolu x) (Rabsolu y)  H (Rabsolu_pos x) (Rabsolu_pos y)).
Qed.

Lemma Rsqr_inj : (x,y:R) ``0<=x`` -> ``0<=y`` -> (Rsqr x)==(Rsqr y) -> x==y.
Intros; Generalize (Rle_le_eq (Rsqr x) (Rsqr y)); Intro; Elim H2; Intros _ H3; Generalize (H3 H1); Intro; Elim H4; Intros; Apply Rle_antisym; Apply Rsqr_incr_0; Assumption.
Qed.

Lemma Rsqr_eq_abs_0 : (x,y:R) (Rsqr x)==(Rsqr y) -> (Rabsolu x)==(Rabsolu y).
Intros; Unfold Rabsolu; Case (case_Rabsolu x); Case (case_Rabsolu y); Intros.
Rewrite -> (Rsqr_neg x) in H; Rewrite -> (Rsqr_neg y) in H; Generalize (Rlt_Ropp y ``0`` r); Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intros; Generalize (Rlt_le ``0`` ``-x`` H0); Generalize (Rlt_le ``0`` ``-y`` H1); Intros; Apply Rsqr_inj; Assumption.
Rewrite -> (Rsqr_neg x) in H; Generalize (Rle_sym2 ``0`` y r); Intro; Generalize (Rlt_Ropp x ``0`` r0); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-x`` H1); Intro; Apply Rsqr_inj; Assumption.
Rewrite -> (Rsqr_neg y) in H; Generalize (Rle_sym2 ``0`` x r0); Intro; Generalize (Rlt_Ropp y ``0`` r); Rewrite Ropp_O; Intro; Generalize (Rlt_le ``0`` ``-y`` H1); Intro; Apply Rsqr_inj; Assumption.
Generalize (Rle_sym2 ``0`` x r0); Generalize (Rle_sym2 ``0`` y r); Intros; Apply Rsqr_inj; Assumption.
Qed.

Lemma Rsqr_eq_asb_1 : (x,y:R) (Rabsolu x)==(Rabsolu y) -> (Rsqr x)==(Rsqr y).
Intros; Cut ``(Rsqr (Rabsolu x))==(Rsqr (Rabsolu y))``.
Intro; Repeat Rewrite <- Rsqr_abs in H0; Assumption.
Rewrite H; Reflexivity.
Qed.

Lemma triangle_rectangle : (x,y,z:R) ``0<=z``->``(Rsqr x)+(Rsqr y)<=(Rsqr z)``->``-z<=x<=z`` /\``-z<=y<=z``.
Intros; Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H0); Rewrite Rplus_sym in H0; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H0); Intros; Split; [Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption] | Split; [Apply Rsqr_neg_pos_le_0; Assumption | Apply Rsqr_incr_0_var; Assumption]].
Qed.

Lemma triangle_rectangle_lt : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<(Rsqr z)`` -> ``(Rabsolu x)<(Rabsolu z)``/\``(Rabsolu y)<(Rabsolu z)``.
Intros; Split; [Generalize (plus_lt_is_lt (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_lt_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_lt_is_lt (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_lt_abs_0; Assumption].
Qed.

Lemma triangle_rectangle_le : (x,y,z:R) ``(Rsqr x)+(Rsqr y)<=(Rsqr z)`` -> ``(Rabsolu x)<=(Rabsolu z)``/\``(Rabsolu y)<=(Rabsolu z)``.
Intros; Split; [Generalize (plus_le_is_le (Rsqr x) (Rsqr y) (Rsqr z) (pos_Rsqr y) H); Intro; Apply Rsqr_le_abs_0; Assumption | Rewrite Rplus_sym in H; Generalize (plus_le_is_le (Rsqr y) (Rsqr x) (Rsqr z) (pos_Rsqr x) H); Intro; Apply Rsqr_le_abs_0; Assumption].
Qed.

Lemma Rsqr_inv : (x:R) ~``x==0`` -> ``(Rsqr (/x))==/(Rsqr x)``.
Intros; Unfold Rsqr.
Rewrite Rinv_Rmult; Try Reflexivity Orelse Assumption.
Qed.

Lemma canonical_Rsqr : (a:nonzeroreal;b,c,x:R) ``a*(Rsqr x)+b*x+c == a* (Rsqr (x+b/(2*a))) + (4*a*c - (Rsqr b))/(4*a)``.
Intros.
Rewrite Rsqr_plus.
Repeat Rewrite Rmult_Rplus_distr.
Repeat Rewrite Rplus_assoc.
Apply Rplus_plus_r.
Unfold Rdiv Rminus.
Replace ``2*1+2*1`` with ``4``; [Idtac | Ring].
Rewrite (Rmult_Rplus_distrl ``4*a*c`` ``-(Rsqr b)`` ``/(4*a)``).
Rewrite Rsqr_times.
Repeat Rewrite Rinv_Rmult.
Repeat Rewrite (Rmult_sym a).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym ``/2``).
Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym a).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Rewrite (Rmult_sym ``2``).
Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Repeat Rewrite Rplus_assoc.
Rewrite (Rplus_sym ``(Rsqr b)*((Rsqr (/a*/2))*a)``).
Repeat Rewrite Rplus_assoc.
Rewrite (Rmult_sym x).
Apply Rplus_plus_r.
Rewrite (Rmult_sym ``/a``).
Unfold Rsqr; Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Ring.
Apply (cond_nonzero a).
DiscrR.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
Apply (cond_nonzero a).
DiscrR.
DiscrR.
DiscrR.
Apply (cond_nonzero a).
DiscrR.
Apply (cond_nonzero a).
Qed.

Lemma Rsqr_eq : (x,y:R) (Rsqr x)==(Rsqr y) -> x==y \/ x==``-y``.
Intros; Unfold Rsqr in H; Generalize (Rplus_plus_r ``-(y*y)`` ``x*x`` ``y*y`` H); Rewrite Rplus_Ropp_l; Replace ``-(y*y)+x*x`` with ``(x-y)*(x+y)``.
Intro; Generalize (without_div_Od ``x-y`` ``x+y`` H0); Intro; Elim H1; Intros.
Left; Apply Rminus_eq; Assumption.
Right; Apply Rminus_eq; Unfold Rminus; Rewrite Ropp_Ropp; Assumption.
Ring.
Qed.