blob: 68645379d8288315feef199892c9c5a3fe736f02 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: PSeries_reg.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Ranalysis1.
Require Max.
Require Even.
V7only [Import R_scope.]. Open Local Scope R_scope.
Definition Boule [x:R;r:posreal] : R -> Prop := [y:R]``(Rabsolu (y-x))<r``.
(* Uniform convergence *)
Definition CVU [fn:nat->R->R;f:R->R;x:R;r:posreal] : Prop := (eps:R)``0<eps``->(EX N:nat | (n:nat;y:R) (le N n)->(Boule x r y)->``(Rabsolu ((f y)-(fn n y)))<eps``).
(* Normal convergence *)
Definition CVN_r [fn:nat->R->R;r:posreal] : Type := (SigT ? [An:nat->R](sigTT R [l:R]((Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu (An k)) n) l)/\((n:nat)(y:R)(Boule R0 r y)->(Rle (Rabsolu (fn n y)) (An n)))))).
Definition CVN_R [fn:nat->R->R] : Type := (r:posreal) (CVN_r fn r).
Definition SFL [fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))] : R-> R := [y:R](Cases (cv y) of (existTT a b) => a end).
(* In a complete space, normal convergence implies uniform convergence *)
Lemma CVN_CVU : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> (CVU [n:nat](SP fn n) (SFL fn cv) ``0`` r).
Intros; Unfold CVU; Intros.
Unfold CVN_r in X.
Elim X; Intros An X0.
Elim X0; Intros s H0.
Elim H0; Intros.
Cut (Un_cv [n:nat](Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s) R0).
Intro; Unfold Un_cv in H3.
Elim (H3 eps H); Intros N0 H4.
Exists N0; Intros.
Apply Rle_lt_trans with (Rabsolu (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)).
Rewrite <- (Rabsolu_Ropp (Rminus (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n) s)); Rewrite Ropp_distr3; Rewrite (Rabsolu_right (Rminus s (sum_f_R0 [k:nat]``(Rabsolu (An k))`` n))).
EApply sum_maj1.
Unfold SFL; Case (cv y); Intro.
Trivial.
Apply H1.
Intro; Elim H0; Intros.
Rewrite (Rabsolu_right (An n0)).
Apply H8; Apply H6.
Apply Rle_sym1; Apply Rle_trans with (Rabsolu (fn n0 y)).
Apply Rabsolu_pos.
Apply H8; Apply H6.
Apply Rle_sym1; Apply Rle_anti_compatibility with (sum_f_R0 [k:nat](Rabsolu (An k)) n).
Rewrite Rplus_Or; Unfold Rminus; Rewrite (Rplus_sym s); Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Ol; Apply sum_incr.
Apply H1.
Intro; Apply Rabsolu_pos.
Unfold R_dist in H4; Unfold Rminus in H4; Rewrite Ropp_O in H4.
Assert H7 := (H4 n H5).
Rewrite Rplus_Or in H7; Apply H7.
Unfold Un_cv in H1; Unfold Un_cv; Intros.
Elim (H1? H3); Intros.
Exists x; Intros.
Unfold R_dist; Unfold R_dist in H4.
Rewrite minus_R0; Apply H4; Assumption.
Qed.
(* Each limit of a sequence of functions which converges uniformly is continue *)
Lemma CVU_continuity : (fn:nat->R->R;f:R->R;x:R;r:posreal) (CVU fn f x r) -> ((n:nat)(y:R) (Boule x r y)->(continuity_pt (fn n) y)) -> ((y:R) (Boule x r y) -> (continuity_pt f y)).
Intros; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Unfold CVU in H.
Cut ``0<eps/3``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
Elim (H ? H3); Intros N0 H4.
Assert H5 := (H0 N0 y H1).
Cut (EXT del : posreal | (h:R) ``(Rabsolu h)<del`` -> (Boule x r ``y+h``) ).
Intro.
Elim H6; Intros del1 H7.
Unfold continuity_pt in H5; Unfold continue_in in H5; Unfold limit1_in in H5; Unfold limit_in in H5; Simpl in H5; Unfold R_dist in H5.
Elim (H5 ? H3); Intros del2 H8.
Pose del := (Rmin del1 del2).
Exists del; Intros.
Split.
Unfold del; Unfold Rmin; Case (total_order_Rle del1 del2); Intro.
Apply (cond_pos del1).
Elim H8; Intros; Assumption.
Intros; Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(f y)))``.
Replace ``(f x0)-(f y)`` with ``((f x0)-(fn N0 x0))+((fn N0 x0)-(f y))``; [Apply Rabsolu_triang | Ring].
Apply Rle_lt_trans with ``(Rabsolu ((f x0)-(fn N0 x0)))+(Rabsolu ((fn N0 x0)-(fn N0 y)))+(Rabsolu ((fn N0 y)-(f y)))``.
Rewrite Rplus_assoc; Apply Rle_compatibility.
Replace ``(fn N0 x0)-(f y)`` with ``((fn N0 x0)-(fn N0 y))+((fn N0 y)-(f y))``; [Apply Rabsolu_triang | Ring].
Replace ``eps`` with ``eps/3+eps/3+eps/3``.
Repeat Apply Rplus_lt.
Apply H4.
Apply le_n.
Replace x0 with ``y+(x0-y)``; [Idtac | Ring]; Apply H7.
Elim H9; Intros.
Apply Rlt_le_trans with del.
Assumption.
Unfold del; Apply Rmin_l.
Elim H8; Intros.
Apply H11.
Split.
Elim H9; Intros; Assumption.
Elim H9; Intros; Apply Rlt_le_trans with del.
Assumption.
Unfold del; Apply Rmin_r.
Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply H4.
Apply le_n.
Assumption.
Apply r_Rmult_mult with ``3``.
Do 2 Rewrite Rmult_Rplus_distr; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rinv_r_simpl_m.
Ring.
DiscrR.
DiscrR.
Cut ``0<r-(Rabsolu (x-y))``.
Intro; Exists (mkposreal ? H6).
Simpl; Intros.
Unfold Boule; Replace ``y+h-x`` with ``h+(y-x)``; [Idtac | Ring]; Apply Rle_lt_trans with ``(Rabsolu h)+(Rabsolu (y-x))``.
Apply Rabsolu_triang.
Apply Rlt_anti_compatibility with ``-(Rabsolu (x-y))``.
Rewrite <- (Rabsolu_Ropp ``y-x``); Rewrite Ropp_distr3.
Replace ``-(Rabsolu (x-y))+r`` with ``r-(Rabsolu (x-y))``.
Replace ``-(Rabsolu (x-y))+((Rabsolu h)+(Rabsolu (x-y)))`` with (Rabsolu h).
Apply H7.
Ring.
Ring.
Unfold Boule in H1; Rewrite <- (Rabsolu_Ropp ``x-y``); Rewrite Ropp_distr3; Apply Rlt_anti_compatibility with ``(Rabsolu (y-x))``.
Rewrite Rplus_Or; Replace ``(Rabsolu (y-x))+(r-(Rabsolu (y-x)))`` with ``(pos r)``; [Apply H1 | Ring].
Qed.
(**********)
Lemma continuity_pt_finite_SF : (fn:nat->R->R;N:nat;x:R) ((n:nat)(le n N)->(continuity_pt (fn n) x)) -> (continuity_pt [y:R](sum_f_R0 [k:nat]``(fn k y)`` N) x).
Intros; Induction N.
Simpl; Apply (H O); Apply le_n.
Simpl; Replace [y:R](Rplus (sum_f_R0 [k:nat](fn k y) N) (fn (S N) y)) with (plus_fct [y:R](sum_f_R0 [k:nat](fn k y) N) [y:R](fn (S N) y)); [Idtac | Reflexivity].
Apply continuity_pt_plus.
Apply HrecN.
Intros; Apply H.
Apply le_trans with N; [Assumption | Apply le_n_Sn].
Apply (H (S N)); Apply le_n.
Qed.
(* Continuity and normal convergence *)
Lemma SFL_continuity_pt : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l));r:posreal) (CVN_r fn r) -> ((n:nat)(y:R) (Boule ``0`` r y) -> (continuity_pt (fn n) y)) -> ((y:R) (Boule ``0`` r y) -> (continuity_pt (SFL fn cv) y)).
Intros; EApply CVU_continuity.
Apply CVN_CVU.
Apply X.
Intros; Unfold SP; Apply continuity_pt_finite_SF.
Intros; Apply H.
Apply H1.
Apply H0.
Qed.
Lemma SFL_continuity : (fn:nat->R->R;cv:(x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))) (CVN_R fn) -> ((n:nat)(continuity (fn n))) -> (continuity (SFL fn cv)).
Intros; Unfold continuity; Intro.
Cut ``0<(Rabsolu x)+1``; [Intro | Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1]].
Cut (Boule ``0`` (mkposreal ? H0) x).
Intro; EApply SFL_continuity_pt with (mkposreal ? H0).
Apply X.
Intros; Apply (H n y).
Apply H1.
Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
Qed.
(* As R is complete, normal convergence implies that (fn) is simply-uniformly convergent *)
Lemma CVN_R_CVS : (fn:nat->R->R) (CVN_R fn) -> ((x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l))).
Intros; Apply R_complete.
Unfold SP; Pose An := [N:nat](fn N x).
Change (Cauchy_crit_series An).
Apply cauchy_abs.
Unfold Cauchy_crit_series; Apply CV_Cauchy.
Unfold CVN_R in X; Cut ``0<(Rabsolu x)+1``.
Intro; Assert H0 := (X (mkposreal ? H)).
Unfold CVN_r in H0; Elim H0; Intros Bn H1.
Elim H1; Intros l H2.
Elim H2; Intros.
Apply Rseries_CV_comp with Bn.
Intro; Split.
Apply Rabsolu_pos.
Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0.
Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
Apply existTT with l.
Cut (n:nat)``0<=(Bn n)``.
Intro; Unfold Un_cv in H3; Unfold Un_cv; Intros.
Elim (H3 ? H6); Intros.
Exists x0; Intros.
Replace (sum_f_R0 Bn n) with (sum_f_R0 [k:nat](Rabsolu (Bn k)) n).
Apply H7; Assumption.
Apply sum_eq; Intros; Apply Rabsolu_right; Apply Rle_sym1; Apply H5.
Intro; Apply Rle_trans with (Rabsolu (An n)).
Apply Rabsolu_pos.
Unfold An; Apply H4; Unfold Boule; Simpl; Rewrite minus_R0; Pattern 1 (Rabsolu x); Rewrite <- Rplus_Or; Apply Rlt_compatibility; Apply Rlt_R0_R1.
Apply ge0_plus_gt0_is_gt0; [Apply Rabsolu_pos | Apply Rlt_R0_R1].
Qed.
|