summaryrefslogtreecommitdiff
path: root/theories7/Reals/Cos_plus.v
blob: 481e51bffb5a1d426d7229f34d5236ec9e853b22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
 
(*i $Id: Cos_plus.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo_def.
Require Cos_rel.
Require Max.
V7only [Import nat_scope.]. Open Local Scope nat_scope.
V7only [Import R_scope.]. Open Local Scope R_scope.

Definition Majxy [x,y:R] : nat->R := [n:nat](Rdiv (pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (4) (S n))) (INR (fact n))).

Lemma Majxy_cv_R0 : (x,y:R) (Un_cv (Majxy x y) R0).
Intros.
Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
Pose C0 := (pow C (4)).
Cut ``0<C``.
Intro.
Cut ``0<C0``.
Intro.
Assert H1 := (cv_speed_pow_fact C0).
Unfold Un_cv in H1; Unfold R_dist in H1.
Unfold Un_cv; Unfold R_dist; Intros.
Cut ``0<eps/C0``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Assumption]].
Elim (H1 ``eps/C0`` H3); Intros N0 H4.
Exists N0; Intros.
Replace (Majxy x y n) with ``(pow C0 (S n))/(INR (fact n))``.
Simpl.
Apply Rlt_monotony_contra with ``(Rabsolu (/C0))``.
Apply Rabsolu_pos_lt.
Apply Rinv_neq_R0.
Red; Intro; Rewrite H6 in H0; Elim (Rlt_antirefl ? H0).
Rewrite <- Rabsolu_mult.
Unfold Rminus; Rewrite Rmult_Rplus_distr.
Rewrite Ropp_O; Rewrite Rmult_Or.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Rewrite (Rabsolu_right ``/C0``).
Rewrite <- (Rmult_sym eps).
Replace ``(pow C0 n)*/(INR (fact n))+0`` with ``(pow C0 n)*/(INR (fact n))-0``; [Idtac | Ring].
Unfold Rdiv in H4; Apply H4; Assumption.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Assumption.
Red; Intro; Rewrite H6 in H0; Elim (Rlt_antirefl ? H0).
Unfold Majxy.
Unfold C0.
Rewrite pow_mult.
Unfold C; Reflexivity.
Unfold C0; Apply pow_lt; Assumption.
Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C.
Apply RmaxLess1.
Qed.

Lemma reste1_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste1 x y N))<=(Majxy x y (pred N))``.
Intros.
Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
Unfold Reste1.
Apply Rle_trans with (sum_f_R0
     [k:nat]
        (Rabsolu (sum_f_R0
          [l:nat]
           ``(pow ( -1) (S (plus l k)))/
           (INR (fact (mult (S (S O)) (S (plus l k)))))*
           (pow x (mult (S (S O)) (S (plus l k))))*
           (pow ( -1) (minus N l))/
           (INR (fact (mult (S (S O)) (minus N l))))*
           (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))))
     (pred N)).
Apply (sum_Rabsolu [k:nat]
        (sum_f_R0
          [l:nat]
           ``(pow ( -1) (S (plus l k)))/
           (INR (fact (mult (S (S O)) (S (plus l k)))))*
           (pow x (mult (S (S O)) (S (plus l k))))*
           (pow ( -1) (minus N l))/
           (INR (fact (mult (S (S O)) (minus N l))))*
           (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)).
Apply Rle_trans with (sum_f_R0
     [k:nat]
          (sum_f_R0
            [l:nat]
             (Rabsolu (``(pow ( -1) (S (plus l k)))/
             (INR (fact (mult (S (S O)) (S (plus l k)))))*
             (pow x (mult (S (S O)) (S (plus l k))))*
             (pow ( -1) (minus N l))/
             (INR (fact (mult (S (S O)) (minus N l))))*
             (pow y (mult (S (S O)) (minus N l)))``)) (pred (minus N k)))
     (pred N)).
Apply sum_Rle.
Intros.
Apply (sum_Rabsolu [l:nat]
        ``(pow ( -1) (S (plus l n)))/
        (INR (fact (mult (S (S O)) (S (plus l n)))))*
        (pow x (mult (S (S O)) (S (plus l n))))*
        (pow ( -1) (minus N l))/
        (INR (fact (mult (S (S O)) (minus N l))))*
        (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N n))).
Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (mult (fact (mult (S (S O)) (S (plus l k)))) (fact (mult (S (S O)) (minus N l)))))*(pow C (mult (S (S O)) (S (plus N k))))`` (pred (minus N k))) (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Unfold Rdiv; Repeat Rewrite Rabsolu_mult.
Do 2 Rewrite pow_1_abs.
Do 2 Rewrite Rmult_1l.
Rewrite (Rabsolu_right ``/(INR (fact (mult (S (S O)) (S (plus n0 n)))))``).
Rewrite (Rabsolu_right ``/(INR (fact (mult (S (S O)) (minus N n0))))``).
Rewrite mult_INR.
Rewrite Rinv_Rmult.
Repeat Rewrite Rmult_assoc.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Rewrite <- Rmult_assoc.
Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (minus N n0))))``).
Rewrite Rmult_assoc.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Do 2 Rewrite <- Pow_Rabsolu.
Apply Rle_trans with ``(pow (Rabsolu x) (mult (S (S O)) (S (plus n0 n))))*(pow C (mult (S (S O)) (minus N n0)))``.
Apply Rle_monotony.
Apply pow_le; Apply Rabsolu_pos.
Apply pow_incr.
Split.
Apply Rabsolu_pos.
Unfold C.
Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)); Apply RmaxLess2.
Apply Rle_trans with ``(pow C (mult (S (S O)) (S (plus n0 n))))*(pow C (mult (S (S O)) (minus N n0)))``.
Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S O)) (minus N n0)))``).
Apply Rle_monotony.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Apply pow_incr.
Split.
Apply Rabsolu_pos.
Unfold C; Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
Apply RmaxLess1.
Apply RmaxLess2.
Right.
Replace (mult (2) (S (plus N n))) with (plus (mult (2) (minus N n0)) (mult (2) (S (plus n0 n)))).
Rewrite pow_add.
Apply Rmult_sym.
Apply INR_eq; Rewrite plus_INR; Do 3 Rewrite mult_INR.
Rewrite minus_INR.
Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Ring.
Apply le_trans with (pred (minus N n)).
Exact H1.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_trans with (sum_f_R0
     [k:nat]
        (sum_f_R0
          [l:nat]
           ``/(INR
              (mult (fact (mult (S (S O)) (S (plus l k))))
              (fact (mult (S (S O)) (minus N l)))))*
           (pow C (mult (S (S (S (S O)))) N))`` (pred (minus N k)))
     (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Apply Rle_monotony.
Left; Apply Rlt_Rinv.
Rewrite mult_INR; Apply Rmult_lt_pos; Apply INR_fact_lt_0.
Apply Rle_pow.
Unfold C; Apply RmaxLess1.
Replace (mult (4) N) with (mult (2) (mult (2) N)); [Idtac | Ring].
Apply mult_le.
Replace (mult (2) N) with (S (plus N (pred N))).
Apply le_n_S.
Apply le_reg_l; Assumption.
Rewrite pred_of_minus.
Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Rewrite minus_INR.
Repeat Rewrite S_INR; Ring.
Apply lt_le_S; Assumption.
Apply Rle_trans with (sum_f_R0
     [k:nat]
        (sum_f_R0
          [l:nat]
         ``(pow C (mult (S (S (S (S O)))) N))*(Rsqr (/(INR (fact (S (plus N k))))))`` (pred (minus N k)))
     (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``).
Apply Rle_monotony.
Apply pow_le.
Left; Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Replace ``/(INR
      (mult (fact (mult (S (S O)) (S (plus n0 n))))
      (fact (mult (S (S O)) (minus N n0)))))`` with ``(Binomial.C (mult (S (S O)) (S (plus N n))) (mult (S (S O)) (S (plus n0 n))))/(INR (fact (mult (S (S O)) (S (plus N n)))))``.
Apply Rle_trans with ``(Binomial.C (mult (S (S O)) (S (plus N n))) (S (plus N n)))/(INR (fact (mult (S (S O)) (S (plus N n)))))``.
Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S (plus N n)))))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply C_maj.
Apply mult_le.
Apply le_n_S.
Apply le_reg_r.
Apply le_trans with (pred (minus N n)).
Assumption.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Right.
Unfold Rdiv; Rewrite Rmult_sym.
Unfold Binomial.C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Replace (minus (mult (2) (S (plus N n))) (S (plus N n))) with (S (plus N n)).
Rewrite Rinv_Rmult.
Unfold Rsqr; Reflexivity.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_eq; Rewrite S_INR; Rewrite minus_INR.
Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
Apply le_n_2n.
Apply INR_fact_neq_0.
Unfold Rdiv; Rewrite Rmult_sym.
Unfold Binomial.C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Replace (minus (mult (2) (S (plus N n))) (mult (2) (S (plus n0 n)))) with (mult (2) (minus N n0)).
Rewrite mult_INR.
Reflexivity.
Apply INR_eq; Rewrite minus_INR.
Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite minus_INR.
Ring.
Apply le_trans with (pred (minus N n)).
Assumption.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply mult_le.
Apply le_n_S.
Apply le_reg_r.
Apply le_trans with (pred (minus N n)).
Assumption.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply INR_fact_neq_0.
Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)/(INR (fact (S N)))*(pow C (mult (S (S (S (S O)))) N))`` (pred N)).
Apply sum_Rle; Intros.
Rewrite <- (scal_sum [_:nat]``(pow C (mult (S (S (S (S O)))) N))`` (pred (minus N n)) ``(Rsqr (/(INR (fact (S (plus N n))))))``).
Rewrite sum_cte.
Rewrite <- Rmult_assoc.
Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``).
Rewrite Rmult_assoc.
Apply Rle_monotony.
Apply pow_le.
Left; Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Apply Rle_trans with ``(Rsqr (/(INR (fact (S (plus N n))))))*(INR N)``.
Apply Rle_monotony.
Apply pos_Rsqr.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_INR.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Rewrite Rmult_sym; Unfold Rdiv; Apply Rle_monotony.
Apply pos_INR.
Apply Rle_trans with ``/(INR (fact (S (plus N n))))``.
Pattern 2 ``/(INR (fact (S (plus N n))))``; Rewrite <- Rmult_1r.
Unfold Rsqr.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_monotony_contra with ``(INR (fact (S (plus N n))))``.
Apply INR_fact_lt_0.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r.
Replace R1 with (INR (S O)).
Apply le_INR.
Apply lt_le_S.
Apply INR_lt; Apply INR_fact_lt_0.
Reflexivity.
Apply INR_fact_neq_0.
Apply Rle_monotony_contra with ``(INR (fact (S (plus N n))))``.
Apply INR_fact_lt_0.
Rewrite <- Rinv_r_sym.
Apply Rle_monotony_contra with ``(INR (fact (S N)))``.
Apply INR_fact_lt_0.
Rewrite Rmult_1r.
Rewrite (Rmult_sym (INR (fact (S N)))).
Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Apply le_INR.
Apply fact_growing.
Apply le_n_S.
Apply le_plus_l.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Rewrite sum_cte.
Apply Rle_trans with ``(pow C (mult (S (S (S (S O)))) N))/(INR (fact (pred N)))``.
Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``).
Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony.
Apply pow_le.
Left; Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Cut (S (pred N)) = N.
Intro; Rewrite H0.
Pattern 2 N; Rewrite <- H0.
Do 2 Rewrite fact_simpl.
Rewrite H0.
Repeat Rewrite mult_INR.
Repeat Rewrite Rinv_Rmult.
Rewrite (Rmult_sym ``/(INR (S N))``).
Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l.
Pattern 2 ``/(INR (fact (pred N)))``; Rewrite <- Rmult_1r.
Rewrite Rmult_assoc.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_monotony_contra with (INR (S N)).
Apply lt_INR_0; Apply lt_O_Sn.
Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r; Rewrite Rmult_1l.
Apply le_INR; Apply le_n_Sn.
Apply not_O_INR; Discriminate.
Apply not_O_INR.
Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H).
Apply not_O_INR.
Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H).
Apply INR_fact_neq_0.
Apply not_O_INR; Discriminate.
Apply prod_neq_R0.
Apply not_O_INR.
Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H).
Apply INR_fact_neq_0.
Symmetry; Apply S_pred with O; Assumption.
Right.
Unfold Majxy.
Unfold C.
Replace (S (pred N)) with N.
Reflexivity.
Apply S_pred with O; Assumption.
Qed.

Lemma reste2_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste2 x y N))<=(Majxy x y N)``.
Intros.
Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
Unfold Reste2.
Apply Rle_trans with (sum_f_R0
     [k:nat]
        (Rabsolu (sum_f_R0
          [l:nat]
           ``(pow ( -1) (S (plus l k)))/
           (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
           (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
           (pow ( -1) (minus N l))/
           (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
           (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))))
     (pred N)).
Apply (sum_Rabsolu [k:nat]
        (sum_f_R0
          [l:nat]
           ``(pow ( -1) (S (plus l k)))/
           (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
           (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
           (pow ( -1) (minus N l))/
           (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
           (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)).
Apply Rle_trans with (sum_f_R0
     [k:nat]
          (sum_f_R0
            [l:nat]
             (Rabsolu (``(pow ( -1) (S (plus l k)))/
             (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
             (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
             (pow ( -1) (minus N l))/
             (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
             (pow y (plus (mult (S (S O)) (minus N l)) (S O)))``)) (pred (minus N k)))
     (pred N)).
Apply sum_Rle.
Intros.
Apply (sum_Rabsolu [l:nat]
        ``(pow ( -1) (S (plus l n)))/
        (INR (fact (plus (mult (S (S O)) (S (plus l n))) (S O))))*
        (pow x (plus (mult (S (S O)) (S (plus l n))) (S O)))*
        (pow ( -1) (minus N l))/
        (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
        (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N n))).
Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (mult (fact (plus (mult (S (S O)) (S (plus l k))) (S O))) (fact (plus (mult (S (S O)) (minus N l)) (S O)))))*(pow C (mult (S (S O)) (S (S (plus N k)))))`` (pred (minus N k))) (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Unfold Rdiv; Repeat Rewrite Rabsolu_mult.
Do 2 Rewrite pow_1_abs.
Do 2 Rewrite Rmult_1l.
Rewrite (Rabsolu_right ``/(INR (fact (plus (mult (S (S O)) (S (plus n0 n))) (S O))))``).
Rewrite (Rabsolu_right ``/(INR (fact (plus (mult (S (S O)) (minus N n0)) (S O))))``).
Rewrite mult_INR.
Rewrite Rinv_Rmult.
Repeat Rewrite Rmult_assoc.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Rewrite <- Rmult_assoc.
Rewrite <- (Rmult_sym ``/(INR (fact (plus (mult (S (S O)) (minus N n0)) (S O))))``).
Rewrite Rmult_assoc.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Do 2 Rewrite <- Pow_Rabsolu.
Apply Rle_trans with ``(pow (Rabsolu x) (plus (mult (S (S O)) (S (plus n0 n))) (S O)))*(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``.
Apply Rle_monotony.
Apply pow_le; Apply Rabsolu_pos.
Apply pow_incr.
Split.
Apply Rabsolu_pos.
Unfold C.
Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)); Apply RmaxLess2.
Apply Rle_trans with ``(pow C (plus (mult (S (S O)) (S (plus n0 n))) (S O)))*(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``.
Do 2 Rewrite <- (Rmult_sym ``(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``).
Apply Rle_monotony.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Apply pow_incr.
Split.
Apply Rabsolu_pos.
Unfold C; Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
Apply RmaxLess1.
Apply RmaxLess2.
Right.
Replace (mult (2) (S (S (plus N n)))) with (plus (plus (mult (2) (minus N n0)) (S O)) (plus (mult (2) (S (plus n0 n))) (S O))).
Repeat Rewrite pow_add.
Ring.
Apply INR_eq; Repeat Rewrite plus_INR; Do 3 Rewrite mult_INR.
Rewrite minus_INR.
Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Ring.
Apply le_trans with (pred (minus N n)).
Exact H1.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply Rle_sym1; Left; Apply Rlt_Rinv.
Apply INR_fact_lt_0.
Apply Rle_sym1; Left; Apply Rlt_Rinv.
Apply INR_fact_lt_0.
Apply Rle_trans with (sum_f_R0
     [k:nat]
        (sum_f_R0
          [l:nat]
           ``/(INR
              (mult (fact (plus (mult (S (S O)) (S (plus l k))) (S O)))
              (fact (plus (mult (S (S O)) (minus N l)) (S O)))))*
           (pow C (mult (S (S (S (S O)))) (S N)))`` (pred (minus N k)))
     (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Apply Rle_monotony.
Left; Apply Rlt_Rinv.
Rewrite mult_INR; Apply Rmult_lt_pos; Apply INR_fact_lt_0.
Apply Rle_pow.
Unfold C; Apply RmaxLess1.
Replace (mult (4) (S N)) with (mult (2) (mult (2) (S N))); [Idtac | Ring].
Apply mult_le.
Replace (mult (2) (S N)) with (S (S (plus N N))).
Repeat Apply le_n_S.
Apply le_reg_l.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply INR_eq; Do 2Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR.
Repeat Rewrite S_INR; Ring.
Apply Rle_trans with (sum_f_R0
     [k:nat]
        (sum_f_R0
          [l:nat]
         ``(pow C (mult (S (S (S (S O)))) (S N)))*(Rsqr (/(INR (fact (S (S (plus N k)))))))`` (pred (minus N k)))
     (pred N)).
Apply sum_Rle; Intros.
Apply sum_Rle; Intros.
Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``).
Apply Rle_monotony.
Apply pow_le.
Left; Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Replace ``/(INR
      (mult (fact (plus (mult (S (S O)) (S (plus n0 n))) (S O)))
      (fact (plus (mult (S (S O)) (minus N n0)) (S O)))))`` with ``(Binomial.C (mult (S (S O)) (S (S (plus N n)))) (plus (mult (S (S O)) (S (plus n0 n))) (S O)))/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``.
Apply Rle_trans with ``(Binomial.C (mult (S (S O)) (S (S (plus N n)))) (S (S (plus N n))))/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``.
Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``).
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply C_maj.
Apply le_trans with (mult (2) (S (S (plus n0 n)))).
Replace (mult (2) (S (S (plus n0 n)))) with (S (plus (mult (2) (S (plus n0 n))) (1))).
Apply le_n_Sn.
Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
Apply mult_le.
Repeat Apply le_n_S.
Apply le_reg_r.
Apply le_trans with (pred (minus N n)).
Assumption.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Right.
Unfold Rdiv; Rewrite Rmult_sym.
Unfold Binomial.C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Replace (minus (mult (2) (S (S (plus N n)))) (S (S (plus N n)))) with (S (S (plus N n))).
Rewrite Rinv_Rmult.
Unfold Rsqr; Reflexivity.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_eq; Do 2 Rewrite S_INR; Rewrite minus_INR.
Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
Apply le_n_2n.
Apply INR_fact_neq_0.
Unfold Rdiv; Rewrite Rmult_sym.
Unfold Binomial.C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Replace (minus (mult (2) (S (S (plus N n)))) (plus (mult (2) (S (plus n0 n))) (S O))) with (plus (mult (2) (minus N n0)) (S O)).
Rewrite mult_INR.
Reflexivity.
Apply INR_eq; Rewrite minus_INR.
Do 2 Rewrite plus_INR; Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite minus_INR.
Ring.
Apply le_trans with (pred (minus N n)).
Assumption.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_trans with (mult (2) (S (S (plus n0 n)))).
Replace (mult (2) (S (S (plus n0 n)))) with (S (plus (mult (2) (S (plus n0 n))) (1))).
Apply le_n_Sn.
Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
Apply mult_le.
Repeat Apply le_n_S.
Apply le_reg_r.
Apply le_trans with (pred (minus N n)).
Assumption.
Apply le_S_n.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_trans with N.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply le_n_Sn.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply INR_fact_neq_0.
Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)/(INR (fact (S (S N))))*(pow C (mult (S (S (S (S O)))) (S N)))`` (pred N)).
Apply sum_Rle; Intros.
Rewrite <- (scal_sum [_:nat]``(pow C (mult (S (S (S (S O)))) (S N)))`` (pred (minus N n)) ``(Rsqr (/(INR (fact (S (S (plus N n)))))))``).
Rewrite sum_cte.
Rewrite <- Rmult_assoc.
Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``).
Rewrite Rmult_assoc.
Apply Rle_monotony.
Apply pow_le.
Left; Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Apply Rle_trans with ``(Rsqr (/(INR (fact (S (S (plus N n)))))))*(INR N)``.
Apply Rle_monotony.
Apply pos_Rsqr.
Replace (S (pred (minus N n))) with (minus N n).
Apply le_INR.
Apply simpl_le_plus_l with n.
Rewrite <- le_plus_minus.
Apply le_plus_r.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Apply S_pred with O.
Apply simpl_lt_plus_l with n.
Rewrite <- le_plus_minus.
Replace (plus n O) with n; [Idtac | Ring].
Apply le_lt_trans with (pred N).
Assumption.
Apply lt_pred_n_n; Assumption.
Apply le_trans with (pred N).
Assumption.
Apply le_pred_n.
Rewrite Rmult_sym; Unfold Rdiv; Apply Rle_monotony.
Apply pos_INR.
Apply Rle_trans with ``/(INR (fact (S (S (plus N n)))))``.
Pattern 2 ``/(INR (fact (S (S (plus N n)))))``; Rewrite <- Rmult_1r.
Unfold Rsqr.
Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Rle_monotony_contra with ``(INR (fact (S (S (plus N n)))))``.
Apply INR_fact_lt_0.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r.
Replace R1 with (INR (S O)).
Apply le_INR.
Apply lt_le_S.
Apply INR_lt; Apply INR_fact_lt_0.
Reflexivity.
Apply INR_fact_neq_0.
Apply Rle_monotony_contra with ``(INR (fact (S (S (plus N n)))))``.
Apply INR_fact_lt_0.
Rewrite <- Rinv_r_sym.
Apply Rle_monotony_contra with ``(INR (fact (S (S N))))``.
Apply INR_fact_lt_0.
Rewrite Rmult_1r.
Rewrite (Rmult_sym (INR (fact (S (S N))))).
Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Apply le_INR.
Apply fact_growing.
Repeat Apply le_n_S.
Apply le_plus_l.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Rewrite sum_cte.
Apply Rle_trans with ``(pow C (mult (S (S (S (S O)))) (S N)))/(INR (fact N))``.
Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``).
Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony.
Apply pow_le.
Left; Apply Rlt_le_trans with R1.
Apply Rlt_R0_R1.
Unfold C; Apply RmaxLess1.
Cut (S (pred N)) = N.
Intro; Rewrite H0.
Do 2 Rewrite fact_simpl.
Repeat Rewrite mult_INR.
Repeat Rewrite Rinv_Rmult.
Apply Rle_trans with ``(INR (S (S N)))*(/(INR (S (S N)))*(/(INR (S N))*/(INR (fact N))))*
   (INR N)``.
Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym (INR N)).
Rewrite (Rmult_sym (INR (S (S N)))).
Apply Rle_monotony.
Repeat Apply Rmult_le_pos.
Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn.
Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn.
Left; Apply Rlt_Rinv.
Apply INR_fact_lt_0.
Apply pos_INR.
Apply le_INR.
Apply le_trans with (S N); Apply le_n_Sn.
Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l.
Apply Rle_trans with ``/(INR (S N))*/(INR (fact N))*(INR (S N))``.
Repeat Rewrite Rmult_assoc.
Repeat Apply Rle_monotony.
Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply le_INR; Apply le_n_Sn.
Rewrite (Rmult_sym ``/(INR (S N))``).
Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r; Right; Reflexivity.
Apply not_O_INR; Discriminate.
Apply not_O_INR; Discriminate.
Apply not_O_INR; Discriminate.
Apply INR_fact_neq_0.
Apply not_O_INR; Discriminate.
Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
Symmetry; Apply S_pred with O; Assumption.
Right.
Unfold Majxy.
Unfold C.
Reflexivity.
Qed.

Lemma reste1_cv_R0 : (x,y:R) (Un_cv (Reste1 x y) R0).
Intros.
Assert H := (Majxy_cv_R0 x y).
Unfold Un_cv in H; Unfold R_dist in H.
Unfold Un_cv; Unfold R_dist; Intros.
Elim (H eps H0); Intros N0 H1.
Exists (S N0); Intros.
Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or.
Apply Rle_lt_trans with (Rabsolu (Majxy x y (pred n))).
Rewrite (Rabsolu_right (Majxy x y (pred n))).
Apply reste1_maj.
Apply lt_le_trans with (S N0).
Apply lt_O_Sn.
Assumption.
Apply Rle_sym1.
Unfold Majxy.
Unfold Rdiv; Apply Rmult_le_pos.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Apply RmaxLess1.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Replace (Majxy x y (pred n)) with ``(Majxy x y (pred n))-0``; [Idtac | Ring].
Apply H1.
Unfold ge; Apply le_S_n.
Replace (S (pred n)) with n.
Assumption.
Apply S_pred with O.
Apply lt_le_trans with (S N0); [Apply lt_O_Sn | Assumption].
Qed.

Lemma reste2_cv_R0 : (x,y:R) (Un_cv (Reste2 x y) R0).
Intros.
Assert H := (Majxy_cv_R0 x y).
Unfold Un_cv in H; Unfold R_dist in H.
Unfold Un_cv; Unfold R_dist; Intros.
Elim (H eps H0); Intros N0 H1.
Exists (S N0); Intros.
Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or.
Apply Rle_lt_trans with (Rabsolu (Majxy x y n)).
Rewrite (Rabsolu_right (Majxy x y n)).
Apply reste2_maj.
Apply lt_le_trans with (S N0).
Apply lt_O_Sn.
Assumption.
Apply Rle_sym1.
Unfold Majxy.
Unfold Rdiv; Apply Rmult_le_pos.
Apply pow_le.
Apply Rle_trans with R1.
Left; Apply Rlt_R0_R1.
Apply RmaxLess1.
Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
Replace (Majxy x y n) with ``(Majxy x y n)-0``; [Idtac | Ring].
Apply H1.
Unfold ge; Apply le_trans with (S N0).
Apply le_n_Sn.
Exact H2.
Qed.

Lemma reste_cv_R0 : (x,y:R) (Un_cv (Reste x y) R0).
Intros.
Unfold Reste.
Pose An := [n:nat](Reste2 x y n).
Pose Bn := [n:nat](Reste1 x y (S n)).
Cut (Un_cv [n:nat]``(An n)-(Bn n)`` ``0-0``) -> (Un_cv [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))`` ``0``).
Intro.
Apply H.
Apply CV_minus.
Unfold An.
Replace [n:nat](Reste2 x y n) with (Reste2 x y).
Apply reste2_cv_R0.
Reflexivity.
Unfold Bn.
Assert H0 := (reste1_cv_R0 x y).
Unfold Un_cv in H0; Unfold R_dist in H0.
Unfold Un_cv; Unfold R_dist; Intros.
Elim (H0 eps H1); Intros N0 H2.
Exists N0; Intros.
Apply H2.
Unfold ge; Apply le_trans with (S N0).
Apply le_n_Sn.
Apply le_n_S; Assumption.
Unfold An Bn.
Intro.
Replace R0 with ``0-0``; [Idtac | Ring].
Exact H.
Qed.

Theorem cos_plus : (x,y:R) ``(cos (x+y))==(cos x)*(cos y)-(sin x)*(sin y)``. 
Intros. 
Cut (Un_cv (C1 x y) ``(cos x)*(cos y)-(sin x)*(sin y)``). 
Cut (Un_cv (C1 x y) ``(cos (x+y))``). 
Intros. 
Apply UL_sequence with (C1 x y); Assumption. 
Apply C1_cvg. 
Unfold Un_cv; Unfold R_dist. 
Intros. 
Assert H0 := (A1_cvg x). 
Assert H1 := (A1_cvg y). 
Assert H2 := (B1_cvg x). 
Assert H3 := (B1_cvg y). 
Assert H4 := (CV_mult ? ? ? ? H0 H1). 
Assert H5 := (CV_mult ? ? ? ? H2 H3). 
Assert H6 := (reste_cv_R0 x y).
Unfold Un_cv in H4; Unfold Un_cv in H5; Unfold Un_cv in H6.
Unfold R_dist in H4; Unfold R_dist in H5; Unfold R_dist in H6. 
Cut ``0<eps/3``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]]. 
Elim (H4 ``eps/3`` H7); Intros N1 H8. 
Elim (H5 ``eps/3`` H7); Intros N2 H9. 
Elim (H6 ``eps/3`` H7); Intros N3 H10.
Pose N := (S (S (max (max N1 N2) N3))). 
Exists N. 
Intros. 
Cut n = (S (pred n)). 
Intro; Rewrite H12. 
Rewrite <- cos_plus_form. 
Rewrite <- H12. 
Apply Rle_lt_trans with ``(Rabsolu ((A1 x n)*(A1 y n)-(cos x)*(cos y)))+(Rabsolu ((sin x)*(sin y)-(B1 x (pred n))*(B1 y (pred n))+(Reste x y (pred n))))``. 
Replace ``(A1 x n)*(A1 y n)-(B1 x (pred n))*(B1 y (pred n))+
     (Reste x y (pred n))-((cos x)*(cos y)-(sin x)*(sin y))`` with ``((A1 x n)*(A1 y n)-(cos x)*(cos y))+((sin x)*(sin y)-(B1 x (pred n))*(B1 y (pred n))+(Reste x y (pred n)))``; [Apply Rabsolu_triang | Ring].
Replace ``eps`` with ``eps/3+(eps/3+eps/3)``.
Apply Rplus_lt. 
Apply H8. 
Unfold ge; Apply le_trans with N. 
Unfold N. 
Apply le_trans with (max N1 N2). 
Apply le_max_l. 
Apply le_trans with (max (max N1 N2) N3).
Apply le_max_l.
Apply le_trans with (S (max (max N1 N2) N3)); Apply le_n_Sn.
Assumption. 
Apply Rle_lt_trans with ``(Rabsolu ((sin x)*(sin y)-(B1 x (pred n))*(B1 y (pred n))))+(Rabsolu (Reste x y (pred n)))``.
Apply Rabsolu_triang.
Apply Rplus_lt.
Rewrite <- Rabsolu_Ropp. 
Rewrite Ropp_distr2. 
Apply H9. 
Unfold ge; Apply le_trans with (max N1 N2). 
Apply le_max_r. 
Apply le_S_n. 
Rewrite <- H12. 
Apply le_trans with N.
Unfold N.
Apply le_n_S.
Apply le_trans with (max (max N1 N2) N3).
Apply le_max_l.
Apply le_n_Sn.
Assumption.
Replace (Reste x y (pred n)) with ``(Reste x y (pred n))-0``.
Apply H10.
Unfold ge.
Apply le_S_n.
Rewrite <- H12.
Apply le_trans with N.
Unfold N.
Apply le_n_S.
Apply le_trans with (max (max N1 N2) N3).
Apply le_max_r.
Apply le_n_Sn.
Assumption.
Ring.
Pattern 4 eps; Replace eps with ``3*eps/3``.
Ring.
Unfold Rdiv.
Rewrite <- Rmult_assoc.
Apply Rinv_r_simpl_m.
DiscrR.
Apply lt_le_trans with (pred N).
Unfold N; Simpl; Apply lt_O_Sn.
Apply le_S_n.
Rewrite <- H12.
Replace (S (pred N)) with N.
Assumption.
Unfold N; Simpl; Reflexivity.
Cut (lt O N). 
Intro. 
Cut (lt O n). 
Intro. 
Apply S_pred with O; Assumption.
Apply lt_le_trans with N; Assumption. 
Unfold N; Apply lt_O_Sn.
Qed.