summaryrefslogtreecommitdiff
path: root/theories7/NArith/Pnat.v
blob: d62661ed4730169bc70c16f3a4832d68bb74a7cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Pnat.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)

Require BinPos.

(**********************************************************************)
(** Properties of the injection from binary positive numbers to Peano 
    natural numbers *)

(** Original development by Pierre Crégut, CNET, Lannion, France *)

Require Le.
Require Lt.
Require Gt.
Require Plus.
Require Mult.
Require Minus.

(** [nat_of_P] is a morphism for addition *)

Lemma convert_add_un :
  (x:positive)(m:nat)
    (positive_to_nat (add_un x) m) = (plus m (positive_to_nat x m)).
Proof.
Intro x; NewInduction x as [p IHp|p IHp|]; Simpl; Auto; Intro m; Rewrite IHp;
Rewrite plus_assoc_l; Trivial.
Qed.

Lemma cvt_add_un :
  (p:positive) (convert (add_un p)) = (S (convert p)).
Proof.
  Intro; Change (S (convert p)) with (plus (S O) (convert p));
  Unfold convert; Apply convert_add_un.
Qed.

Theorem convert_add_carry :
  (x,y:positive)(m:nat)
    (positive_to_nat (add_carry x y) m) =
    (plus m (positive_to_nat (add x y) m)).
Proof.
Intro x; NewInduction x as [p IHp|p IHp|];
  Intro y; NewDestruct y; Simpl; Auto with arith; Intro m; [
  Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
| Rewrite IHp; Rewrite plus_assoc_l; Trivial with arith
| Rewrite convert_add_un; Rewrite plus_assoc_l; Trivial with arith
| Rewrite convert_add_un; Apply plus_assoc_r ].
Qed.

Theorem cvt_carry :
  (x,y:positive)(convert (add_carry x y)) = (S (convert (add x y))).
Proof.
Intros;Unfold convert; Rewrite convert_add_carry; Simpl; Trivial with arith.
Qed.

Theorem add_verif :
  (x,y:positive)(m:nat)
    (positive_to_nat (add x y) m) = 
    (plus (positive_to_nat x m) (positive_to_nat y m)).
Proof.
Intro x; NewInduction x as [p IHp|p IHp|];
  Intro y; NewDestruct y;Simpl;Auto with arith; [
  Intros m;Rewrite convert_add_carry; Rewrite IHp; 
  Rewrite plus_assoc_r; Rewrite plus_assoc_r; 
  Rewrite (plus_permute m (positive_to_nat p (plus m m))); Trivial with arith
| Intros m; Rewrite IHp; Apply plus_assoc_l
| Intros m; Rewrite convert_add_un; 
  Rewrite (plus_sym (plus m (positive_to_nat p (plus m m))));
  Apply plus_assoc_r
| Intros m; Rewrite IHp; Apply plus_permute
| Intros m; Rewrite convert_add_un; Apply plus_assoc_r ].
Qed.

Theorem convert_add:
  (x,y:positive) (convert (add x y)) = (plus (convert x) (convert y)).
Proof.
Intros x y; Exact (add_verif x y (S O)).
Qed.

(** [Pmult_nat] is a morphism for addition *)

Lemma ZL2:
  (y:positive)(m:nat)
    (positive_to_nat y (plus m m)) =
              (plus (positive_to_nat y m) (positive_to_nat y m)).
Proof.
Intro y; NewInduction y as [p H|p H|]; Intro m; [
  Simpl; Rewrite H; Rewrite plus_assoc_r; 
  Rewrite (plus_permute m (positive_to_nat p (plus m m)));
  Rewrite plus_assoc_r; Auto with arith
| Simpl; Rewrite H; Auto with arith
| Simpl; Trivial with arith ].
Qed.

Lemma ZL6:
  (p:positive) (positive_to_nat p (S (S O))) = (plus (convert p) (convert p)).
Proof.
Intro p;Change (2) with (plus (S O) (S O)); Rewrite ZL2; Trivial.
Qed.
 
(** [nat_of_P] is a morphism for multiplication *)

Theorem times_convert :
  (x,y:positive) (convert (times x y)) = (mult (convert x) (convert y)).
Proof.
Intros x y; NewInduction x as [ x' H | x' H | ]; [
  Change (times (xI x') y) with (add y (xO (times x' y))); Rewrite convert_add;
  Unfold 2 3 convert; Simpl; Do 2 Rewrite ZL6; Rewrite H;
  Rewrite -> mult_plus_distr; Reflexivity
| Unfold 1 2 convert; Simpl; Do 2 Rewrite ZL6;
  Rewrite H; Rewrite mult_plus_distr; Reflexivity
| Simpl; Rewrite <- plus_n_O; Reflexivity ].
Qed.
V7only [
  Comments "Compatibility with the old version of times and times_convert".
  Syntactic Definition times1 :=
    [x:positive;_:positive->positive;y:positive](times x y).
  Syntactic Definition times1_convert :=
    [x,y:positive;_:positive->positive](times_convert x y).
].

(** [nat_of_P] maps to the strictly positive subset of [nat] *)

Lemma ZL4: (y:positive) (EX h:nat |(convert y)=(S h)).
Proof.
Intro y; NewInduction y as [p H|p H|]; [
  NewDestruct H as [x H1]; Exists (plus (S x) (S x));
  Unfold convert ;Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2; Unfold convert in H1;
  Rewrite H1; Auto with arith
| NewDestruct H as [x H2]; Exists (plus x (S x)); Unfold convert;
  Simpl; Change (2) with (plus (1) (1)); Rewrite ZL2;Unfold convert in H2; Rewrite H2; Auto with arith
| Exists O ;Auto with arith ].
Qed.

(** Extra lemmas on [lt] on Peano natural numbers *)

Lemma ZL7:
  (m,n:nat) (lt m n) -> (lt (plus m m) (plus n n)).
Proof.
Intros m n H; Apply lt_trans with m:=(plus m n); [
  Apply lt_reg_l with 1:=H
| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
Qed.

Lemma ZL8:
  (m,n:nat) (lt m n) -> (lt (S (plus m m)) (plus n n)).
Proof.
Intros m n H; Apply le_lt_trans with m:=(plus m n); [
  Change (lt (plus m m) (plus m n)) ; Apply lt_reg_l with 1:=H
| Rewrite (plus_sym m n); Apply lt_reg_l with 1:=H ].
Qed.

(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
    from [compare] on [positive])

    Part 1: [lt] on [positive] is finer than [lt] on [nat]
*)

Lemma compare_convert_INFERIEUR : 
  (x,y:positive) (compare x y EGAL) = INFERIEUR -> 
    (lt (convert x) (convert y)).
Proof.
Intro x; NewInduction x as [p H|p H|];Intro y; NewDestruct y as [q|q|];
  Intro H2; [
  Unfold convert ;Simpl; Apply lt_n_S; 
  Do 2 Rewrite ZL6; Apply ZL7; Apply H; Simpl in H2; Assumption
| Unfold convert ;Simpl; Do 2 Rewrite ZL6; 
  Apply ZL8; Apply H;Simpl in H2; Apply ZLSI;Assumption
| Simpl; Discriminate H2
| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; 
  Elim (ZLII p q H2); [
    Intros H3;Apply lt_S;Apply ZL7; Apply H;Apply H3
  | Intros E;Rewrite E;Apply lt_n_Sn]
| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; 
  Apply ZL7;Apply H;Assumption
| Simpl; Discriminate H2
| Unfold convert ;Simpl; Apply lt_n_S; Rewrite ZL6;
  Elim (ZL4 q);Intros h H3; Rewrite H3;Simpl; Apply lt_O_Sn
| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 q);Intros h H3;
  Rewrite H3; Simpl; Rewrite <- plus_n_Sm; Apply lt_n_S; Apply lt_O_Sn
| Simpl; Discriminate H2 ].
Qed.

(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
    from [compare] on [positive])

    Part 1: [gt] on [positive] is finer than [gt] on [nat]
*)

Lemma compare_convert_SUPERIEUR : 
  (x,y:positive) (compare x y EGAL)=SUPERIEUR -> (gt (convert x) (convert y)).
Proof.
Unfold gt; Intro x; NewInduction x as [p H|p H|];
  Intro y; NewDestruct y as [q|q|]; Intro H2; [
  Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; 
  Apply lt_n_S; Apply ZL7; Apply H;Assumption
| Simpl; Unfold convert ;Simpl; Do 2 Rewrite ZL6;
  Elim (ZLSS p q H2); [
    Intros H3;Apply lt_S;Apply ZL7;Apply H;Assumption
  | Intros E;Rewrite E;Apply lt_n_Sn]
| Unfold convert ;Simpl; Rewrite ZL6;Elim (ZL4 p);
  Intros h H3;Rewrite H3;Simpl; Apply lt_n_S; Apply lt_O_Sn
| Simpl;Unfold convert ;Simpl;Do 2 Rewrite ZL6; 
  Apply ZL8; Apply H; Apply ZLIS; Assumption
| Simpl; Unfold convert ;Simpl;Do 2 Rewrite ZL6; 
  Apply ZL7;Apply H;Assumption
| Unfold convert ;Simpl; Rewrite ZL6; Elim (ZL4 p);
  Intros h H3;Rewrite H3;Simpl; Rewrite <- plus_n_Sm;Apply lt_n_S;
  Apply lt_O_Sn
| Simpl; Discriminate H2
| Simpl; Discriminate H2
| Simpl; Discriminate H2 ].
Qed.

(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed
    from [compare] on [positive])

    Part 2: [lt] on [nat] is finer than [lt] on [positive]
*)

Lemma convert_compare_INFERIEUR : 
  (x,y:positive)(lt (convert x) (convert y)) -> (compare x y EGAL) = INFERIEUR.
Proof.
Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
  Intros E; Rewrite (compare_convert_EGAL x y E); 
  Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
| Intros H;Elim H; [
    Auto
  | Intros H1 H2; Absurd (lt (convert x) (convert y)); [
      Apply lt_not_sym; Change (gt (convert x) (convert y)); 
      Apply compare_convert_SUPERIEUR; Assumption
    | Assumption ]]].
Qed.

(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed
    from [compare] on [positive])

    Part 2: [gt] on [nat] is finer than [gt] on [positive]
*)

Lemma convert_compare_SUPERIEUR : 
  (x,y:positive)(gt (convert x) (convert y)) -> (compare x y EGAL) = SUPERIEUR.
Proof.
Intros x y; Unfold gt; Elim (Dcompare (compare x y EGAL)); [
  Intros E; Rewrite (compare_convert_EGAL x y E); 
  Intros H;Absurd (lt (convert y) (convert y)); [ Apply lt_n_n | Assumption ]
| Intros H;Elim H; [
    Intros H1 H2; Absurd (lt (convert y) (convert x)); [
      Apply lt_not_sym; Apply compare_convert_INFERIEUR; Assumption
    | Assumption ]
  | Auto]].
Qed.

(** [nat_of_P] is strictly positive *)

Lemma compare_positive_to_nat_O : 
	(p:positive)(m:nat)(le m (positive_to_nat p m)).
NewInduction p; Simpl; Auto with arith.
Intro m; Apply le_trans with (plus m m);  Auto with arith.
Qed.

Lemma compare_convert_O : (p:positive)(lt O (convert p)).
Intro; Unfold convert; Apply lt_le_trans with (S O); Auto with arith.
Apply compare_positive_to_nat_O.
Qed.

(** Pmult_nat permutes with multiplication *)

Lemma positive_to_nat_mult : (p:positive) (n,m:nat)
    (positive_to_nat p (mult m n))=(mult m (positive_to_nat p n)).
Proof.
  Induction p. Intros. Simpl. Rewrite mult_plus_distr_r. Rewrite <- (mult_plus_distr_r m n n).
  Rewrite (H (plus n n) m). Reflexivity.
  Intros. Simpl. Rewrite <- (mult_plus_distr_r m n n). Apply H.
  Trivial.
Qed.

Lemma positive_to_nat_2 : (p:positive)
    (positive_to_nat p (2))=(mult (2) (positive_to_nat p (1))).
Proof.
  Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
Qed.

Lemma positive_to_nat_4 : (p:positive)
    (positive_to_nat p (4))=(mult (2) (positive_to_nat p (2))).
Proof.
  Intros. Rewrite <- positive_to_nat_mult. Reflexivity.
Qed.

(** Mapping of xH, xO and xI through [nat_of_P] *)

Lemma convert_xH : (convert xH)=(1).
Proof.
  Reflexivity.
Qed.

Lemma convert_xO : (p:positive) (convert (xO p))=(mult (2) (convert p)).
Proof.
  Induction p. Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2.
  Rewrite positive_to_nat_4. Rewrite H. Simpl. Rewrite <- plus_Snm_nSm. Reflexivity.
  Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
  Rewrite H. Reflexivity.
  Reflexivity.
Qed.

Lemma convert_xI : (p:positive) (convert (xI p))=(S (mult (2) (convert p))).
Proof.
  Induction p. Unfold convert. Simpl. Intro p0. Intro. Rewrite positive_to_nat_2.
  Rewrite positive_to_nat_4; Injection H; Intro H1; Rewrite H1; Rewrite <- plus_Snm_nSm; Reflexivity.
  Unfold convert. Simpl. Intros. Rewrite positive_to_nat_2. Rewrite positive_to_nat_4.
  Injection H; Intro H1; Rewrite H1; Reflexivity.
  Reflexivity.
Qed.

(**********************************************************************)
(** Properties of the shifted injection from Peano natural numbers to 
    binary positive numbers *)

(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *)

Theorem bij1 : (m:nat) (convert (anti_convert m)) = (S m).
Proof.
Intro m; NewInduction m as [|n H]; [
  Reflexivity
| Simpl; Rewrite cvt_add_un; Rewrite H; Auto ].
Qed.

(** Miscellaneous lemmas on [P_of_succ_nat] *)

Lemma ZL3: (x:nat) (add_un (anti_convert (plus x x))) =  (xO (anti_convert x)).
Proof.
Intro x; NewInduction x as [|n H]; [
  Simpl; Auto with arith
| Simpl; Rewrite  plus_sym; Simpl; Rewrite  H; Rewrite  ZL1;Auto with arith].
Qed.

Lemma ZL5: (x:nat) (anti_convert (plus (S x) (S x))) =  (xI (anti_convert x)).
Proof.
Intro x; NewInduction x as [|n H];Simpl; [
  Auto with arith
| Rewrite <- plus_n_Sm; Simpl; Simpl in H; Rewrite H; Auto with arith].
Qed.

(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *)

Theorem bij2 : (x:positive) (anti_convert (convert x)) = (add_un x).
Proof.
Intro x; NewInduction x as [p H|p H|]; [
  Simpl; Rewrite <- H; Change (2) with (plus (1) (1));
  Rewrite ZL2; Elim (ZL4 p); 
  Unfold convert; Intros n H1;Rewrite H1; Rewrite ZL3; Auto with arith
| Unfold convert ;Simpl; Change (2) with (plus (1) (1));
  Rewrite ZL2;
  Rewrite <- (sub_add_one
               (anti_convert
                 (plus (positive_to_nat p (S O)) (positive_to_nat p (S O)))));
  Rewrite <- (sub_add_one (xI p));
  Simpl;Rewrite <- H;Elim (ZL4 p); Unfold convert ;Intros n H1;Rewrite H1;
  Rewrite ZL5; Simpl; Trivial with arith
| Unfold convert; Simpl; Auto with arith ].
Qed.

(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity
    on [positive] *)

Theorem bij3: (x:positive)(sub_un (anti_convert (convert x))) = x.
Proof.
Intros x; Rewrite bij2; Rewrite sub_add_one; Trivial with arith.
Qed.

(**********************************************************************)
(** Extra properties of the injection from binary positive numbers to Peano 
    natural numbers *)

(** [nat_of_P] is a morphism for subtraction on positive numbers *)

Theorem true_sub_convert:
  (x,y:positive) (compare x y EGAL) = SUPERIEUR -> 
     (convert (true_sub x y)) = (minus (convert x) (convert y)).
Proof.
Intros x y H; Apply plus_reg_l with (convert y);
Rewrite le_plus_minus_r; [
  Rewrite <- convert_add; Rewrite sub_add; Auto with arith
| Apply lt_le_weak; Exact (compare_convert_SUPERIEUR x y H)].
Qed.

(** [nat_of_P] is injective *)

Lemma convert_intro : (x,y:positive)(convert x)=(convert y) -> x=y.
Proof.
Intros x y H;Rewrite <- (bij3 x);Rewrite <- (bij3 y); Rewrite H; Trivial with arith.
Qed.

Lemma ZL16: (p,q:positive)(lt (minus (convert p) (convert q)) (convert p)).
Proof.
Intros p q; Elim (ZL4 p);Elim (ZL4 q); Intros h H1 i H2; 
Rewrite H1;Rewrite H2; Simpl;Unfold lt; Apply le_n_S; Apply le_minus.
Qed.

Lemma ZL17: (p,q:positive)(lt (convert p) (convert (add p q))).
Proof.
Intros p q; Rewrite convert_add;Unfold lt;Elim (ZL4 q); Intros k H;Rewrite H;
Rewrite plus_sym;Simpl; Apply le_n_S; Apply le_plus_r.
Qed.

(** Comparison and subtraction *)

Lemma compare_true_sub_right :
  (p,q,z:positive)
  (compare q p EGAL)=INFERIEUR->
  (compare z p EGAL)=SUPERIEUR->
  (compare z q EGAL)=SUPERIEUR->
  (compare (true_sub z p) (true_sub z q) EGAL)=INFERIEUR.
Proof.
Intros; Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
  Rewrite true_sub_convert; [
    Apply simpl_lt_plus_l with p:=(convert q); Rewrite le_plus_minus_r; [
      Rewrite plus_sym; Apply simpl_lt_plus_l with p:=(convert p);
        Rewrite plus_assoc_l; Rewrite le_plus_minus_r; [
          Rewrite (plus_sym (convert p)); Apply lt_reg_l;
          Apply compare_convert_INFERIEUR; Assumption 
        | Apply lt_le_weak; Apply compare_convert_INFERIEUR;
          Apply ZC1; Assumption ]
      | Apply lt_le_weak;Apply compare_convert_INFERIEUR;
        Apply ZC1; Assumption ]
    | Assumption ]
  | Assumption ].
Qed.

Lemma compare_true_sub_left :
  (p,q,z:positive)
  (compare q p EGAL)=INFERIEUR->
  (compare p z EGAL)=SUPERIEUR->
  (compare q z EGAL)=SUPERIEUR->
  (compare (true_sub q z) (true_sub p z) EGAL)=INFERIEUR.
Proof.
Intros p q z; Intros; 
  Apply convert_compare_INFERIEUR; Rewrite true_sub_convert; [
  Rewrite true_sub_convert; [
    Unfold gt; Apply simpl_lt_plus_l with p:=(convert z);
    Rewrite le_plus_minus_r; [
      Rewrite le_plus_minus_r; [
        Apply compare_convert_INFERIEUR;Assumption
      | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1;Assumption]
    | Apply lt_le_weak; Apply compare_convert_INFERIEUR;Apply ZC1; Assumption]
  | Assumption]
| Assumption].
Qed.

(** Distributivity of multiplication over subtraction *)

Theorem times_true_sub_distr:
  (x,y,z:positive) (compare y z EGAL) = SUPERIEUR -> 
      (times x (true_sub y z)) = (true_sub (times x y) (times x z)).
Proof.
Intros x y z H; Apply convert_intro;
Rewrite times_convert; Rewrite true_sub_convert; [
  Rewrite true_sub_convert; [
    Do 2 Rewrite times_convert;
    Do 3 Rewrite (mult_sym (convert x));Apply mult_minus_distr
  | Apply convert_compare_SUPERIEUR; Do 2 Rewrite times_convert; 
    Unfold gt; Elim (ZL4 x);Intros h H1;Rewrite H1; Apply lt_mult_left;
    Exact (compare_convert_SUPERIEUR y z H) ]
| Assumption ].
Qed.