summaryrefslogtreecommitdiff
path: root/theories7/NArith/BinPos.v
blob: ae61587d312a310ac0c7c98f55b034072bb0bf2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: BinPos.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)

(**********************************************************************)
(** Binary positive numbers *)

(** Original development by Pierre Crégut, CNET, Lannion, France *)

Inductive positive : Set :=
  xI : positive -> positive
| xO : positive -> positive
| xH : positive.

(** Declare binding key for scope positive_scope *)

Delimits Scope positive_scope with positive.

(** Automatically open scope positive_scope for type positive, xO and xI *)

Bind Scope positive_scope with positive.
Arguments Scope xO [ positive_scope ].
Arguments Scope xI [ positive_scope ].

(** Successor *)

Fixpoint add_un [x:positive]:positive :=
  Cases x of
    (xI x') => (xO (add_un x'))
  | (xO x') => (xI x')
  | xH => (xO xH)
  end.

(** Addition *)

Fixpoint add [x:positive]:positive -> positive := [y:positive]
  Cases x y of
  | (xI x') (xI y') => (xO (add_carry x' y'))
  | (xI x') (xO y') => (xI (add x' y'))
  | (xI x') xH      => (xO (add_un x'))
  | (xO x') (xI y') => (xI (add x' y'))
  | (xO x') (xO y') => (xO (add x' y'))
  | (xO x') xH      => (xI x')
  | xH      (xI y') => (xO (add_un y'))
  | xH      (xO y') => (xI y')
  | xH      xH      => (xO xH)
  end
with add_carry [x:positive]:positive -> positive := [y:positive]
  Cases x y of
  | (xI x') (xI y') => (xI (add_carry x' y'))
  | (xI x') (xO y') => (xO (add_carry x' y'))
  | (xI x') xH      => (xI (add_un x'))
  | (xO x') (xI y') => (xO (add_carry x' y'))
  | (xO x') (xO y') => (xI (add x' y'))
  | (xO x') xH      => (xO (add_un x'))
  | xH      (xI y') => (xI (add_un y'))
  | xH      (xO y') => (xO (add_un y'))
  | xH      xH      => (xI xH)
  end.

V7only [Notation "x + y" := (add x y) : positive_scope.].
V8Infix "+" add : positive_scope.

Open Local Scope positive_scope.

(** From binary positive numbers to Peano natural numbers *)

Fixpoint positive_to_nat [x:positive]:nat -> nat :=
  [pow2:nat]
   Cases x of
     (xI x') => (plus pow2 (positive_to_nat x' (plus pow2 pow2)))
   | (xO x') => (positive_to_nat x' (plus pow2 pow2))
   | xH      => pow2
   end.

Definition convert := [x:positive] (positive_to_nat x (S O)).

(** From Peano natural numbers to binary positive numbers *)

Fixpoint anti_convert [n:nat]: positive :=
   Cases n of
                O => xH
             | (S x') => (add_un (anti_convert x'))
             end.

(** Operation x -> 2*x-1 *)

Fixpoint double_moins_un [x:positive]:positive :=
  Cases x of
      (xI x') => (xI (xO x'))
    | (xO x') => (xI (double_moins_un x'))
    | xH => xH
    end.

(** Predecessor *)

Definition sub_un := [x:positive]
   Cases x of
             (xI x') => (xO x')
           | (xO x') => (double_moins_un x')
           | xH => xH
           end.

(** An auxiliary type for subtraction *)

Inductive positive_mask: Set :=
   IsNul : positive_mask
 | IsPos : positive -> positive_mask
 | IsNeg : positive_mask.

(** Operation x -> 2*x+1 *)

Definition Un_suivi_de_mask := [x:positive_mask]
  Cases x of IsNul => (IsPos xH) | IsNeg => IsNeg | (IsPos p) => (IsPos (xI p)) end.

(** Operation x -> 2*x *)

Definition Zero_suivi_de_mask := [x:positive_mask]
  Cases x of IsNul => IsNul | IsNeg => IsNeg | (IsPos p) => (IsPos (xO p)) end.

(** Operation x -> 2*x-2 *)

Definition double_moins_deux :=
  [x:positive] Cases x of
           (xI x') => (IsPos (xO (xO x')))
         | (xO x') => (IsPos (xO (double_moins_un x')))
         | xH => IsNul
         end.

(** Subtraction of binary positive numbers into a positive numbers mask *)

Fixpoint sub_pos[x,y:positive]:positive_mask :=
  Cases x y of
  | (xI x') (xI y') => (Zero_suivi_de_mask (sub_pos x' y'))
  | (xI x') (xO y') => (Un_suivi_de_mask (sub_pos x' y'))
  | (xI x') xH      => (IsPos (xO x'))
  | (xO x') (xI y') => (Un_suivi_de_mask (sub_neg x' y'))
  | (xO x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y'))
  | (xO x') xH      => (IsPos (double_moins_un x'))
  | xH      xH      => IsNul
  | xH      _       => IsNeg
  end
with sub_neg [x,y:positive]:positive_mask :=
  Cases x y of
    (xI x') (xI y') => (Un_suivi_de_mask (sub_neg x' y'))
  | (xI x') (xO y') => (Zero_suivi_de_mask (sub_pos x' y'))
  | (xI x') xH      => (IsPos (double_moins_un x'))
  | (xO x') (xI y') => (Zero_suivi_de_mask (sub_neg x' y'))
  | (xO x') (xO y') => (Un_suivi_de_mask (sub_neg x' y'))
  | (xO x') xH      => (double_moins_deux x')
  | xH      _       => IsNeg
  end.

(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)

Definition true_sub := [x,y:positive] 
  Cases (sub_pos x y) of (IsPos z) => z | _ => xH  end.

V8Infix "-" true_sub : positive_scope.

(** Multiplication on binary positive numbers *)

Fixpoint times [x:positive] : positive -> positive:=
  [y:positive]
  Cases x of
    (xI x') => (add y (xO (times x' y)))
  | (xO x') => (xO (times x' y))
  | xH => y
  end.

V8Infix "*" times : positive_scope.

(** Division by 2 rounded below but for 1 *)

Definition Zdiv2_pos :=
  [z:positive]Cases z of xH => xH
                       | (xO p) => p
		       | (xI p) => p
		      end.

V8Infix "/" Zdiv2_pos : positive_scope.

(** Comparison on binary positive numbers *)

Fixpoint compare [x,y:positive]: relation -> relation :=
  [r:relation] 
  Cases x y of
  | (xI x') (xI y') => (compare x' y' r)
  | (xI x') (xO y') => (compare x' y' SUPERIEUR)
  | (xI x')  xH     => SUPERIEUR
  | (xO x') (xI y') => (compare x' y' INFERIEUR)
  | (xO x') (xO y') => (compare x' y' r)
  | (xO x')  xH     => SUPERIEUR
  | xH      (xI y') => INFERIEUR
  | xH      (xO y') => INFERIEUR
  | xH       xH     => r
  end.

V8Infix "?=" compare (at level 70, no associativity) : positive_scope.

(**********************************************************************)
(** Miscellaneous properties of binary positive numbers *)

Lemma ZL11: (x:positive) (x=xH) \/ ~(x=xH).
Proof.
Intros x;Case x;Intros; (Left;Reflexivity) Orelse (Right;Discriminate).
Qed.

(**********************************************************************)
(** Properties of successor on binary positive numbers *)

(** Specification of [xI] in term of [Psucc] and [xO] *)

Lemma xI_add_un_xO : (x:positive)(xI x) = (add_un (xO x)).
Proof.
Reflexivity.
Qed.

Lemma add_un_discr : (x:positive)x<>(add_un x).
Proof.
Intro x; NewDestruct x; Discriminate.
Qed.

(** Successor and double *)

Lemma is_double_moins_un : (x:positive) (add_un (double_moins_un x)) = (xO x).
Proof.
Intro x; NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity.
Qed.

Lemma double_moins_un_add_un_xI : 
 (x:positive)(double_moins_un (add_un x))=(xI x).
Proof.
Intro x;NewInduction x as [x IHx|x|]; Simpl; Try Rewrite IHx; Reflexivity.
Qed.

Lemma ZL1: (y:positive)(xO (add_un y)) = (add_un (add_un (xO y))).
Proof.
Intro y; Induction y; Simpl; Auto.
Qed.

Lemma double_moins_un_xO_discr : (x:positive)(double_moins_un x)<>(xO x).
Proof.
Intro x; NewDestruct x; Discriminate.
Qed.

(** Successor and predecessor *)

Lemma add_un_not_un : (x:positive) (add_un x) <> xH.
Proof.
Intro x; NewDestruct x as [x|x|]; Discriminate.
Qed.

Lemma sub_add_one : (x:positive) (sub_un (add_un x)) = x.
Proof.
(Intro x; NewDestruct x as [p|p|]; [Idtac | Idtac | Simpl;Auto]);
(NewInduction p as [p IHp||]; [Idtac | Reflexivity | Reflexivity ]);
Simpl; Simpl in IHp; Try Rewrite <- IHp; Reflexivity.
Qed.

Lemma add_sub_one : (x:positive) (x=xH) \/ (add_un (sub_un x)) = x.
Proof.
Intro x; Induction x; [
  Simpl; Auto
| Simpl; Intros;Right;Apply is_double_moins_un
| Auto ].
Qed.

(** Injectivity of successor *)

Lemma add_un_inj : (x,y:positive) (add_un x)=(add_un y) -> x=y.
Proof.
Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl; 
  Intro H; Discriminate H Orelse Try (Injection H; Clear H; Intro H).
Rewrite (IHx y H); Reflexivity.
Absurd (add_un x)=xH; [ Apply add_un_not_un | Assumption ].
Apply f_equal with 1:=H; Assumption.
Absurd (add_un y)=xH; [ Apply add_un_not_un | Symmetry; Assumption ].
Reflexivity.
Qed.

(**********************************************************************)
(** Properties of addition on binary positive numbers *)

(** Specification of [Psucc] in term of [Pplus] *)

Lemma ZL12: (q:positive) (add_un q) = (add q xH).
Proof.
Intro q; NewDestruct q; Reflexivity.
Qed.

Lemma ZL12bis: (q:positive) (add_un q) = (add xH q).
Proof.
Intro q; NewDestruct q; Reflexivity.
Qed.

(** Specification of [Pplus_carry] *)

Theorem ZL13: (x,y:positive)(add_carry x y) = (add_un (add x y)).
Proof.
(Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto);
  Rewrite IHp; Auto.
Qed.

(** Commutativity *)

Theorem add_sym : (x,y:positive) (add x y) = (add y x).
Proof.
Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto;
  Try Do 2 Rewrite ZL13; Rewrite IHp;Auto.
Qed. 

(** Permutation of [Pplus] and [Psucc] *)

Theorem ZL14: (x,y:positive)(add x (add_un y)) = (add_un (add x y)).
Proof.
Intro x; NewInduction x as [p IHp|p IHp|];Intro y; NewDestruct y;Simpl;Auto; [
  Rewrite ZL13; Rewrite IHp; Auto
| Rewrite ZL13; Auto
| NewDestruct p;Simpl;Auto
| Rewrite IHp;Auto
| NewDestruct p;Simpl;Auto ].
Qed.

Theorem ZL14bis: (x,y:positive)(add (add_un x) y) = (add_un (add x y)).
Proof.
Intros x y; Rewrite add_sym; Rewrite add_sym with x:=x; Apply ZL14.
Qed.

Theorem ZL15: (q,z:positive) ~z=xH -> (add_carry q (sub_un z)) = (add q z).
Proof.
Intros q z H; Elim (add_sub_one z); [
  Intro;Absurd z=xH;Auto
| Intros E;Pattern 2 z ;Rewrite <- E; Rewrite ZL14; Rewrite ZL13; Trivial ].
Qed. 

(** No neutral for addition on strictly positive numbers *)

Lemma add_no_neutral : (x,y:positive) ~(add y x)=x.
Proof.
Intro x;NewInduction x; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H;
  Discriminate H Orelse Injection H; Clear H; Intro H; Apply (IHx y H).
Qed.

Lemma add_carry_not_add_un : (x,y:positive) ~(add_carry y x)=(add_un x).
Proof.
Intros x y H; Absurd (add y x)=x; 
      [ Apply add_no_neutral
      | Apply add_un_inj; Rewrite <- ZL13; Assumption ].
Qed.

(** Simplification *)

Lemma add_carry_add :
  (x,y,z,t:positive) (add_carry x z)=(add_carry y t) -> (add x z)=(add y t).
Proof.
Intros x y z t H; Apply add_un_inj; Do 2 Rewrite <- ZL13; Assumption.
Qed.

Lemma simpl_add_r : (x,y,z:positive) (add x z)=(add y z) -> x=y.
Proof.
Intros x y z; Generalize x y; Clear x y.
NewInduction z as [z|z|].
  NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H; 
  Discriminate H Orelse Try (Injection H; Clear H; Intro H).
    Rewrite IHz with 1:=(add_carry_add ? ? ? ? H); Reflexivity.
    Absurd (add_carry x z)=(add_un z);
      [ Apply add_carry_not_add_un | Assumption ].
    Rewrite IHz with 1:=H; Reflexivity.
    Symmetry in H; Absurd (add_carry y z)=(add_un z);
      [ Apply add_carry_not_add_un | Assumption ].
    Reflexivity.
  NewDestruct x as [x|x|]; Intro y; NewDestruct y as [y|y|]; Simpl; Intro H; 
  Discriminate H Orelse Try (Injection H; Clear H; Intro H).
    Rewrite IHz with 1:=H; Reflexivity.
    Absurd (add x z)=z; [ Apply add_no_neutral | Assumption ].
    Rewrite IHz with 1:=H; Reflexivity.
    Symmetry in H; Absurd y+z=z; [ Apply add_no_neutral | Assumption ].
    Reflexivity.
  Intros H x y; Apply add_un_inj; Do 2 Rewrite ZL12; Assumption.
Qed.

Lemma simpl_add_l : (x,y,z:positive) (add x y)=(add x z) -> y=z.
Proof.
Intros x y z H;Apply simpl_add_r with z:=x; 
  Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Assumption.
Qed.

Lemma simpl_add_carry_r :
 (x,y,z:positive) (add_carry x z)=(add_carry y z) -> x=y.
Proof.
Intros x y z H; Apply simpl_add_r with z:=z; Apply add_carry_add; Assumption.
Qed.

Lemma simpl_add_carry_l :
  (x,y,z:positive) (add_carry x y)=(add_carry x z) -> y=z.
Proof.
Intros x y z H;Apply simpl_add_r with z:=x; 
Rewrite add_sym with x:=z; Rewrite add_sym with x:=y; Apply add_carry_add; 
Assumption.
Qed.

(** Addition on positive is associative *)

Theorem add_assoc: (x,y,z:positive)(add x (add y z)) = (add (add x y) z).
Proof.
Intros x y; Generalize x; Clear x.
NewInduction y as [y|y|]; Intro x.
  NewDestruct x as [x|x|]; 
    Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13;
    Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse
    Repeat Apply f_equal with A:=positive; Apply IHy.
  NewDestruct x as [x|x|]; 
    Intro z; NewDestruct z as [z|z|]; Simpl; Repeat Rewrite ZL13;
    Repeat Rewrite ZL14; Repeat Rewrite ZL14bis; Reflexivity Orelse
    Repeat Apply f_equal with A:=positive; Apply IHy.
  Intro z; Rewrite add_sym with x:=xH; Do 2 Rewrite <- ZL12; Rewrite ZL14bis; Rewrite ZL14; Reflexivity.
Qed.

(** Commutation of addition with the double of a positive number *)

Lemma add_xI_double_moins_un :
  (p,q:positive)(xO (add p q)) = (add (xI p) (double_moins_un q)).
Proof.
Intros; Change (xI p) with (add (xO p) xH).
Rewrite <- add_assoc; Rewrite <- ZL12bis; Rewrite is_double_moins_un.
Reflexivity.
Qed.

Lemma add_xO_double_moins_un :
 (p,q:positive) (double_moins_un (add p q)) = (add (xO p) (double_moins_un q)).
Proof.
NewInduction p as [p IHp|p IHp|]; NewDestruct q as [q|q|];
 Simpl; Try Rewrite ZL13; Try Rewrite double_moins_un_add_un_xI;
 Try Rewrite IHp; Try Rewrite add_xI_double_moins_un; Try Reflexivity.
 Rewrite <- is_double_moins_un; Rewrite ZL12bis; Reflexivity. 
Qed.

(** Misc *)

Lemma add_x_x : (x:positive) (add x x) = (xO x).
Proof.
Intro x;NewInduction x; Simpl; Try Rewrite ZL13; Try Rewrite IHx; Reflexivity.
Qed.

(**********************************************************************)
(** Peano induction on binary positive positive numbers *)

Fixpoint plus_iter [x:positive] : positive -> positive := 
  [y]Cases x of 
  | xH => (add_un y)
  | (xO x) => (plus_iter x (plus_iter x y))
  | (xI x) => (plus_iter x (plus_iter x (add_un y)))
  end.

Lemma plus_iter_add : (x,y:positive)(plus_iter x y)=(add x y).
Proof.
Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y; Simpl;
  Reflexivity Orelse Do 2 Rewrite IHp; Rewrite add_assoc; Rewrite add_x_x;
  Try Reflexivity.
Rewrite ZL13; Rewrite <- ZL14; Reflexivity.
Rewrite ZL12; Reflexivity.
Qed.

Lemma plus_iter_xO : (x:positive)(plus_iter x x)=(xO x).
Proof.
Intro; Rewrite <- add_x_x; Apply plus_iter_add.
Qed.

Lemma plus_iter_xI : (x:positive)(add_un (plus_iter x x))=(xI x).
Proof.
Intro; Rewrite xI_add_un_xO; Rewrite <- add_x_x; 
  Apply (f_equal positive); Apply plus_iter_add.
Qed.

Lemma iterate_add : (P:(positive->Type))
  ((n:positive)(P n) ->(P (add_un n)))->(p,n:positive)(P n) ->
  (P (plus_iter p n)).
Proof.
Intros P H; NewInduction p; Simpl; Intros.
Apply IHp; Apply IHp; Apply H; Assumption.
Apply IHp; Apply IHp; Assumption.
Apply H; Assumption.
Defined.

(** Peano induction *)

Theorem Pind : (P:(positive->Prop))
  (P xH) ->((n:positive)(P n) ->(P (add_un n))) ->(n:positive)(P n).
Proof.
Intros P H1 Hsucc n; NewInduction n.
Rewrite <- plus_iter_xI; Apply Hsucc; Apply iterate_add; Assumption.
Rewrite <- plus_iter_xO; Apply iterate_add; Assumption.
Assumption.
Qed.

(** Peano recursion *)

Definition Prec : (A:Set)A->(positive->A->A)->positive->A :=
  [A;a;f]Fix Prec { Prec [p:positive] : A :=
  Cases p of
  | xH => a
  | (xO p) => (iterate_add [_]A f p p (Prec p))
  | (xI p) => (f (plus_iter p p) (iterate_add [_]A f p p (Prec p)))
  end}.

(** Peano case analysis *)

Theorem Pcase : (P:(positive->Prop))
  (P xH) ->((n:positive)(P (add_un n))) ->(n:positive)(P n).
Proof.
Intros; Apply Pind; Auto.
Qed.

Check
 let fact = (Prec positive xH [p;r](times (add_un p) r)) in
 let seven = (xI (xI xH)) in
 let five_thousand_forty= (xO(xO(xO(xO(xI(xI(xO(xI(xI(xI(xO(xO xH))))))))))))
 in ((refl_equal ? ?) :: (fact seven) = five_thousand_forty).

(**********************************************************************)
(** Properties of multiplication on binary positive numbers *)

(** One is right neutral for multiplication *)

Lemma times_x_1 : (x:positive) (times x xH) = x.
Proof.
Intro x;NewInduction x; Simpl.
  Rewrite IHx; Reflexivity.
  Rewrite IHx; Reflexivity.
  Reflexivity.
Qed.

(** Right reduction properties for multiplication *)

Lemma times_x_double : (x,y:positive) (times x (xO y)) = (xO (times x y)).
Proof.
Intros x y; NewInduction x; Simpl.
  Rewrite IHx; Reflexivity.
  Rewrite IHx; Reflexivity.
  Reflexivity.
Qed.

Lemma times_x_double_plus_one :
 (x,y:positive) (times x (xI y)) = (add x (xO (times x y))).
Proof.
Intros x y; NewInduction x; Simpl.
  Rewrite IHx; Do 2 Rewrite add_assoc; Rewrite add_sym with x:=y; Reflexivity.
  Rewrite IHx; Reflexivity.
  Reflexivity.
Qed.

(** Commutativity of multiplication *)

Theorem times_sym : (x,y:positive) (times x y) = (times y x).
Proof.
Intros x y; NewInduction y; Simpl.
  Rewrite <- IHy; Apply times_x_double_plus_one.
  Rewrite <- IHy; Apply times_x_double.
  Apply times_x_1.
Qed.

(** Distributivity of multiplication over addition *)

Theorem times_add_distr:
  (x,y,z:positive) (times x (add y z)) = (add (times x y) (times x z)).
Proof.
Intros x y z; NewInduction x; Simpl.
  Rewrite IHx; Rewrite <- add_assoc with y := (xO (times x y));
    Rewrite -> add_assoc with x := (xO (times x y));
    Rewrite -> add_sym with x := (xO (times x y));
    Rewrite <- add_assoc with y := (xO (times x y));
    Rewrite -> add_assoc with y := z; Reflexivity.
  Rewrite IHx; Reflexivity.
  Reflexivity.
Qed.

Theorem times_add_distr_l:
  (x,y,z:positive) (times (add x y) z) = (add (times x z) (times y z)).
Proof.
Intros x y z; Do 3 Rewrite times_sym with y:=z; Apply times_add_distr.
Qed.

(** Associativity of multiplication *)

Theorem times_assoc :
  ((x,y,z:positive) (times x (times y z))= (times (times x y) z)).
Proof.
Intro x;NewInduction x as [x|x|]; Simpl; Intros y z.
  Rewrite IHx; Rewrite times_add_distr_l; Reflexivity.
  Rewrite IHx; Reflexivity.
  Reflexivity.
Qed.

(** Parity properties of multiplication *)

Lemma times_discr_xO_xI : 
  (x,y,z:positive)(times (xI x) z)<>(times (xO y) z).
Proof.
Intros x y z; NewInduction z as [|z IHz|]; Try Discriminate.
Intro H; Apply IHz; Clear IHz.
Do 2 Rewrite times_x_double in H.
Injection H; Clear H; Intro H; Exact H.
Qed.

Lemma times_discr_xO : (x,y:positive)(times (xO x) y)<>y.
Proof.
Intros x y; NewInduction y; Try Discriminate.
Rewrite times_x_double; Injection; Assumption.
Qed.

(** Simplification properties of multiplication *)

Theorem simpl_times_r : (x,y,z:positive) (times x z)=(times y z) -> x=y.
Proof.
Intro x;NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|]; Intros z H;
    Reflexivity Orelse Apply (f_equal positive) Orelse Apply False_ind.
  Simpl in H; Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double;
    Apply simpl_add_l with 1 := H.
  Apply times_discr_xO_xI with 1 := H.
  Simpl in H; Rewrite add_sym in H; Apply add_no_neutral with 1 := H.
  Symmetry in H; Apply times_discr_xO_xI with 1 := H.
  Apply IHp with (xO z); Simpl; Do 2 Rewrite times_x_double; Assumption.
  Apply times_discr_xO with 1:=H.
  Simpl in H; Symmetry in H; Rewrite add_sym in H; 
    Apply add_no_neutral with 1 := H.
  Symmetry in H; Apply times_discr_xO with 1:=H.
Qed.

Theorem simpl_times_l : (x,y,z:positive) (times z x)=(times z y) -> x=y.
Proof.
Intros x y z H; Apply simpl_times_r with z:=z.
Rewrite times_sym with x:=x; Rewrite times_sym with x:=y; Assumption.
Qed.

(** Inversion of multiplication *)

Lemma times_one_inversion_l : (x,y:positive) (times x y)=xH -> x=xH.
Proof.
Intros x y; NewDestruct x; Simpl.
 NewDestruct y; Intro; Discriminate.
 Intro; Discriminate.
 Reflexivity.
Qed.

(**********************************************************************)
(** Properties of comparison on binary positive numbers *)

Theorem compare_convert1 : 
 (x,y:positive) 
  ~(compare x y SUPERIEUR) = EGAL /\ ~(compare x y INFERIEUR) = EGAL.
Proof.
Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y as [q|q|];
  Split;Simpl;Auto;
  Discriminate Orelse (Elim (IHp q); Auto).
Qed.

Theorem compare_convert_EGAL : (x,y:positive) (compare x y EGAL) = EGAL -> x=y.
Proof.
Intro x; NewInduction x as [p IHp|p IHp|]; 
  Intro y; NewDestruct y as [q|q|];Simpl;Auto; Intro H; [
  Rewrite (IHp q); Trivial
| Absurd (compare p q SUPERIEUR)=EGAL ;
   [ Elim (compare_convert1 p q);Auto | Assumption ]
| Discriminate H
| Absurd (compare p q INFERIEUR) = EGAL; 
    [ Elim (compare_convert1 p q);Auto | Assumption ]
| Rewrite (IHp q);Auto 
| Discriminate H
| Discriminate H
| Discriminate H ].
Qed.

Lemma ZLSI:
 (x,y:positive) (compare x y SUPERIEUR) = INFERIEUR -> 
                (compare x y EGAL) = INFERIEUR.
Proof.
Intro x; Induction x;Intro y; Induction y;Simpl;Auto; 
  Discriminate Orelse Intros H;Discriminate H.
Qed.

Lemma ZLIS:
 (x,y:positive) (compare x y INFERIEUR) = SUPERIEUR -> 
                (compare x y EGAL) = SUPERIEUR.
Proof.
Intro x; Induction x;Intro y; Induction y;Simpl;Auto; 
  Discriminate Orelse Intros H;Discriminate H.
Qed.

Lemma ZLII:
 (x,y:positive) (compare x y INFERIEUR) = INFERIEUR ->
                (compare x y EGAL) = INFERIEUR \/ x = y.
Proof.
(Intro x; NewInduction x as [p IHp|p IHp|];
 Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
 Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
 Auto.
Qed.

Lemma ZLSS:
 (x,y:positive) (compare x y SUPERIEUR) = SUPERIEUR ->
                (compare x y EGAL) = SUPERIEUR \/ x = y.
Proof.
(Intro x; NewInduction x as [p IHp|p IHp|];
 Intro y; NewDestruct y as [q|q|];Simpl;Auto;Try Discriminate);
 Intro H2; Elim (IHp q H2);Auto; Intros E;Rewrite E;
 Auto.
Qed.

Lemma Dcompare : (r:relation) r=EGAL \/ r = INFERIEUR \/ r = SUPERIEUR.
Proof.
Induction r; Auto. 
Qed.

Tactic Definition ElimPcompare c1 c2:=
  Elim (Dcompare (compare c1 c2 EGAL)); [ Idtac | 
     Let x = FreshId "H" In Intro x; Case x; Clear x ].

Theorem convert_compare_EGAL: (x:positive)(compare x x EGAL)=EGAL.
Intro x; Induction x; Auto.
Qed.

Lemma Pcompare_antisym :
  (x,y:positive)(r:relation) (Op (compare x y r)) = (compare y x (Op r)).
Proof.
Intro x; NewInduction x as [p IHp|p IHp|]; Intro y; NewDestruct y; 
Intro r; Reflexivity Orelse (Symmetry; Assumption) Orelse Discriminate H
Orelse Simpl; Apply IHp Orelse Try Rewrite IHp; Try Reflexivity.
Qed.

Lemma ZC1:
  (x,y:positive)(compare x y EGAL)=SUPERIEUR -> (compare y x EGAL)=INFERIEUR.
Proof.
Intros; Change EGAL with (Op EGAL).
Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
Qed.

Lemma ZC2:
  (x,y:positive)(compare x y EGAL)=INFERIEUR -> (compare y x EGAL)=SUPERIEUR.
Proof.
Intros; Change EGAL with (Op EGAL).
Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
Qed.

Lemma ZC3: (x,y:positive)(compare x y EGAL)=EGAL -> (compare y x EGAL)=EGAL.
Proof.
Intros; Change EGAL with (Op EGAL).
Rewrite <- Pcompare_antisym; Rewrite H; Reflexivity.
Qed.

Lemma ZC4: (x,y:positive) (compare x y EGAL) = (Op (compare y x EGAL)).
Proof.
Intros; Change 1 EGAL with (Op EGAL).
Symmetry; Apply Pcompare_antisym.
Qed.

(**********************************************************************)
(** Properties of subtraction on binary positive numbers *)

Lemma ZS: (p:positive_mask) (Zero_suivi_de_mask p) = IsNul -> p = IsNul.
Proof.
NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ].
Qed.

Lemma US: (p:positive_mask) ~(Un_suivi_de_mask p)=IsNul.
Proof.
Induction p; Intros; Discriminate.
Qed.

Lemma USH: (p:positive_mask) (Un_suivi_de_mask p) = (IsPos xH) -> p = IsNul.
Proof.
NewDestruct p; Simpl; [ Trivial | Discriminate 1 | Discriminate 1 ].
Qed.

Lemma ZSH: (p:positive_mask) ~(Zero_suivi_de_mask p)= (IsPos xH).
Proof.
Induction p; Intros; Discriminate.
Qed.

Theorem sub_pos_x_x : (x:positive) (sub_pos x x) = IsNul.
Proof.
Intro x; NewInduction x as [p IHp|p IHp|]; [
  Simpl; Rewrite IHp;Simpl; Trivial
| Simpl; Rewrite IHp;Auto
| Auto ].
Qed.

Lemma ZL10: (x,y:positive)
 (sub_pos x y) = (IsPos xH) -> (sub_neg x y) = IsNul.
Proof.
Intro x; NewInduction x as [p|p|]; Intro y; NewDestruct y as [q|q|]; Simpl; 
  Intro H; Try Discriminate H; [
  Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH);
   [ Apply ZSH | Assumption ]
| Assert Heq : (sub_pos p q)=IsNul;
   [ Apply USH;Assumption | Rewrite Heq; Reflexivity ]
| Assert Heq : (sub_neg p q)=IsNul;
   [ Apply USH;Assumption | Rewrite Heq; Reflexivity ]
| Absurd (Zero_suivi_de_mask (sub_pos p q))=(IsPos xH); 
   [ Apply ZSH | Assumption ]
| NewDestruct p; Simpl; [ Discriminate H | Discriminate H | Reflexivity ] ].
Qed.

(** Properties of subtraction valid only for x>y *)

Lemma sub_pos_SUPERIEUR:
  (x,y:positive)(compare x y EGAL)=SUPERIEUR -> 
    (EX h:positive | (sub_pos x y) = (IsPos h) /\ (add y h) = x /\
                     (h = xH \/ (sub_neg x y) = (IsPos (sub_un h)))).
Proof.
Intro x;NewInduction x as [p|p|];Intro y; NewDestruct y as [q|q|]; Simpl; Intro H;
  Try Discriminate H.
  NewDestruct (IHp q H) as [z [H4 [H6 H7]]]; Exists (xO z); Split.
    Rewrite H4; Reflexivity.
    Split.
      Simpl; Rewrite H6; Reflexivity.
      Right; Clear H6; NewDestruct (ZL11 z) as [H8|H8]; [
        Rewrite H8; Rewrite H8 in H4;
        Rewrite ZL10; [ Reflexivity | Assumption ]
      | Clear H4; NewDestruct H7 as [H9|H9]; [
          Absurd z=xH; Assumption
        | Rewrite H9; Clear H9; NewDestruct z; 
            [ Reflexivity | Reflexivity | Absurd xH=xH; Trivial ]]].
  Case ZLSS with 1:=H; [
    Intros H3;Elim (IHp q H3); Intros z H4; Exists (xI z);
    Elim H4;Intros H5 H6;Elim H6;Intros H7 H8; Split; [
      Simpl;Rewrite H5;Auto
    | Split; [
        Simpl; Rewrite H7; Trivial
      | Right;
        Change (Zero_suivi_de_mask (sub_pos p q))=(IsPos (sub_un (xI z)));
        Rewrite H5; Auto ]]
  | Intros H3; Exists xH; Rewrite H3; Split; [
      Simpl; Rewrite sub_pos_x_x; Auto
    | Split; Auto ]].
  Exists (xO p); Auto.
  NewDestruct (IHp q) as [z [H4 [H6 H7]]].
    Apply ZLIS; Assumption.
    NewDestruct (ZL11 z) as [vZ|]; [
      Exists xH; Split; [
        Rewrite ZL10; [ Reflexivity | Rewrite vZ in H4;Assumption ]
      | Split; [
          Simpl; Rewrite ZL12; Rewrite <- vZ; Rewrite H6; Trivial
        | Auto ]]
    | Exists (xI (sub_un z)); NewDestruct H7 as [|H8];[
        Absurd z=xH;Assumption
      | Split; [
          Rewrite H8; Trivial
        | Split; [ Simpl; Rewrite ZL15; [
              Rewrite H6;Trivial
            | Assumption ]
          | Right; Rewrite H8; Reflexivity]]]].
  NewDestruct (IHp q H) as [z [H4 [H6 H7]]].
  Exists (xO z); Split; [
    Rewrite H4;Auto
  | Split; [
      Simpl;Rewrite H6;Reflexivity
    | Right; 
      Change (Un_suivi_de_mask (sub_neg p q))=(IsPos (double_moins_un z));
      NewDestruct (ZL11 z) as [H8|H8]; [
        Rewrite H8; Simpl;
        Assert H9:(sub_neg p q)=IsNul;[
          Apply ZL10;Rewrite <- H8;Assumption
        | Rewrite H9;Reflexivity ]
      | NewDestruct H7 as [H9|H9]; [
          Absurd z=xH;Auto
        | Rewrite H9; NewDestruct z; Simpl; 
            [ Reflexivity
            | Reflexivity
            | Absurd xH=xH; [Assumption | Reflexivity]]]]]].
  Exists (double_moins_un p); Split; [
    Reflexivity
  | Clear IHp; Split; [
      NewDestruct p; Simpl; [
        Reflexivity
      | Rewrite is_double_moins_un; Reflexivity
      | Reflexivity ]
    | NewDestruct p; [Right|Right|Left]; Reflexivity ]].
Qed.

Theorem sub_add: 
(x,y:positive) (compare x y EGAL) = SUPERIEUR -> (add y (true_sub x y)) = x.
Proof.
Intros x y H;Elim sub_pos_SUPERIEUR with 1:=H;
Intros z H1;Elim H1;Intros H2 H3; Elim H3;Intros H4 H5; 
Unfold true_sub ;Rewrite H2; Exact H4.
Qed.