1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** This is a proof in the pure Calculus of Construction that
classical logic in Prop + dependent elimination of disjunction entails
proof-irrelevance.
Since, dependent elimination is derivable in the Calculus of
Inductive Constructions (CCI), we get proof-irrelevance from classical
logic in the CCI.
Reference:
- [Coquand] T. Coquand, "Metamathematical Investigations of a
Calculus of Constructions", Proceedings of Logic in Computer Science
(LICS'90), 1990.
Proof skeleton: classical logic + dependent elimination of
disjunction + discrimination of proofs implies the existence of a
retract from Prop into bool, hence inconsistency by encoding any
paradox of system U- (e.g. Hurkens' paradox).
*)
Require Hurkens.
Section Proof_irrelevance_CC.
Variable or : Prop -> Prop -> Prop.
Variable or_introl : (A,B:Prop)A->(or A B).
Variable or_intror : (A,B:Prop)B->(or A B).
Hypothesis or_elim : (A,B:Prop)(C:Prop)(A->C)->(B->C)->(or A B)->C.
Hypothesis or_elim_redl :
(A,B:Prop)(C:Prop)(f:A->C)(g:B->C)(a:A)
(f a)==(or_elim A B C f g (or_introl A B a)).
Hypothesis or_elim_redr :
(A,B:Prop)(C:Prop)(f:A->C)(g:B->C)(b:B)
(g b)==(or_elim A B C f g (or_intror A B b)).
Hypothesis or_dep_elim :
(A,B:Prop)(P:(or A B)->Prop)
((a:A)(P (or_introl A B a))) ->
((b:B)(P (or_intror A B b))) -> (b:(or A B))(P b).
Hypothesis em : (A:Prop)(or A ~A).
Variable B : Prop.
Variable b1,b2 : B.
(** [p2b] and [b2p] form a retract if [~b1==b2] *)
Definition p2b [A] := (or_elim A ~A B [_]b1 [_]b2 (em A)).
Definition b2p [b] := b1==b.
Lemma p2p1 : (A:Prop) A -> (b2p (p2b A)).
Proof.
Unfold p2b; Intro A; Apply or_dep_elim with b:=(em A); Unfold b2p; Intros.
Apply (or_elim_redl A ~A B [_]b1 [_]b2).
NewDestruct (b H).
Qed.
Lemma p2p2 : ~b1==b2->(A:Prop) (b2p (p2b A)) -> A.
Proof.
Intro not_eq_b1_b2.
Unfold p2b; Intro A; Apply or_dep_elim with b:=(em A); Unfold b2p; Intros.
Assumption.
NewDestruct not_eq_b1_b2.
Rewrite <- (or_elim_redr A ~A B [_]b1 [_]b2) in H.
Assumption.
Qed.
(** Using excluded-middle a second time, we get proof-irrelevance *)
Theorem proof_irrelevance_cc : b1==b2.
Proof.
Refine (or_elim ? ? ? ? ? (em b1==b2));Intro H.
Trivial.
Apply (paradox B p2b b2p (p2p2 H) p2p1).
Qed.
End Proof_irrelevance_CC.
(** The Calculus of Inductive Constructions (CCI) enjoys dependent
elimination, hence classical logic in CCI entails proof-irrelevance.
*)
Section Proof_irrelevance_CCI.
Hypothesis em : (A:Prop) A \/ ~A.
Definition or_elim_redl :
(A,B:Prop)(C:Prop)(f:A->C)(g:B->C)(a:A)
(f a)==(or_ind A B C f g (or_introl A B a))
:= [A,B,C;f;g;a](refl_eqT C (f a)).
Definition or_elim_redr :
(A,B:Prop)(C:Prop)(f:A->C)(g:B->C)(b:B)
(g b)==(or_ind A B C f g (or_intror A B b))
:= [A,B,C;f;g;b](refl_eqT C (g b)).
Scheme or_indd := Induction for or Sort Prop.
Theorem proof_irrelevance_cci : (B:Prop)(b1,b2:B)b1==b2.
Proof
(proof_irrelevance_cc or or_introl or_intror or_ind
or_elim_redl or_elim_redr or_indd em).
End Proof_irrelevance_CCI.
(** Remark: in CCI, [bool] can be taken in [Set] as well in the
paradox and since [~true=false] for [true] and [false] in
[bool], we get the inconsistency of [em : (A:Prop){A}+{~A}] in CCI
*)
|