summaryrefslogtreecommitdiff
path: root/theories7/Logic/Classical_Pred_Set.v
blob: b1c26e6d221e5ad42dfb73c113b0370ef5cc8027 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Classical_Pred_Set.v,v 1.1.2.1 2004/07/16 19:31:29 herbelin Exp $ i*)

(** Classical Predicate Logic on Set*)

Require Classical_Prop.

Section Generic.
Variable U: Set.

(** de Morgan laws for quantifiers *)

Lemma not_all_ex_not : (P:U->Prop)(~(n:U)(P n)) -> (EX n:U | ~(P n)).
Proof.
Unfold not; Intros P notall.
Apply NNPP; Unfold not.
Intro abs.
Cut ((n:U)(P n)); Auto.
Intro n; Apply NNPP.
Unfold not; Intros.
Apply abs; Exists n; Trivial.
Qed.

Lemma not_all_not_ex : (P:U->Prop)(~(n:U)~(P n)) -> (EX n:U |(P n)).
Proof.
Intros P H.
Elim (not_all_ex_not [n:U]~(P n) H); Intros n Pn; Exists n.
Apply NNPP; Trivial.
Qed.

Lemma not_ex_all_not : (P:U->Prop) (~(EX n:U |(P n))) -> (n:U)~(P n).
Proof.
Unfold not; Intros P notex n abs.
Apply notex.
Exists n; Trivial.
Qed. 

Lemma not_ex_not_all : (P:U->Prop)(~(EX n:U | ~(P n))) -> (n:U)(P n).
Proof.
Intros P H n.
Apply NNPP.
Red; Intro K; Apply H; Exists n; Trivial.
Qed.

Lemma ex_not_not_all : (P:U->Prop) (EX n:U | ~(P n)) -> ~(n:U)(P n).
Proof.
Unfold not; Intros P exnot allP.
Elim exnot; Auto.
Qed.

Lemma all_not_not_ex : (P:U->Prop) ((n:U)~(P n)) -> ~(EX n:U |(P n)).
Proof.
Unfold not; Intros P allnot exP; Elim exP; Intros n p.
Apply allnot with n; Auto.
Qed.

End Generic.