1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Mapaxioms.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*)
Require Bool.
Require Sumbool.
Require ZArith.
Require Addr.
Require Adist.
Require Addec.
Require Map.
Require Fset.
Section MapAxioms.
Variable A, B, C : Set.
Lemma eqm_sym : (f,f':ad->(option A)) (eqm A f f') -> (eqm A f' f).
Proof.
Unfold eqm. Intros. Rewrite H. Reflexivity.
Qed.
Lemma eqm_refl : (f:ad->(option A)) (eqm A f f).
Proof.
Unfold eqm. Trivial.
Qed.
Lemma eqm_trans : (f,f',f'':ad->(option A)) (eqm A f f') -> (eqm A f' f'') -> (eqm A f f'').
Proof.
Unfold eqm. Intros. Rewrite H. Exact (H0 a).
Qed.
Definition eqmap := [m,m':(Map A)] (eqm A (MapGet A m) (MapGet A m')).
Lemma eqmap_sym : (m,m':(Map A)) (eqmap m m') -> (eqmap m' m).
Proof.
Intros. Unfold eqmap. Apply eqm_sym. Assumption.
Qed.
Lemma eqmap_refl : (m:(Map A)) (eqmap m m).
Proof.
Intros. Unfold eqmap. Apply eqm_refl.
Qed.
Lemma eqmap_trans : (m,m',m'':(Map A)) (eqmap m m') -> (eqmap m' m'') -> (eqmap m m'').
Proof.
Intros. Exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0).
Qed.
Lemma MapPut_as_Merge : (m:(Map A)) (a:ad) (y:A)
(eqmap (MapPut A m a y) (MapMerge A m (M1 A a y))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapPut_semantics A m a y a0).
Rewrite (MapMerge_semantics A m (M1 A a y) a0). Unfold 2 MapGet.
Elim (sumbool_of_bool (ad_eq a a0)); Intro H; Rewrite H; Reflexivity.
Qed.
Lemma MapPut_ext : (m,m':(Map A)) (eqmap m m') ->
(a:ad) (y:A) (eqmap (MapPut A m a y) (MapPut A m' a y)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapPut_semantics A m' a y a0).
Rewrite (MapPut_semantics A m a y a0).
Case (ad_eq a a0); [ Reflexivity | Apply H ].
Qed.
Lemma MapPut_behind_as_Merge : (m:(Map A)) (a:ad) (y:A)
(eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapPut_behind_semantics A m a y a0).
Rewrite (MapMerge_semantics A (M1 A a y) m a0). Reflexivity.
Qed.
Lemma MapPut_behind_ext : (m,m':(Map A)) (eqmap m m') ->
(a:ad) (y:A) (eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapPut_behind_semantics A m' a y a0).
Rewrite (MapPut_behind_semantics A m a y a0). Rewrite (H a0). Reflexivity.
Qed.
Lemma MapMerge_empty_m_1 : (m:(Map A)) (MapMerge A (M0 A) m)=m.
Proof.
Trivial.
Qed.
Lemma MapMerge_empty_m : (m:(Map A)) (eqmap (MapMerge A (M0 A) m) m).
Proof.
Unfold eqmap eqm. Trivial.
Qed.
Lemma MapMerge_m_empty_1 : (m:(Map A)) (MapMerge A m (M0 A))=m.
Proof.
Induction m;Trivial.
Qed.
Lemma MapMerge_m_empty : (m:(Map A)) (eqmap (MapMerge A m (M0 A)) m).
Proof.
Unfold eqmap eqm. Intros. Rewrite MapMerge_m_empty_1. Reflexivity.
Qed.
Lemma MapMerge_empty_l : (m,m':(Map A)) (eqmap (MapMerge A m m') (M0 A)) ->
(eqmap m (M0 A)).
Proof.
Unfold eqmap eqm. Intros. Cut (MapGet A (MapMerge A m m') a)=(MapGet A (M0 A) a).
Rewrite (MapMerge_semantics A m m' a). Case (MapGet A m' a). Trivial.
Intros. Discriminate H0.
Exact (H a).
Qed.
Lemma MapMerge_empty_r : (m,m':(Map A)) (eqmap (MapMerge A m m') (M0 A)) ->
(eqmap m' (M0 A)).
Proof.
Unfold eqmap eqm. Intros. Cut (MapGet A (MapMerge A m m') a)=(MapGet A (M0 A) a).
Rewrite (MapMerge_semantics A m m' a). Case (MapGet A m' a). Trivial.
Intros. Discriminate H0.
Exact (H a).
Qed.
Lemma MapMerge_assoc : (m,m',m'':(Map A)) (eqmap
(MapMerge A (MapMerge A m m') m'')
(MapMerge A m (MapMerge A m' m''))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A (MapMerge A m m') m'' a).
Rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). Rewrite (MapMerge_semantics A m m' a).
Rewrite (MapMerge_semantics A m' m'' a).
Case (MapGet A m'' a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapMerge_idempotent : (m:(Map A)) (eqmap (MapMerge A m m) m).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A m m a).
Case (MapGet A m a); Trivial.
Qed.
Lemma MapMerge_ext : (m1,m2,m'1,m'2:(Map A))
(eqmap m1 m'1) -> (eqmap m2 m'2) ->
(eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A m1 m2 a).
Rewrite (MapMerge_semantics A m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
Qed.
Lemma MapMerge_ext_l : (m1,m'1,m2:(Map A))
(eqmap m1 m'1) -> (eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2)).
Proof.
Intros. Apply MapMerge_ext. Assumption.
Apply eqmap_refl.
Qed.
Lemma MapMerge_ext_r : (m1,m2,m'2:(Map A))
(eqmap m2 m'2) -> (eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2)).
Proof.
Intros. Apply MapMerge_ext. Apply eqmap_refl.
Assumption.
Qed.
Lemma MapMerge_RestrTo_l : (m,m',m'':(Map A))
(eqmap (MapMerge A (MapDomRestrTo A A m m') m'')
(MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m''))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a).
Rewrite (MapDomRestrTo_semantics A A m m' a).
Rewrite (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a).
Rewrite (MapMerge_semantics A m' m'' a). Rewrite (MapMerge_semantics A m m'' a).
Case (MapGet A m'' a); Case (MapGet A m' a); Reflexivity.
Qed.
Lemma MapRemove_as_RestrBy : (m:(Map A)) (a:ad) (y:B)
(eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapRemove_semantics A m a a0).
Rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). Elim (sumbool_of_bool (ad_eq a a0)).
Intro H. Rewrite H. Rewrite (ad_eq_complete a a0 H). Rewrite (M1_semantics_1 B a0 y).
Reflexivity.
Intro H. Rewrite H. Rewrite (M1_semantics_2 B a a0 y H). Reflexivity.
Qed.
Lemma MapRemove_ext : (m,m':(Map A)) (eqmap m m') ->
(a:ad) (eqmap (MapRemove A m a) (MapRemove A m' a)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapRemove_semantics A m' a a0).
Rewrite (MapRemove_semantics A m a a0).
Case (ad_eq a a0); [ Reflexivity | Apply H ].
Qed.
Lemma MapDomRestrTo_empty_m_1 :
(m:(Map B)) (MapDomRestrTo A B (M0 A) m)=(M0 A).
Proof.
Trivial.
Qed.
Lemma MapDomRestrTo_empty_m :
(m:(Map B)) (eqmap (MapDomRestrTo A B (M0 A) m) (M0 A)).
Proof.
Unfold eqmap eqm. Trivial.
Qed.
Lemma MapDomRestrTo_m_empty_1 :
(m:(Map A)) (MapDomRestrTo A B m (M0 B))=(M0 A).
Proof.
Induction m;Trivial.
Qed.
Lemma MapDomRestrTo_m_empty :
(m:(Map A)) (eqmap (MapDomRestrTo A B m (M0 B)) (M0 A)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_m_empty_1 m). Reflexivity.
Qed.
Lemma MapDomRestrTo_assoc : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
(MapDomRestrTo A B m (MapDomRestrTo B C m' m''))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a).
Rewrite (MapDomRestrTo_semantics B C m' m'' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrTo_idempotent : (m:(Map A)) (eqmap (MapDomRestrTo A A m m) m).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A A m m a).
Case (MapGet A m a); Trivial.
Qed.
Lemma MapDomRestrTo_Dom : (m:(Map A)) (m':(Map B))
(eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m'))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a).
Elim (sumbool_of_bool (in_FSet a (MapDom B m'))). Intro H.
Elim (MapDom_semantics_2 B m' a H). Intros y H0. Rewrite H0. Unfold in_FSet in_dom in H.
Generalize H. Case (MapGet unit (MapDom B m') a); Trivial. Intro H1. Discriminate H1.
Intro H. Rewrite (MapDom_semantics_4 B m' a H). Unfold in_FSet in_dom in H.
Generalize H. Case (MapGet unit (MapDom B m') a). Trivial.
Intros H0 H1. Discriminate H1.
Qed.
Lemma MapDomRestrBy_empty_m_1 :
(m:(Map B)) (MapDomRestrBy A B (M0 A) m)=(M0 A).
Proof.
Trivial.
Qed.
Lemma MapDomRestrBy_empty_m :
(m:(Map B)) (eqmap (MapDomRestrBy A B (M0 A) m) (M0 A)).
Proof.
Unfold eqmap eqm. Trivial.
Qed.
Lemma MapDomRestrBy_m_empty_1 : (m:(Map A)) (MapDomRestrBy A B m (M0 B))=m.
Proof.
Induction m;Trivial.
Qed.
Lemma MapDomRestrBy_m_empty : (m:(Map A)) (eqmap (MapDomRestrBy A B m (M0 B)) m).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_m_empty_1 m). Reflexivity.
Qed.
Lemma MapDomRestrBy_Dom : (m:(Map A)) (m':(Map B))
(eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m'))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a).
Elim (sumbool_of_bool (in_FSet a (MapDom B m'))). Intro H.
Elim (MapDom_semantics_2 B m' a H). Intros y H0. Rewrite H0.
Unfold in_FSet in_dom in H. Generalize H. Case (MapGet unit (MapDom B m') a); Trivial.
Intro H1. Discriminate H1.
Intro H. Rewrite (MapDom_semantics_4 B m' a H). Unfold in_FSet in_dom in H.
Generalize H. Case (MapGet unit (MapDom B m') a). Trivial.
Intros H0 H1. Discriminate H1.
Qed.
Lemma MapDomRestrBy_m_m_1 : (m:(Map A)) (eqmap (MapDomRestrBy A A m m) (M0 A)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A A m m a).
Case (MapGet A m a); Trivial.
Qed.
Lemma MapDomRestrBy_By : (m:(Map A)) (m':(Map B)) (m'':(Map B))
(eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')
(MapDomRestrBy A B m (MapMerge B m' m''))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a).
Rewrite (MapMerge_semantics B m' m'' a).
Case (MapGet B m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrBy_By_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')
(MapDomRestrBy A B (MapDomRestrBy A C m m'') m')).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a).
Rewrite (MapDomRestrBy_semantics A C m m'' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrBy_To : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
(MapDomRestrTo A B m (MapDomRestrBy B C m' m''))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a).
Rewrite (MapDomRestrBy_semantics B C m' m'' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrBy_To_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
(MapDomRestrTo A B (MapDomRestrBy A C m m'') m')).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a).
Rewrite (MapDomRestrBy_semantics A C m m'' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrTo_By : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
(MapDomRestrTo A C m (MapDomRestrBy C B m'' m'))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a).
Rewrite (MapDomRestrBy_semantics C B m'' m' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrTo_By_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
(MapDomRestrBy A B (MapDomRestrTo A C m m'') m')).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a).
Rewrite (MapDomRestrTo_semantics A C m m'' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapDomRestrTo_To_comm : (m:(Map A)) (m':(Map B)) (m'':(Map C))
(eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
(MapDomRestrTo A B (MapDomRestrTo A C m m'') m')).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a).
Rewrite (MapDomRestrTo_semantics A C m m'' a).
Case (MapGet C m'' a); Case (MapGet B m' a); Trivial.
Qed.
Lemma MapMerge_DomRestrTo : (m,m':(Map A)) (m'':(Map B))
(eqmap (MapDomRestrTo A B (MapMerge A m m') m'')
(MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m''))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a).
Rewrite (MapMerge_semantics A m m' a).
Rewrite (MapMerge_semantics A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'') a).
Rewrite (MapDomRestrTo_semantics A B m' m'' a).
Rewrite (MapDomRestrTo_semantics A B m m'' a).
Case (MapGet B m'' a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapMerge_DomRestrBy : (m,m':(Map A)) (m'':(Map B))
(eqmap (MapDomRestrBy A B (MapMerge A m m') m'')
(MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m''))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a).
Rewrite (MapMerge_semantics A m m' a).
Rewrite (MapMerge_semantics A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'') a).
Rewrite (MapDomRestrBy_semantics A B m' m'' a).
Rewrite (MapDomRestrBy_semantics A B m m'' a).
Case (MapGet B m'' a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapDelta_empty_m_1 : (m:(Map A)) (MapDelta A (M0 A) m)=m.
Proof.
Trivial.
Qed.
Lemma MapDelta_empty_m : (m:(Map A)) (eqmap (MapDelta A (M0 A) m) m).
Proof.
Unfold eqmap eqm. Trivial.
Qed.
Lemma MapDelta_m_empty_1 : (m:(Map A)) (MapDelta A m (M0 A))=m.
Proof.
Induction m;Trivial.
Qed.
Lemma MapDelta_m_empty : (m:(Map A)) (eqmap (MapDelta A m (M0 A)) m).
Proof.
Unfold eqmap eqm. Intros. Rewrite MapDelta_m_empty_1. Reflexivity.
Qed.
Lemma MapDelta_nilpotent : (m:(Map A)) (eqmap (MapDelta A m m) (M0 A)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m a).
Case (MapGet A m a); Trivial.
Qed.
Lemma MapDelta_as_Merge : (m,m':(Map A)) (eqmap (MapDelta A m m')
(MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDelta_semantics A m m' a).
Rewrite (MapMerge_semantics A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m) a).
Rewrite (MapDomRestrBy_semantics A A m' m a).
Rewrite (MapDomRestrBy_semantics A A m m' a).
Case (MapGet A m a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapDelta_as_DomRestrBy : (m,m':(Map A)) (eqmap (MapDelta A m m')
(MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m'))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a).
Rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') (MapDomRestrTo A A m m') a).
Rewrite (MapDomRestrTo_semantics A A m m' a). Rewrite (MapMerge_semantics A m m' a).
Case (MapGet A m a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapDelta_as_DomRestrBy_2 : (m,m':(Map A)) (eqmap (MapDelta A m m')
(MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a).
Rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') (MapDomRestrTo A A m' m) a).
Rewrite (MapDomRestrTo_semantics A A m' m a). Rewrite (MapMerge_semantics A m m' a).
Case (MapGet A m a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapDelta_sym : (m,m':(Map A)) (eqmap (MapDelta A m m') (MapDelta A m' m)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m m' a).
Rewrite (MapDelta_semantics A m' m a).
Case (MapGet A m a); Case (MapGet A m' a); Trivial.
Qed.
Lemma MapDelta_ext : (m1,m2,m'1,m'2:(Map A))
(eqmap m1 m'1) -> (eqmap m2 m'2) ->
(eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics A m1 m2 a).
Rewrite (MapDelta_semantics A m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
Qed.
Lemma MapDelta_ext_l : (m1,m'1,m2:(Map A))
(eqmap m1 m'1) -> (eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2)).
Proof.
Intros. Apply MapDelta_ext. Assumption.
Apply eqmap_refl.
Qed.
Lemma MapDelta_ext_r : (m1,m2,m'2:(Map A))
(eqmap m2 m'2) -> (eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2)).
Proof.
Intros. Apply MapDelta_ext. Apply eqmap_refl.
Assumption.
Qed.
Lemma MapDom_Split_1 : (m:(Map A)) (m':(Map B))
(eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapMerge_semantics A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Case (MapGet B m' a); Case (MapGet A m a); Trivial.
Qed.
Lemma MapDom_Split_2 : (m:(Map A)) (m':(Map B))
(eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m'))).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapMerge_semantics A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m') a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Case (MapGet B m' a); Case (MapGet A m a); Trivial.
Qed.
Lemma MapDom_Split_3 : (m:(Map A)) (m':(Map B))
(eqmap (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))
(M0 A)).
Proof.
Unfold eqmap eqm. Intros.
Rewrite (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a).
Rewrite (MapDomRestrBy_semantics A B m m' a).
Rewrite (MapDomRestrTo_semantics A B m m' a).
Case (MapGet B m' a); Case (MapGet A m a); Trivial.
Qed.
End MapAxioms.
Lemma MapDomRestrTo_ext : (A,B:Set)
(m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) (m'2:(Map B))
(eqmap A m1 m'1) -> (eqmap B m2 m'2) ->
(eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrTo_semantics A B m1 m2 a).
Rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
Qed.
Lemma MapDomRestrTo_ext_l : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'1:(Map A))
(eqmap A m1 m'1) ->
(eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2)).
Proof.
Intros. Apply MapDomRestrTo_ext; [ Assumption | Apply eqmap_refl ].
Qed.
Lemma MapDomRestrTo_ext_r : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'2:(Map B))
(eqmap B m2 m'2) ->
(eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2)).
Proof.
Intros. Apply MapDomRestrTo_ext; [ Apply eqmap_refl | Assumption ].
Qed.
Lemma MapDomRestrBy_ext : (A,B:Set)
(m1:(Map A)) (m2:(Map B)) (m'1:(Map A)) (m'2:(Map B))
(eqmap A m1 m'1) -> (eqmap B m2 m'2) ->
(eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2)).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDomRestrBy_semantics A B m1 m2 a).
Rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). Rewrite (H a). Rewrite (H0 a). Reflexivity.
Qed.
Lemma MapDomRestrBy_ext_l : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'1:(Map A))
(eqmap A m1 m'1) ->
(eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2)).
Proof.
Intros. Apply MapDomRestrBy_ext; [ Assumption | Apply eqmap_refl ].
Qed.
Lemma MapDomRestrBy_ext_r : (A,B:Set) (m1:(Map A)) (m2:(Map B)) (m'2:(Map B))
(eqmap B m2 m'2) ->
(eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2)).
Proof.
Intros. Apply MapDomRestrBy_ext; [ Apply eqmap_refl | Assumption ].
Qed.
Lemma MapDomRestrBy_m_m : (A:Set) (m:(Map A))
(eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A)).
Proof.
Intros. Apply eqmap_trans with m':=(MapDomRestrBy A A m m). Apply eqmap_sym.
Apply MapDomRestrBy_Dom.
Apply MapDomRestrBy_m_m_1.
Qed.
Lemma FSetDelta_assoc : (s,s',s'':FSet)
(eqmap unit (MapDelta ? (MapDelta ? s s') s'') (MapDelta ? s (MapDelta ? s' s''))).
Proof.
Unfold eqmap eqm. Intros. Rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a).
Rewrite (MapDelta_semantics unit s s' a).
Rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a).
Rewrite (MapDelta_semantics unit s' s'' a).
Case (MapGet ? s a); Case (MapGet ? s' a); Case (MapGet ? s'' a); Trivial.
Intros. Elim u. Elim u1. Reflexivity.
Qed.
Lemma FSet_ext : (s,s':FSet) ((a:ad) (in_FSet a s)=(in_FSet a s')) -> (eqmap unit s s').
Proof.
Unfold in_FSet eqmap eqm. Intros. Elim (sumbool_of_bool (in_dom ? a s)). Intro H0.
Elim (in_dom_some ? s a H0). Intros y H1. Rewrite (H a) in H0. Elim (in_dom_some ? s' a H0).
Intros y' H2. Rewrite H1. Rewrite H2. Elim y. Elim y'. Reflexivity.
Intro H0. Rewrite (in_dom_none ? s a H0). Rewrite (H a) in H0. Rewrite (in_dom_none ? s' a H0).
Reflexivity.
Qed.
Lemma FSetUnion_comm : (s,s':FSet) (eqmap unit (FSetUnion s s') (FSetUnion s' s)).
Proof.
Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_union. Apply orb_sym.
Qed.
Lemma FSetUnion_assoc : (s,s',s'':FSet) (eqmap unit
(FSetUnion (FSetUnion s s') s'') (FSetUnion s (FSetUnion s' s''))).
Proof.
Exact (MapMerge_assoc unit).
Qed.
Lemma FSetUnion_M0_s : (s:FSet) (eqmap unit (FSetUnion (M0 unit) s) s).
Proof.
Exact (MapMerge_empty_m unit).
Qed.
Lemma FSetUnion_s_M0 : (s:FSet) (eqmap unit (FSetUnion s (M0 unit)) s).
Proof.
Exact (MapMerge_m_empty unit).
Qed.
Lemma FSetUnion_idempotent : (s:FSet) (eqmap unit (FSetUnion s s) s).
Proof.
Exact (MapMerge_idempotent unit).
Qed.
Lemma FSetInter_comm : (s,s':FSet) (eqmap unit (FSetInter s s') (FSetInter s' s)).
Proof.
Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_inter. Apply andb_sym.
Qed.
Lemma FSetInter_assoc : (s,s',s'':FSet) (eqmap unit
(FSetInter (FSetInter s s') s'') (FSetInter s (FSetInter s' s''))).
Proof.
Exact (MapDomRestrTo_assoc unit unit unit).
Qed.
Lemma FSetInter_M0_s : (s:FSet) (eqmap unit (FSetInter (M0 unit) s) (M0 unit)).
Proof.
Exact (MapDomRestrTo_empty_m unit unit).
Qed.
Lemma FSetInter_s_M0 : (s:FSet) (eqmap unit (FSetInter s (M0 unit)) (M0 unit)).
Proof.
Exact (MapDomRestrTo_m_empty unit unit).
Qed.
Lemma FSetInter_idempotent : (s:FSet) (eqmap unit (FSetInter s s) s).
Proof.
Exact (MapDomRestrTo_idempotent unit).
Qed.
Lemma FSetUnion_Inter_l : (s,s',s'':FSet) (eqmap unit
(FSetUnion (FSetInter s s') s'') (FSetInter (FSetUnion s s'') (FSetUnion s' s''))).
Proof.
Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_inter.
Rewrite in_FSet_inter. Rewrite in_FSet_union. Rewrite in_FSet_union.
Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
Qed.
Lemma FSetUnion_Inter_r : (s,s',s'':FSet) (eqmap unit
(FSetUnion s (FSetInter s' s'')) (FSetInter (FSetUnion s s') (FSetUnion s s''))).
Proof.
Intros. Apply FSet_ext. Intro. Rewrite in_FSet_union. Rewrite in_FSet_inter.
Rewrite in_FSet_inter. Rewrite in_FSet_union. Rewrite in_FSet_union.
Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
Qed.
Lemma FSetInter_Union_l : (s,s',s'':FSet) (eqmap unit
(FSetInter (FSetUnion s s') s'') (FSetUnion (FSetInter s s'') (FSetInter s' s''))).
Proof.
Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_union.
Rewrite in_FSet_union. Rewrite in_FSet_inter. Rewrite in_FSet_inter.
Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
Qed.
Lemma FSetInter_Union_r : (s,s',s'':FSet) (eqmap unit
(FSetInter s (FSetUnion s' s'')) (FSetUnion (FSetInter s s') (FSetInter s s''))).
Proof.
Intros. Apply FSet_ext. Intro. Rewrite in_FSet_inter. Rewrite in_FSet_union.
Rewrite in_FSet_union. Rewrite in_FSet_inter. Rewrite in_FSet_inter.
Case (in_FSet a s); Case (in_FSet a s'); Case (in_FSet a s''); Reflexivity.
Qed.
|