1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Peano.v,v 1.1.2.1 2004/07/16 19:31:26 herbelin Exp $ i*)
(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *)
(** This module defines the following operations on natural numbers :
- predecessor [pred]
- addition [plus]
- multiplication [mult]
- less or equal order [le]
- less [lt]
- greater or equal [ge]
- greater [gt]
This module states various lemmas and theorems about natural numbers,
including Peano's axioms of arithmetic (in Coq, these are in fact provable)
Case analysis on [nat] and induction on [nat * nat] are provided too *)
Require Notations.
Require Datatypes.
Require Logic.
Open Scope nat_scope.
Definition eq_S := (f_equal nat nat S).
Hint eq_S : v62 := Resolve (f_equal nat nat S).
Hint eq_nat_unary : core := Resolve (f_equal nat).
(** The predecessor function *)
Definition pred : nat->nat := [n:nat](Cases n of O => O | (S u) => u end).
Hint eq_pred : v62 := Resolve (f_equal nat nat pred).
Theorem pred_Sn : (m:nat) m=(pred (S m)).
Proof.
Auto.
Qed.
Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m.
Proof.
Intros n m H ; Change (pred (S n))=(pred (S m)); Auto.
Qed.
Hints Immediate eq_add_S : core v62.
(** A consequence of the previous axioms *)
Theorem not_eq_S : (n,m:nat) ~(n=m) -> ~((S n)=(S m)).
Proof.
Red; Auto.
Qed.
Hints Resolve not_eq_S : core v62.
Definition IsSucc : nat->Prop
:= [n:nat]Cases n of O => False | (S p) => True end.
Theorem O_S : (n:nat)~(O=(S n)).
Proof.
Red;Intros n H.
Change (IsSucc O).
Rewrite <- (sym_eq nat O (S n));[Exact I | Assumption].
Qed.
Hints Resolve O_S : core v62.
Theorem n_Sn : (n:nat) ~(n=(S n)).
Proof.
NewInduction n ; Auto.
Qed.
Hints Resolve n_Sn : core v62.
(** Addition *)
Fixpoint plus [n:nat] : nat -> nat :=
[m:nat]Cases n of
O => m
| (S p) => (S (plus p m)) end.
Hint eq_plus : v62 := Resolve (f_equal2 nat nat nat plus).
Hint eq_nat_binary : core := Resolve (f_equal2 nat nat).
V8Infix "+" plus : nat_scope.
Lemma plus_n_O : (n:nat) n=(plus n O).
Proof.
NewInduction n ; Simpl ; Auto.
Qed.
Hints Resolve plus_n_O : core v62.
Lemma plus_O_n : (n:nat) (plus O n)=n.
Proof.
Auto.
Qed.
Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)).
Proof.
Intros n m; NewInduction n; Simpl; Auto.
Qed.
Hints Resolve plus_n_Sm : core v62.
Lemma plus_Sn_m : (n,m:nat)(plus (S n) m)=(S (plus n m)).
Proof.
Auto.
Qed.
(** Multiplication *)
Fixpoint mult [n:nat] : nat -> nat :=
[m:nat]Cases n of O => O
| (S p) => (plus m (mult p m)) end.
Hint eq_mult : core v62 := Resolve (f_equal2 nat nat nat mult).
V8Infix "*" mult : nat_scope.
Lemma mult_n_O : (n:nat) O=(mult n O).
Proof.
NewInduction n; Simpl; Auto.
Qed.
Hints Resolve mult_n_O : core v62.
Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)).
Proof.
Intros; NewInduction n as [|p H]; Simpl; Auto.
NewDestruct H; Rewrite <- plus_n_Sm; Apply (f_equal nat nat S).
Pattern 1 3 m; Elim m; Simpl; Auto.
Qed.
Hints Resolve mult_n_Sm : core v62.
(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *)
Fixpoint minus [n:nat] : nat -> nat :=
[m:nat]Cases n m of
O _ => O
| (S k) O => (S k)
| (S k) (S l) => (minus k l)
end.
V8Infix "-" minus : nat_scope.
(** Definition of the usual orders, the basic properties of [le] and [lt]
can be found in files Le and Lt *)
(** An inductive definition to define the order *)
Inductive le [n:nat] : nat -> Prop
:= le_n : (le n n)
| le_S : (m:nat)(le n m)->(le n (S m)).
V8Infix "<=" le : nat_scope.
Hint constr_le : core v62 := Constructors le.
(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*)
Definition lt := [n,m:nat](le (S n) m).
Hints Unfold lt : core v62.
V8Infix "<" lt : nat_scope.
Definition ge := [n,m:nat](le m n).
Hints Unfold ge : core v62.
V8Infix ">=" ge : nat_scope.
Definition gt := [n,m:nat](lt m n).
Hints Unfold gt : core v62.
V8Infix ">" gt : nat_scope.
V8Notation "x <= y <= z" := (le x y)/\(le y z) : nat_scope.
V8Notation "x <= y < z" := (le x y)/\(lt y z) : nat_scope.
V8Notation "x < y < z" := (lt x y)/\(lt y z) : nat_scope.
V8Notation "x < y <= z" := (lt x y)/\(le y z) : nat_scope.
(** Pattern-Matching on natural numbers *)
Theorem nat_case : (n:nat)(P:nat->Prop)(P O)->((m:nat)(P (S m)))->(P n).
Proof.
NewInduction n ; Auto.
Qed.
(** Principle of double induction *)
Theorem nat_double_ind : (R:nat->nat->Prop)
((n:nat)(R O n)) -> ((n:nat)(R (S n) O))
-> ((n,m:nat)(R n m)->(R (S n) (S m)))
-> (n,m:nat)(R n m).
Proof.
NewInduction n; Auto.
NewDestruct m; Auto.
Qed.
(** Notations *)
V7only[
Syntax constr
level 0:
S [ (S $p) ] -> [$p:"nat_printer":9]
| O [ O ] -> ["(0)"].
].
V7only [
(* For parsing/printing based on scopes *)
Module nat_scope.
Infix 4 "+" plus : nat_scope.
Infix 3 "*" mult : nat_scope.
Infix 4 "-" minus : nat_scope.
Infix NONA 5 "<=" le : nat_scope.
Infix NONA 5 "<" lt : nat_scope.
Infix NONA 5 ">=" ge : nat_scope.
Infix NONA 5 ">" gt : nat_scope.
End nat_scope.
].
|