summaryrefslogtreecommitdiff
path: root/theories7/Arith/Minus.v
blob: 709d5f0b3140f7e46107220ccac43a0a54c30dba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Minus.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*)

(** Subtraction (difference between two natural numbers) *)

Require Lt.
Require Le.

V7only [Import nat_scope.].
Open Local Scope nat_scope.

Implicit Variables Type m,n,p:nat.

(** 0 is right neutral *)

Lemma minus_n_O : (n:nat)(n=(minus n O)).
Proof.
NewInduction n; Simpl; Auto with arith.
Qed.
Hints Resolve minus_n_O : arith v62.

(** Permutation with successor *)

Lemma minus_Sn_m : (n,m:nat)(le m n)->((S (minus n m))=(minus (S n) m)).
Proof.
Intros n m Le; Pattern m n; Apply le_elim_rel; Simpl; Auto with arith.
Qed.
Hints Resolve minus_Sn_m : arith v62.

Theorem pred_of_minus : (x:nat)(pred x)=(minus x (S O)).
Intro x; NewInduction x; Simpl; Auto with arith.
Qed.

(** Diagonal *)

Lemma minus_n_n : (n:nat)(O=(minus n n)).
Proof.
NewInduction n; Simpl; Auto with arith.
Qed.
Hints Resolve minus_n_n : arith v62.

(** Simplification *)

Lemma minus_plus_simpl : 
	(n,m,p:nat)((minus n m)=(minus (plus p n) (plus p m))).
Proof.
  NewInduction p; Simpl; Auto with arith.
Qed.
Hints Resolve minus_plus_simpl : arith v62.

(** Relation with plus *)

Lemma plus_minus : (n,m,p:nat)(n=(plus m p))->(p=(minus n m)).
Proof.
Intros n m p; Pattern m n; Apply nat_double_ind; Simpl; Intros.
Replace (minus n0 O) with n0; Auto with arith.
Absurd O=(S (plus n0 p)); Auto with arith.
Auto with arith.
Qed.
Hints Immediate plus_minus : arith v62.

Lemma minus_plus : (n,m:nat)(minus (plus n m) n)=m.
Symmetry; Auto with arith.
Qed.
Hints Resolve minus_plus : arith v62.

Lemma le_plus_minus : (n,m:nat)(le n m)->(m=(plus n (minus m n))).
Proof.
Intros n m Le; Pattern n m; Apply le_elim_rel; Simpl; Auto with arith.
Qed.
Hints Resolve le_plus_minus : arith v62.

Lemma le_plus_minus_r : (n,m:nat)(le n m)->(plus n (minus m n))=m.
Proof.
Symmetry; Auto with arith.
Qed.
Hints Resolve le_plus_minus_r : arith v62.

(** Relation with order *)

Theorem le_minus: (i,h:nat) (le (minus i h) i).
Proof.
Intros i h;Pattern i h; Apply nat_double_ind; [
  Auto
| Auto
| Intros m n H; Simpl; Apply le_trans with m:=m; Auto ].
Qed.

Lemma lt_minus : (n,m:nat)(le m n)->(lt O m)->(lt (minus n m) n).
Proof.
Intros n m Le; Pattern m n; Apply le_elim_rel; Simpl; Auto with arith.
Intros; Absurd (lt O O); Auto with arith.
Intros p q lepq Hp gtp.
Elim (le_lt_or_eq O p); Auto with arith.
Auto with arith.
NewInduction 1; Elim minus_n_O; Auto with arith.
Qed.
Hints Resolve lt_minus : arith v62.

Lemma lt_O_minus_lt : (n,m:nat)(lt O (minus n m))->(lt m n).
Proof.
Intros n m; Pattern n m; Apply nat_double_ind; Simpl; Auto with arith.
Intros; Absurd (lt O O); Trivial with arith.
Qed.
Hints Immediate lt_O_minus_lt : arith v62.

Theorem inj_minus_aux: (x,y:nat) ~(le y x) -> (minus x y) = O.
Intros y x; Pattern y x ; Apply nat_double_ind; [
  Simpl; Trivial with arith
| Intros n H; Absurd (le O (S n)); [ Assumption | Apply le_O_n]
| Simpl; Intros n m H1 H2; Apply H1;
  Unfold not ; Intros H3; Apply H2; Apply le_n_S; Assumption].
Qed.