1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Div.v,v 1.1.2.1 2004/07/16 19:31:23 herbelin Exp $ i*)
(** Euclidean division *)
V7only [Import nat_scope.].
Open Local Scope nat_scope.
Require Le.
Require Euclid_def.
Require Compare_dec.
Implicit Variables Type n,a,b,q,r:nat.
Fixpoint inf_dec [n:nat] : nat->bool :=
[m:nat] Cases n m of
O _ => true
| (S n') O => false
| (S n') (S m') => (inf_dec n' m')
end.
Theorem div1 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
Realizer Fix div1 {div1/2: nat->nat->diveucl :=
[b,a]Cases a of
O => (O,O)
| (S n) =>
let (q,r) = (div1 b n) in
if (le_gt_dec b (S r)) then ((S q),O)
else (q,(S r))
end}.
Program_all.
Rewrite e.
Replace b with (S r).
Simpl.
Elim plus_n_O; Auto with arith.
Apply le_antisym; Auto with arith.
Elim plus_n_Sm; Auto with arith.
Qed.
Theorem div2 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
Realizer Fix div1 {div1/2: nat->nat->diveucl :=
[b,a]Cases a of
O => (O,O)
| (S n) =>
let (q,r) = (div1 b n) in
if (inf_dec b (S r)) :: :: { {(le b (S r))}+{(gt b (S r))} }
then ((S q),O)
else (q,(S r))
end}.
Program_all.
Rewrite e.
Replace b with (S r).
Simpl.
Elim plus_n_O; Auto with arith.
Apply le_antisym; Auto with arith.
Elim plus_n_Sm; Auto with arith.
Qed.
|