1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Zpower.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
Require Import Wf_nat.
Require Import ZArith_base.
Require Export Zpow_def.
Require Import Omega.
Require Import Zcomplements.
Open Local Scope Z_scope.
Infix "^" := Zpower : Z_scope.
(** * Definition of powers over [Z]*)
(** [Zpower_nat z n] is the n-th power of [z] when [n] is an unary
integer (type [nat]) and [z] a signed integer (type [Z]) *)
Definition Zpower_nat (z:Z) (n:nat) := iter_nat n Z (fun x:Z => z * x) 1.
(** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
[plus : nat->nat] and [Zmult : Z->Z] *)
Lemma Zpower_nat_is_exp :
forall (n m:nat) (z:Z),
Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
Proof.
intros; elim n;
[ simpl in |- *; elim (Zpower_nat z m); auto with zarith
| unfold Zpower_nat in |- *; intros; simpl in |- *; rewrite H;
apply Zmult_assoc ].
Qed.
(** This theorem shows that powers of unary and binary integers
are the same thing, modulo the function convert : [positive -> nat] *)
Lemma Zpower_pos_nat :
forall (z:Z) (p:positive), Zpower_pos z p = Zpower_nat z (nat_of_P p).
Proof.
intros; unfold Zpower_pos in |- *; unfold Zpower_nat in |- *;
apply iter_nat_of_P.
Qed.
(** Using the theorem [Zpower_pos_nat] and the lemma [Zpower_nat_is_exp] we
deduce that the function [[n:positive](Zpower_pos z n)] is a morphism
for [add : positive->positive] and [Zmult : Z->Z] *)
Lemma Zpower_pos_is_exp :
forall (n m:positive) (z:Z),
Zpower_pos z (n + m) = Zpower_pos z n * Zpower_pos z m.
Proof.
intros.
rewrite (Zpower_pos_nat z n).
rewrite (Zpower_pos_nat z m).
rewrite (Zpower_pos_nat z (n + m)).
rewrite (nat_of_P_plus_morphism n m).
apply Zpower_nat_is_exp.
Qed.
Hint Immediate Zpower_nat_is_exp Zpower_pos_is_exp : zarith.
Hint Unfold Zpower_pos Zpower_nat: zarith.
Theorem Zpower_exp :
forall x n m:Z, n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
Proof.
destruct n; destruct m; auto with zarith.
simpl; intros; apply Zred_factor0.
simpl; auto with zarith.
intros; compute in H0; elim H0; auto.
intros; compute in H; elim H; auto.
Qed.
Section Powers_of_2.
(** * Powers of 2 *)
(** For the powers of two, that will be widely used, a more direct
calculus is possible. We will also prove some properties such
as [(x:positive) x < 2^x] that are true for all integers bigger
than 2 but more difficult to prove and useless. *)
(** [shift n m] computes [2^n * m], or [m] shifted by [n] positions *)
Definition shift_nat (n:nat) (z:positive) := iter_nat n positive xO z.
Definition shift_pos (n z:positive) := iter_pos n positive xO z.
Definition shift (n:Z) (z:positive) :=
match n with
| Z0 => z
| Zpos p => iter_pos p positive xO z
| Zneg p => z
end.
Definition two_power_nat (n:nat) := Zpos (shift_nat n 1).
Definition two_power_pos (x:positive) := Zpos (shift_pos x 1).
Lemma two_power_nat_S :
forall n:nat, two_power_nat (S n) = 2 * two_power_nat n.
Proof.
intro; simpl in |- *; apply refl_equal.
Qed.
Lemma shift_nat_plus :
forall (n m:nat) (x:positive),
shift_nat (n + m) x = shift_nat n (shift_nat m x).
Proof.
intros; unfold shift_nat in |- *; apply iter_nat_plus.
Qed.
Theorem shift_nat_correct :
forall (n:nat) (x:positive), Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
Proof.
unfold shift_nat in |- *; simple induction n;
[ simpl in |- *; trivial with zarith
| intros; replace (Zpower_nat 2 (S n0)) with (2 * Zpower_nat 2 n0);
[ rewrite <- Zmult_assoc; rewrite <- (H x); simpl in |- *; reflexivity
| auto with zarith ] ].
Qed.
Theorem two_power_nat_correct :
forall n:nat, two_power_nat n = Zpower_nat 2 n.
Proof.
intro n.
unfold two_power_nat in |- *.
rewrite (shift_nat_correct n).
omega.
Qed.
(** Second we show that [two_power_pos] and [two_power_nat] are the same *)
Lemma shift_pos_nat :
forall p x:positive, shift_pos p x = shift_nat (nat_of_P p) x.
Proof.
unfold shift_pos in |- *.
unfold shift_nat in |- *.
intros; apply iter_nat_of_P.
Qed.
Lemma two_power_pos_nat :
forall p:positive, two_power_pos p = two_power_nat (nat_of_P p).
Proof.
intro; unfold two_power_pos in |- *; unfold two_power_nat in |- *.
apply f_equal with (f := Zpos).
apply shift_pos_nat.
Qed.
(** Then we deduce that [two_power_pos] is also correct *)
Theorem shift_pos_correct :
forall p x:positive, Zpos (shift_pos p x) = Zpower_pos 2 p * Zpos x.
Proof.
intros.
rewrite (shift_pos_nat p x).
rewrite (Zpower_pos_nat 2 p).
apply shift_nat_correct.
Qed.
Theorem two_power_pos_correct :
forall x:positive, two_power_pos x = Zpower_pos 2 x.
Proof.
intro.
rewrite two_power_pos_nat.
rewrite Zpower_pos_nat.
apply two_power_nat_correct.
Qed.
(** Some consequences *)
Theorem two_power_pos_is_exp :
forall x y:positive,
two_power_pos (x + y) = two_power_pos x * two_power_pos y.
Proof.
intros.
rewrite (two_power_pos_correct (x + y)).
rewrite (two_power_pos_correct x).
rewrite (two_power_pos_correct y).
apply Zpower_pos_is_exp.
Qed.
(** The exponentiation [z -> 2^z] for [z] a signed integer.
For convenience, we assume that [2^z = 0] for all [z < 0]
We could also define a inductive type [Log_result] with
3 contructors [ Zero | Pos positive -> | minus_infty]
but it's more complexe and not so useful. *)
Definition two_p (x:Z) :=
match x with
| Z0 => 1
| Zpos y => two_power_pos y
| Zneg y => 0
end.
Theorem two_p_is_exp :
forall x y:Z, 0 <= x -> 0 <= y -> two_p (x + y) = two_p x * two_p y.
Proof.
simple induction x;
[ simple induction y; simpl in |- *; auto with zarith
| simple induction y;
[ unfold two_p in |- *; rewrite (Zmult_comm (two_power_pos p) 1);
rewrite (Zmult_1_l (two_power_pos p)); auto with zarith
| unfold Zplus in |- *; unfold two_p in |- *; intros;
apply two_power_pos_is_exp
| intros; unfold Zle in H0; unfold Zcompare in H0;
absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith ]
| simple induction y;
[ simpl in |- *; auto with zarith
| intros; unfold Zle in H; unfold Zcompare in H;
absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith
| intros; unfold Zle in H; unfold Zcompare in H;
absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith ] ].
Qed.
Lemma two_p_gt_ZERO : forall x:Z, 0 <= x -> two_p x > 0.
Proof.
simple induction x; intros;
[ simpl in |- *; omega
| simpl in |- *; unfold two_power_pos in |- *; apply Zorder.Zgt_pos_0
| absurd (0 <= Zneg p);
[ simpl in |- *; unfold Zle in |- *; unfold Zcompare in |- *;
do 2 unfold not in |- *; auto with zarith
| assumption ] ].
Qed.
Lemma two_p_S : forall x:Z, 0 <= x -> two_p (Zsucc x) = 2 * two_p x.
Proof.
intros; unfold Zsucc in |- *.
rewrite (two_p_is_exp x 1 H (Zorder.Zle_0_pos 1)).
apply Zmult_comm.
Qed.
Lemma two_p_pred : forall x:Z, 0 <= x -> two_p (Zpred x) < two_p x.
Proof.
intros; apply natlike_ind with (P := fun x:Z => two_p (Zpred x) < two_p x);
[ simpl in |- *; unfold Zlt in |- *; auto with zarith
| intros; elim (Zle_lt_or_eq 0 x0 H0);
[ intros;
replace (two_p (Zpred (Zsucc x0))) with (two_p (Zsucc (Zpred x0)));
[ rewrite (two_p_S (Zpred x0));
[ rewrite (two_p_S x0); [ omega | assumption ]
| apply Zorder.Zlt_0_le_0_pred; assumption ]
| rewrite <- (Zsucc_pred x0); rewrite <- (Zpred_succ x0);
trivial with zarith ]
| intro Hx0; rewrite <- Hx0; simpl in |- *; unfold Zlt in |- *;
auto with zarith ]
| assumption ].
Qed.
Lemma Zlt_lt_double : forall x y:Z, 0 <= x < y -> x < 2 * y.
intros; omega. Qed.
End Powers_of_2.
Hint Resolve two_p_gt_ZERO: zarith.
Hint Immediate two_p_pred two_p_S: zarith.
Section power_div_with_rest.
(** * Division by a power of two. *)
(** To [n:Z] and [p:positive], [q],[r] are associated such that
[n = 2^p.q + r] and [0 <= r < 2^p] *)
(** Invariant: [d*q + r = d'*q + r /\ d' = 2*d /\ 0<= r < d /\ 0 <= r' < d'] *)
Definition Zdiv_rest_aux (qrd:Z * Z * Z) :=
let (qr, d) := qrd in
let (q, r) := qr in
(match q with
| Z0 => (0, r)
| Zpos xH => (0, d + r)
| Zpos (xI n) => (Zpos n, d + r)
| Zpos (xO n) => (Zpos n, r)
| Zneg xH => (-1, d + r)
| Zneg (xI n) => (Zneg n - 1, d + r)
| Zneg (xO n) => (Zneg n, r)
end, 2 * d).
Definition Zdiv_rest (x:Z) (p:positive) :=
let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in qr.
Lemma Zdiv_rest_correct1 :
forall (x:Z) (p:positive),
let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in d = two_power_pos p.
Proof.
intros x p; rewrite (iter_nat_of_P p _ Zdiv_rest_aux (x, 0, 1));
rewrite (two_power_pos_nat p); elim (nat_of_P p);
simpl in |- *;
[ trivial with zarith
| intro n; rewrite (two_power_nat_S n); unfold Zdiv_rest_aux at 2 in |- *;
elim (iter_nat n (Z * Z * Z) Zdiv_rest_aux (x, 0, 1));
destruct a; intros; apply f_equal with (f := fun z:Z => 2 * z);
assumption ].
Qed.
Lemma Zdiv_rest_correct2 :
forall (x:Z) (p:positive),
let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in
let (q, r) := qr in x = q * d + r /\ 0 <= r < d.
Proof.
intros;
apply iter_pos_invariant with
(f := Zdiv_rest_aux)
(Inv := fun qrd:Z * Z * Z =>
let (qr, d) := qrd in
let (q, r) := qr in x = q * d + r /\ 0 <= r < d);
[ intro x0; elim x0; intro y0; elim y0; intros q r d;
unfold Zdiv_rest_aux in |- *; elim q;
[ omega
| destruct p0;
[ rewrite BinInt.Zpos_xI; intro; elim H; intros; split;
[ rewrite H0; rewrite Zplus_assoc; rewrite Zmult_plus_distr_l;
rewrite Zmult_1_l; rewrite Zmult_assoc;
rewrite (Zmult_comm (Zpos p0) 2); apply refl_equal
| omega ]
| rewrite BinInt.Zpos_xO; intro; elim H; intros; split;
[ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zpos p0) 2);
apply refl_equal
| omega ]
| omega ]
| destruct p0;
[ rewrite BinInt.Zneg_xI; unfold Zminus in |- *; intro; elim H; intros;
split;
[ rewrite H0; rewrite Zplus_assoc;
apply f_equal with (f := fun z:Z => z + r);
do 2 rewrite Zmult_plus_distr_l; rewrite Zmult_assoc;
rewrite (Zmult_comm (Zneg p0) 2); rewrite <- Zplus_assoc;
apply f_equal with (f := fun z:Z => 2 * Zneg p0 * d + z);
omega
| omega ]
| rewrite BinInt.Zneg_xO; unfold Zminus in |- *; intro; elim H; intros;
split;
[ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zneg p0) 2);
apply refl_equal
| omega ]
| omega ] ]
| omega ].
Qed.
Inductive Zdiv_rest_proofs (x:Z) (p:positive) : Set :=
Zdiv_rest_proof :
forall q r:Z,
x = q * two_power_pos p + r ->
0 <= r -> r < two_power_pos p -> Zdiv_rest_proofs x p.
Lemma Zdiv_rest_correct : forall (x:Z) (p:positive), Zdiv_rest_proofs x p.
Proof.
intros x p.
generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
elim (iter_pos p (Z * Z * Z) Zdiv_rest_aux (x, 0, 1)).
simple induction a.
intros.
elim H; intros H1 H2; clear H.
rewrite H0 in H1; rewrite H0 in H2; elim H2; intros;
apply Zdiv_rest_proof with (q := a0) (r := b); assumption.
Qed.
End power_div_with_rest.
|