1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Binary Integers : results about order predicates *)
(** Initial author : Pierre Crégut (CNET, Lannion, France) *)
(** THIS FILE IS DEPRECATED.
It is now almost entirely made of compatibility formulations
for results already present in BinInt.Z. *)
Require Import BinPos BinInt Decidable Zcompare.
Require Import Arith_base. (* Useless now, for compatibility only *)
Local Open Scope Z_scope.
(*********************************************************)
(** Properties of the order relations on binary integers *)
(** * Trichotomy *)
Theorem Ztrichotomy_inf n m : {n < m} + {n = m} + {n > m}.
Proof.
unfold ">", "<". generalize (Z.compare_eq n m).
destruct (n ?= m); [ left; right | left; left | right]; auto.
Defined.
Theorem Ztrichotomy n m : n < m \/ n = m \/ n > m.
Proof.
Z.swap_greater. apply Z.lt_trichotomy.
Qed.
(**********************************************************************)
(** * Decidability of equality and order on Z *)
Notation dec_eq := Z.eq_decidable (only parsing).
Notation dec_Zle := Z.le_decidable (only parsing).
Notation dec_Zlt := Z.lt_decidable (only parsing).
Theorem dec_Zne n m : decidable (Zne n m).
Proof.
destruct (Z.eq_decidable n m); [right|left]; subst; auto.
Qed.
Theorem dec_Zgt n m : decidable (n > m).
Proof.
destruct (Z.lt_decidable m n); [left|right]; Z.swap_greater; auto.
Qed.
Theorem dec_Zge n m : decidable (n >= m).
Proof.
destruct (Z.le_decidable m n); [left|right]; Z.swap_greater; auto.
Qed.
Theorem not_Zeq n m : n <> m -> n < m \/ m < n.
Proof.
apply Z.lt_gt_cases.
Qed.
(** * Relating strict and large orders *)
Notation Zgt_lt := Z.gt_lt (only parsing).
Notation Zlt_gt := Z.lt_gt (only parsing).
Notation Zge_le := Z.ge_le (only parsing).
Notation Zle_ge := Z.le_ge (only parsing).
Notation Zgt_iff_lt := Z.gt_lt_iff (only parsing).
Notation Zge_iff_le := Z.ge_le_iff (only parsing).
Lemma Zle_not_lt n m : n <= m -> ~ m < n.
Proof.
apply Z.le_ngt.
Qed.
Lemma Zlt_not_le n m : n < m -> ~ m <= n.
Proof.
apply Z.lt_nge.
Qed.
Lemma Zle_not_gt n m : n <= m -> ~ n > m.
Proof.
trivial.
Qed.
Lemma Zgt_not_le n m : n > m -> ~ n <= m.
Proof.
Z.swap_greater. apply Z.lt_nge.
Qed.
Lemma Znot_ge_lt n m : ~ n >= m -> n < m.
Proof.
Z.swap_greater. apply Z.nle_gt.
Qed.
Lemma Znot_lt_ge n m : ~ n < m -> n >= m.
Proof.
trivial.
Qed.
Lemma Znot_gt_le n m: ~ n > m -> n <= m.
Proof.
trivial.
Qed.
Lemma Znot_le_gt n m : ~ n <= m -> n > m.
Proof.
Z.swap_greater. apply Z.nle_gt.
Qed.
Lemma not_Zne n m : ~ Zne n m -> n = m.
Proof.
intros H.
destruct (Z.eq_decidable n m); [assumption|now elim H].
Qed.
(** * Equivalence and order properties *)
(** Reflexivity *)
Notation Zle_refl := Z.le_refl (only parsing).
Notation Zeq_le := Z.eq_le_incl (only parsing).
Hint Resolve Z.le_refl: zarith.
(** Antisymmetry *)
Notation Zle_antisym := Z.le_antisymm (only parsing).
(** Asymmetry *)
Notation Zlt_asym := Z.lt_asymm (only parsing).
Lemma Zgt_asym n m : n > m -> ~ m > n.
Proof.
Z.swap_greater. apply Z.lt_asymm.
Qed.
(** Irreflexivity *)
Notation Zlt_irrefl := Z.lt_irrefl (only parsing).
Notation Zlt_not_eq := Z.lt_neq (only parsing).
Lemma Zgt_irrefl n : ~ n > n.
Proof.
Z.swap_greater. apply Z.lt_irrefl.
Qed.
(** Large = strict or equal *)
Notation Zlt_le_weak := Z.lt_le_incl (only parsing).
Notation Zle_lt_or_eq_iff := Z.lt_eq_cases (only parsing).
Lemma Zle_lt_or_eq n m : n <= m -> n < m \/ n = m.
Proof.
apply Z.lt_eq_cases.
Qed.
(** Dichotomy *)
Notation Zle_or_lt := Z.le_gt_cases (only parsing).
(** Transitivity of strict orders *)
Notation Zlt_trans := Z.lt_trans (only parsing).
Lemma Zgt_trans : forall n m p:Z, n > m -> m > p -> n > p.
Proof Zcompare_Gt_trans.
(** Mixed transitivity *)
Notation Zlt_le_trans := Z.lt_le_trans (only parsing).
Notation Zle_lt_trans := Z.le_lt_trans (only parsing).
Lemma Zle_gt_trans n m p : m <= n -> m > p -> n > p.
Proof.
Z.swap_greater. Z.order.
Qed.
Lemma Zgt_le_trans n m p : n > m -> p <= m -> n > p.
Proof.
Z.swap_greater. Z.order.
Qed.
(** Transitivity of large orders *)
Notation Zle_trans := Z.le_trans (only parsing).
Lemma Zge_trans n m p : n >= m -> m >= p -> n >= p.
Proof.
Z.swap_greater. Z.order.
Qed.
Hint Resolve Z.le_trans: zarith.
(** * Compatibility of order and operations on Z *)
(** ** Successor *)
(** Compatibility of successor wrt to order *)
Lemma Zsucc_le_compat n m : m <= n -> Z.succ m <= Z.succ n.
Proof.
apply Z.succ_le_mono.
Qed.
Lemma Zsucc_lt_compat n m : n < m -> Z.succ n < Z.succ m.
Proof.
apply Z.succ_lt_mono.
Qed.
Lemma Zsucc_gt_compat n m : m > n -> Z.succ m > Z.succ n.
Proof.
Z.swap_greater. apply Z.succ_lt_mono.
Qed.
Hint Resolve Zsucc_le_compat: zarith.
(** Simplification of successor wrt to order *)
Lemma Zsucc_gt_reg n m : Z.succ m > Z.succ n -> m > n.
Proof.
Z.swap_greater. apply Z.succ_lt_mono.
Qed.
Lemma Zsucc_le_reg n m : Z.succ m <= Z.succ n -> m <= n.
Proof.
apply Z.succ_le_mono.
Qed.
Lemma Zsucc_lt_reg n m : Z.succ n < Z.succ m -> n < m.
Proof.
apply Z.succ_lt_mono.
Qed.
(** Special base instances of order *)
Notation Zlt_succ := Z.lt_succ_diag_r (only parsing).
Notation Zlt_pred := Z.lt_pred_l (only parsing).
Lemma Zgt_succ n : Z.succ n > n.
Proof.
Z.swap_greater. apply Z.lt_succ_diag_r.
Qed.
Lemma Znot_le_succ n : ~ Z.succ n <= n.
Proof.
apply Z.lt_nge, Z.lt_succ_diag_r.
Qed.
(** Relating strict and large order using successor or predecessor *)
Notation Zlt_succ_r := Z.lt_succ_r (only parsing).
Notation Zle_succ_l := Z.le_succ_l (only parsing).
Lemma Zgt_le_succ n m : m > n -> Z.succ n <= m.
Proof.
Z.swap_greater. apply Z.le_succ_l.
Qed.
Lemma Zle_gt_succ n m : n <= m -> Z.succ m > n.
Proof.
Z.swap_greater. apply Z.lt_succ_r.
Qed.
Lemma Zle_lt_succ n m : n <= m -> n < Z.succ m.
Proof.
apply Z.lt_succ_r.
Qed.
Lemma Zlt_le_succ n m : n < m -> Z.succ n <= m.
Proof.
apply Z.le_succ_l.
Qed.
Lemma Zgt_succ_le n m : Z.succ m > n -> n <= m.
Proof.
Z.swap_greater. apply Z.lt_succ_r.
Qed.
Lemma Zlt_succ_le n m : n < Z.succ m -> n <= m.
Proof.
apply Z.lt_succ_r.
Qed.
Lemma Zle_succ_gt n m : Z.succ n <= m -> m > n.
Proof.
Z.swap_greater. apply Z.le_succ_l.
Qed.
(** Weakening order *)
Notation Zle_succ := Z.le_succ_diag_r (only parsing).
Notation Zle_pred := Z.le_pred_l (only parsing).
Notation Zlt_lt_succ := Z.lt_lt_succ_r (only parsing).
Notation Zle_le_succ := Z.le_le_succ_r (only parsing).
Lemma Zle_succ_le n m : Z.succ n <= m -> n <= m.
Proof.
intros. now apply Z.lt_le_incl, Z.le_succ_l.
Qed.
Hint Resolve Z.le_succ_diag_r: zarith.
Hint Resolve Zle_le_succ: zarith.
(** Relating order wrt successor and order wrt predecessor *)
Lemma Zgt_succ_pred n m : m > Z.succ n -> Z.pred m > n.
Proof.
Z.swap_greater. apply Z.lt_succ_lt_pred.
Qed.
Lemma Zlt_succ_pred n m : Z.succ n < m -> n < Z.pred m.
Proof.
apply Z.lt_succ_lt_pred.
Qed.
(** Relating strict order and large order on positive *)
Lemma Zlt_0_le_0_pred n : 0 < n -> 0 <= Z.pred n.
Proof.
apply Z.lt_le_pred.
Qed.
Lemma Zgt_0_le_0_pred n : n > 0 -> 0 <= Z.pred n.
Proof.
Z.swap_greater. apply Z.lt_le_pred.
Qed.
(** Special cases of ordered integers *)
Notation Zlt_0_1 := Z.lt_0_1 (only parsing).
Notation Zle_0_1 := Z.le_0_1 (only parsing).
Lemma Zle_neg_pos : forall p q:positive, Zneg p <= Zpos q.
Proof.
easy.
Qed.
Lemma Zgt_pos_0 : forall p:positive, Zpos p > 0.
Proof.
easy.
Qed.
(* weaker but useful (in [Zpower] for instance) *)
Lemma Zle_0_pos : forall p:positive, 0 <= Zpos p.
Proof.
easy.
Qed.
Lemma Zlt_neg_0 : forall p:positive, Zneg p < 0.
Proof.
easy.
Qed.
Lemma Zle_0_nat : forall n:nat, 0 <= Z.of_nat n.
Proof.
induction n; simpl; intros. apply Z.le_refl. easy.
Qed.
Hint Immediate Zeq_le: zarith.
(** Derived lemma *)
Lemma Zgt_succ_gt_or_eq n m : Z.succ n > m -> n > m \/ m = n.
Proof.
Z.swap_greater. intros. now apply Z.lt_eq_cases, Z.lt_succ_r.
Qed.
(** ** Addition *)
(** Compatibility of addition wrt to order *)
Notation Zplus_lt_le_compat := Z.add_lt_le_mono (only parsing).
Notation Zplus_le_lt_compat := Z.add_le_lt_mono (only parsing).
Notation Zplus_le_compat := Z.add_le_mono (only parsing).
Notation Zplus_lt_compat := Z.add_lt_mono (only parsing).
Lemma Zplus_gt_compat_l n m p : n > m -> p + n > p + m.
Proof.
Z.swap_greater. apply Z.add_lt_mono_l.
Qed.
Lemma Zplus_gt_compat_r n m p : n > m -> n + p > m + p.
Proof.
Z.swap_greater. apply Z.add_lt_mono_r.
Qed.
Lemma Zplus_le_compat_l n m p : n <= m -> p + n <= p + m.
Proof.
apply Z.add_le_mono_l.
Qed.
Lemma Zplus_le_compat_r n m p : n <= m -> n + p <= m + p.
Proof.
apply Z.add_le_mono_r.
Qed.
Lemma Zplus_lt_compat_l n m p : n < m -> p + n < p + m.
Proof.
apply Z.add_lt_mono_l.
Qed.
Lemma Zplus_lt_compat_r n m p : n < m -> n + p < m + p.
Proof.
apply Z.add_lt_mono_r.
Qed.
(** Compatibility of addition wrt to being positive *)
Notation Zplus_le_0_compat := Z.add_nonneg_nonneg (only parsing).
(** Simplification of addition wrt to order *)
Lemma Zplus_le_reg_l n m p : p + n <= p + m -> n <= m.
Proof.
apply Z.add_le_mono_l.
Qed.
Lemma Zplus_le_reg_r n m p : n + p <= m + p -> n <= m.
Proof.
apply Z.add_le_mono_r.
Qed.
Lemma Zplus_lt_reg_l n m p : p + n < p + m -> n < m.
Proof.
apply Z.add_lt_mono_l.
Qed.
Lemma Zplus_lt_reg_r n m p : n + p < m + p -> n < m.
Proof.
apply Z.add_lt_mono_r.
Qed.
Lemma Zplus_gt_reg_l n m p : p + n > p + m -> n > m.
Proof.
Z.swap_greater. apply Z.add_lt_mono_l.
Qed.
Lemma Zplus_gt_reg_r n m p : n + p > m + p -> n > m.
Proof.
Z.swap_greater. apply Z.add_lt_mono_r.
Qed.
(** ** Multiplication *)
(** Compatibility of multiplication by a positive wrt to order *)
Lemma Zmult_le_compat_r n m p : n <= m -> 0 <= p -> n * p <= m * p.
Proof.
intros. now apply Z.mul_le_mono_nonneg_r.
Qed.
Lemma Zmult_le_compat_l n m p : n <= m -> 0 <= p -> p * n <= p * m.
Proof.
intros. now apply Z.mul_le_mono_nonneg_l.
Qed.
Lemma Zmult_lt_compat_r n m p : 0 < p -> n < m -> n * p < m * p.
Proof.
apply Z.mul_lt_mono_pos_r.
Qed.
Lemma Zmult_gt_compat_r n m p : p > 0 -> n > m -> n * p > m * p.
Proof.
Z.swap_greater. apply Z.mul_lt_mono_pos_r.
Qed.
Lemma Zmult_gt_0_lt_compat_r n m p : p > 0 -> n < m -> n * p < m * p.
Proof.
Z.swap_greater. apply Z.mul_lt_mono_pos_r.
Qed.
Lemma Zmult_gt_0_le_compat_r n m p : p > 0 -> n <= m -> n * p <= m * p.
Proof.
Z.swap_greater. apply Z.mul_le_mono_pos_r.
Qed.
Lemma Zmult_lt_0_le_compat_r n m p : 0 < p -> n <= m -> n * p <= m * p.
Proof.
apply Z.mul_le_mono_pos_r.
Qed.
Lemma Zmult_gt_0_lt_compat_l n m p : p > 0 -> n < m -> p * n < p * m.
Proof.
Z.swap_greater. apply Z.mul_lt_mono_pos_l.
Qed.
Lemma Zmult_lt_compat_l n m p : 0 < p -> n < m -> p * n < p * m.
Proof.
apply Z.mul_lt_mono_pos_l.
Qed.
Lemma Zmult_gt_compat_l n m p : p > 0 -> n > m -> p * n > p * m.
Proof.
Z.swap_greater. apply Z.mul_lt_mono_pos_l.
Qed.
Lemma Zmult_ge_compat_r n m p : n >= m -> p >= 0 -> n * p >= m * p.
Proof.
Z.swap_greater. intros. now apply Z.mul_le_mono_nonneg_r.
Qed.
Lemma Zmult_ge_compat_l n m p : n >= m -> p >= 0 -> p * n >= p * m.
Proof.
Z.swap_greater. intros. now apply Z.mul_le_mono_nonneg_l.
Qed.
Lemma Zmult_ge_compat n m p q :
n >= p -> m >= q -> p >= 0 -> q >= 0 -> n * m >= p * q.
Proof.
Z.swap_greater. intros. now apply Z.mul_le_mono_nonneg.
Qed.
Lemma Zmult_le_compat n m p q :
n <= p -> m <= q -> 0 <= n -> 0 <= m -> n * m <= p * q.
Proof.
intros. now apply Z.mul_le_mono_nonneg.
Qed.
(** Simplification of multiplication by a positive wrt to being positive *)
Lemma Zmult_gt_0_lt_reg_r n m p : p > 0 -> n * p < m * p -> n < m.
Proof.
Z.swap_greater. apply Z.mul_lt_mono_pos_r.
Qed.
Lemma Zmult_lt_reg_r n m p : 0 < p -> n * p < m * p -> n < m.
Proof.
apply Z.mul_lt_mono_pos_r.
Qed.
Lemma Zmult_le_reg_r n m p : p > 0 -> n * p <= m * p -> n <= m.
Proof.
Z.swap_greater. apply Z.mul_le_mono_pos_r.
Qed.
Lemma Zmult_lt_0_le_reg_r n m p : 0 < p -> n * p <= m * p -> n <= m.
Proof.
apply Z.mul_le_mono_pos_r.
Qed.
Lemma Zmult_ge_reg_r n m p : p > 0 -> n * p >= m * p -> n >= m.
Proof.
Z.swap_greater. apply Z.mul_le_mono_pos_r.
Qed.
Lemma Zmult_gt_reg_r n m p : p > 0 -> n * p > m * p -> n > m.
Proof.
Z.swap_greater. apply Z.mul_lt_mono_pos_r.
Qed.
Lemma Zmult_lt_compat n m p q :
0 <= n < p -> 0 <= m < q -> n * m < p * q.
Proof.
intros (Hn,Hnp) (Hm,Hmq). now apply Z.mul_lt_mono_nonneg.
Qed.
Lemma Zmult_lt_compat2 n m p q :
0 < n <= p -> 0 < m < q -> n * m < p * q.
Proof.
intros (Hn, Hnp) (Hm,Hmq).
apply Z.le_lt_trans with (p * m).
apply Z.mul_le_mono_pos_r; trivial.
apply Z.mul_lt_mono_pos_l; Z.order.
Qed.
(** Compatibility of multiplication by a positive wrt to being positive *)
Notation Zmult_le_0_compat := Z.mul_nonneg_nonneg (only parsing).
Notation Zmult_lt_0_compat := Z.mul_pos_pos (only parsing).
Notation Zmult_lt_O_compat := Z.mul_pos_pos (only parsing).
Lemma Zmult_gt_0_compat n m : n > 0 -> m > 0 -> n * m > 0.
Proof.
Z.swap_greater. apply Z.mul_pos_pos.
Qed.
(* To remove someday ... *)
Lemma Zmult_gt_0_le_0_compat n m : n > 0 -> 0 <= m -> 0 <= m * n.
Proof.
Z.swap_greater. intros. apply Z.mul_nonneg_nonneg. trivial.
now apply Z.lt_le_incl.
Qed.
(** Simplification of multiplication by a positive wrt to being positive *)
Lemma Zmult_le_0_reg_r n m : n > 0 -> 0 <= m * n -> 0 <= m.
Proof.
Z.swap_greater. apply Z.mul_nonneg_cancel_r.
Qed.
Lemma Zmult_lt_0_reg_r n m : 0 < n -> 0 < m * n -> 0 < m.
Proof.
apply Z.mul_pos_cancel_r.
Qed.
Lemma Zmult_gt_0_lt_0_reg_r n m : n > 0 -> 0 < m * n -> 0 < m.
Proof.
Z.swap_greater. apply Z.mul_pos_cancel_r.
Qed.
Lemma Zmult_gt_0_reg_l n m : n > 0 -> n * m > 0 -> m > 0.
Proof.
Z.swap_greater. apply Z.mul_pos_cancel_l.
Qed.
(** ** Square *)
(** Simplification of square wrt order *)
Lemma Zlt_square_simpl n m : 0 <= n -> m * m < n * n -> m < n.
Proof.
apply Z.square_lt_simpl_nonneg.
Qed.
Lemma Zgt_square_simpl n m : n >= 0 -> n * n > m * m -> n > m.
Proof.
Z.swap_greater. apply Z.square_lt_simpl_nonneg.
Qed.
(** * Equivalence between inequalities *)
Notation Zle_plus_swap := Z.le_add_le_sub_r (only parsing).
Notation Zlt_plus_swap := Z.lt_add_lt_sub_r (only parsing).
Notation Zlt_minus_simpl_swap := Z.lt_sub_pos (only parsing).
Lemma Zeq_plus_swap n m p : n + p = m <-> n = m - p.
Proof.
apply Z.add_move_r.
Qed.
Lemma Zlt_0_minus_lt n m : 0 < n - m -> m < n.
Proof.
apply Z.lt_0_sub.
Qed.
Lemma Zle_0_minus_le n m : 0 <= n - m -> m <= n.
Proof.
apply Z.le_0_sub.
Qed.
Lemma Zle_minus_le_0 n m : m <= n -> 0 <= n - m.
Proof.
apply Z.le_0_sub.
Qed.
(** For compatibility *)
Notation Zlt_O_minus_lt := Zlt_0_minus_lt (only parsing).
|