1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: Znumtheory.v 8853 2006-05-23 18:17:38Z herbelin $ i*)
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zcomplements.
Require Import Zdiv.
Open Local Scope Z_scope.
(** This file contains some notions of number theory upon Z numbers:
- a divisibility predicate [Zdivide]
- a gcd predicate [gcd]
- Euclid algorithm [euclid]
- an efficient [Zgcd] function
- a relatively prime predicate [rel_prime]
- a prime predicate [prime]
*)
(** * Divisibility *)
Inductive Zdivide (a b:Z) : Prop :=
Zdivide_intro : forall q:Z, b = q * a -> Zdivide a b.
(** Syntax for divisibility *)
Notation "( a | b )" := (Zdivide a b) (at level 0) : Z_scope.
(** Results concerning divisibility*)
Lemma Zdivide_refl : forall a:Z, (a | a).
Proof.
intros; apply Zdivide_intro with 1; ring.
Qed.
Lemma Zone_divide : forall a:Z, (1 | a).
Proof.
intros; apply Zdivide_intro with a; ring.
Qed.
Lemma Zdivide_0 : forall a:Z, (a | 0).
Proof.
intros; apply Zdivide_intro with 0; ring.
Qed.
Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith.
Lemma Zmult_divide_compat_l : forall a b c:Z, (a | b) -> (c * a | c * b).
Proof.
simple induction 1; intros; apply Zdivide_intro with q.
rewrite H0; ring.
Qed.
Lemma Zmult_divide_compat_r : forall a b c:Z, (a | b) -> (a * c | b * c).
Proof.
intros a b c; rewrite (Zmult_comm a c); rewrite (Zmult_comm b c).
apply Zmult_divide_compat_l; trivial.
Qed.
Hint Resolve Zmult_divide_compat_l Zmult_divide_compat_r: zarith.
Lemma Zdivide_plus_r : forall a b c:Z, (a | b) -> (a | c) -> (a | b + c).
Proof.
simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
apply Zdivide_intro with (q + q').
rewrite Hq; rewrite Hq'; ring.
Qed.
Lemma Zdivide_opp_r : forall a b:Z, (a | b) -> (a | - b).
Proof.
simple induction 1; intros; apply Zdivide_intro with (- q).
rewrite H0; ring.
Qed.
Lemma Zdivide_opp_r_rev : forall a b:Z, (a | - b) -> (a | b).
Proof.
intros; replace b with (- - b). apply Zdivide_opp_r; trivial. ring.
Qed.
Lemma Zdivide_opp_l : forall a b:Z, (a | b) -> (- a | b).
Proof.
simple induction 1; intros; apply Zdivide_intro with (- q).
rewrite H0; ring.
Qed.
Lemma Zdivide_opp_l_rev : forall a b:Z, (- a | b) -> (a | b).
Proof.
intros; replace a with (- - a). apply Zdivide_opp_l; trivial. ring.
Qed.
Lemma Zdivide_minus_l : forall a b c:Z, (a | b) -> (a | c) -> (a | b - c).
Proof.
simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
apply Zdivide_intro with (q - q').
rewrite Hq; rewrite Hq'; ring.
Qed.
Lemma Zdivide_mult_l : forall a b c:Z, (a | b) -> (a | b * c).
Proof.
simple induction 1; intros q Hq; apply Zdivide_intro with (q * c).
rewrite Hq; ring.
Qed.
Lemma Zdivide_mult_r : forall a b c:Z, (a | c) -> (a | b * c).
Proof.
simple induction 1; intros q Hq; apply Zdivide_intro with (q * b).
rewrite Hq; ring.
Qed.
Lemma Zdivide_factor_r : forall a b:Z, (a | a * b).
Proof.
intros; apply Zdivide_intro with b; ring.
Qed.
Lemma Zdivide_factor_l : forall a b:Z, (a | b * a).
Proof.
intros; apply Zdivide_intro with b; ring.
Qed.
Hint Resolve Zdivide_plus_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
Zdivide_opp_l_rev Zdivide_minus_l Zdivide_mult_l Zdivide_mult_r
Zdivide_factor_r Zdivide_factor_l: zarith.
(** Auxiliary result. *)
Lemma Zmult_one : forall x y:Z, x >= 0 -> x * y = 1 -> x = 1.
Proof.
intros x y H H0; destruct (Zmult_1_inversion_l _ _ H0) as [Hpos| Hneg].
assumption.
rewrite Hneg in H; simpl in H.
contradiction (Zle_not_lt 0 (-1)).
apply Zge_le; assumption.
apply Zorder.Zlt_neg_0.
Qed.
(** Only [1] and [-1] divide [1]. *)
Lemma Zdivide_1 : forall x:Z, (x | 1) -> x = 1 \/ x = -1.
Proof.
simple induction 1; intros.
elim (Z_lt_ge_dec 0 x); [ left | right ].
apply Zmult_one with q; auto with zarith; rewrite H0; ring.
assert (- x = 1); auto with zarith.
apply Zmult_one with (- q); auto with zarith; rewrite H0; ring.
Qed.
(** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *)
Lemma Zdivide_antisym : forall a b:Z, (a | b) -> (b | a) -> a = b \/ a = - b.
Proof.
simple induction 1; intros.
inversion H1.
rewrite H0 in H2; clear H H1.
case (Z_zerop a); intro.
left; rewrite H0; rewrite e; ring.
assert (Hqq0 : q0 * q = 1).
apply Zmult_reg_l with a.
assumption.
ring.
pattern a at 2 in |- *; rewrite H2; ring.
assert (q | 1).
rewrite <- Hqq0; auto with zarith.
elim (Zdivide_1 q H); intros.
rewrite H1 in H0; left; omega.
rewrite H1 in H0; right; omega.
Qed.
(** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *)
Lemma Zdivide_bounds : forall a b:Z, (a | b) -> b <> 0 -> Zabs a <= Zabs b.
Proof.
simple induction 1; intros.
assert (Zabs b = Zabs q * Zabs a).
subst; apply Zabs_Zmult.
rewrite H2.
assert (H3 := Zabs_pos q).
assert (H4 := Zabs_pos a).
assert (Zabs q * Zabs a >= 1 * Zabs a); auto with zarith.
apply Zmult_ge_compat; auto with zarith.
elim (Z_lt_ge_dec (Zabs q) 1); [ intros | auto with zarith ].
assert (Zabs q = 0).
omega.
assert (q = 0).
rewrite <- (Zabs_Zsgn q).
rewrite H5; auto with zarith.
subst q; omega.
Qed.
(** * Greatest common divisor (gcd). *)
(** There is no unicity of the gcd; hence we define the predicate [gcd a b d]
expressing that [d] is a gcd of [a] and [b].
(We show later that the [gcd] is actually unique if we discard its sign.) *)
Inductive Zis_gcd (a b d:Z) : Prop :=
Zis_gcd_intro :
(d | a) ->
(d | b) -> (forall x:Z, (x | a) -> (x | b) -> (x | d)) -> Zis_gcd a b d.
(** Trivial properties of [gcd] *)
Lemma Zis_gcd_sym : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a d.
Proof.
simple induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_0 : forall a:Z, Zis_gcd a 0 a.
Proof.
constructor; auto with zarith.
Qed.
Lemma Zis_gcd_minus : forall a b d:Z, Zis_gcd a (- b) d -> Zis_gcd b a d.
Proof.
simple induction 1; constructor; intuition.
Qed.
Lemma Zis_gcd_opp : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a (- d).
Proof.
simple induction 1; constructor; intuition.
Qed.
Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
(** * Extended Euclid algorithm. *)
(** Euclid's algorithm to compute the [gcd] mainly relies on
the following property. *)
Lemma Zis_gcd_for_euclid :
forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.
Proof.
simple induction 1; constructor; intuition.
replace a with (a - q * b + q * b). auto with zarith. ring.
Qed.
Lemma Zis_gcd_for_euclid2 :
forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.
Proof.
simple induction 1; constructor; intuition.
apply H2; auto.
replace r with (b * q + r - b * q). auto with zarith. ring.
Qed.
(** We implement the extended version of Euclid's algorithm,
i.e. the one computing Bezout's coefficients as it computes
the [gcd]. We follow the algorithm given in Knuth's
"Art of Computer Programming", vol 2, page 325. *)
Section extended_euclid_algorithm.
Variables a b : Z.
(** The specification of Euclid's algorithm is the existence of
[u], [v] and [d] such that [ua+vb=d] and [(gcd a b d)]. *)
Inductive Euclid : Set :=
Euclid_intro :
forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.
(** The recursive part of Euclid's algorithm uses well-founded
recursion of non-negative integers. It maintains 6 integers
[u1,u2,u3,v1,v2,v3] such that the following invariant holds:
[u1*a+u2*b=u3] and [v1*a+v2*b=v3] and [gcd(u2,v3)=gcd(a,b)].
*)
Lemma euclid_rec :
forall v3:Z,
0 <= v3 ->
forall u1 u2 u3 v1 v2:Z,
u1 * a + u2 * b = u3 ->
v1 * a + v2 * b = v3 ->
(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
Proof.
intros v3 Hv3; generalize Hv3; pattern v3 in |- *.
apply Zlt_0_rec.
clear v3 Hv3; intros.
elim (Z_zerop x); intro.
apply Euclid_intro with (u := u1) (v := u2) (d := u3).
assumption.
apply H3.
rewrite a0; auto with zarith.
set (q := u3 / x) in *.
assert (Hq : 0 <= u3 - q * x < x).
replace (u3 - q * x) with (u3 mod x).
apply Z_mod_lt; omega.
assert (xpos : x > 0). omega.
generalize (Z_div_mod_eq u3 x xpos).
unfold q in |- *.
intro eq; pattern u3 at 2 in |- *; rewrite eq; ring.
apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)).
tauto.
replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with
(u1 * a + u2 * b - q * (v1 * a + v2 * b)).
rewrite H1; rewrite H2; trivial.
ring.
intros; apply H3.
apply Zis_gcd_for_euclid with q; assumption.
assumption.
Qed.
(** We get Euclid's algorithm by applying [euclid_rec] on
[1,0,a,0,1,b] when [b>=0] and [1,0,a,0,-1,-b] when [b<0]. *)
Lemma euclid : Euclid.
Proof.
case (Z_le_gt_dec 0 b); intro.
intros;
apply euclid_rec with
(u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := 1) (v3 := b);
auto with zarith; ring.
intros;
apply euclid_rec with
(u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := -1) (v3 := - b);
auto with zarith; try ring.
Qed.
End extended_euclid_algorithm.
Theorem Zis_gcd_uniqueness_apart_sign :
forall a b d d':Z, Zis_gcd a b d -> Zis_gcd a b d' -> d = d' \/ d = - d'.
Proof.
simple induction 1.
intros H1 H2 H3; simple induction 1; intros.
generalize (H3 d' H4 H5); intro Hd'd.
generalize (H6 d H1 H2); intro Hdd'.
exact (Zdivide_antisym d d' Hdd' Hd'd).
Qed.
(** * Bezout's coefficients *)
Inductive Bezout (a b d:Z) : Prop :=
Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.
(** Existence of Bezout's coefficients for the [gcd] of [a] and [b] *)
Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.
Proof.
intros a b d Hgcd.
elim (euclid a b); intros u v d0 e g.
generalize (Zis_gcd_uniqueness_apart_sign a b d d0 Hgcd g).
intro H; elim H; clear H; intros.
apply Bezout_intro with u v.
rewrite H; assumption.
apply Bezout_intro with (- u) (- v).
rewrite H; rewrite <- e; ring.
Qed.
(** gcd of [ca] and [cb] is [c gcd(a,b)]. *)
Lemma Zis_gcd_mult :
forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).
Proof.
intros a b c d; simple induction 1; constructor; intuition.
elim (Zis_gcd_bezout a b d H); intros.
elim H3; intros.
elim H4; intros.
apply Zdivide_intro with (u * q + v * q0).
rewrite <- H5.
replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)).
rewrite H6; rewrite H7; ring.
ring.
Qed.
Lemma Zis_gcd_0_abs : forall b,
Zis_gcd 0 b (Zabs b) /\ Zabs b >= 0 /\ 0 = Zabs b * 0 /\ b = Zabs b * Zsgn b.
Proof.
intro b.
elim (Z_le_lt_eq_dec _ _ (Zabs_pos b)).
intros H0; split.
apply Zabs_ind.
intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto.
intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto.
repeat split; auto with zarith.
symmetry; apply Zabs_Zsgn.
intros H0; rewrite <- H0.
rewrite <- (Zabs_Zsgn b); rewrite <- H0; simpl in |- *.
split; [ apply Zis_gcd_0 | idtac ]; auto with zarith.
Qed.
(** We could obtain a [Zgcd] function via [euclid]. But we propose
here a more direct version of a [Zgcd], that can compute within Coq.
For that, we use an explicit measure in [nat], and we proved later
that using [2(d+1)] is enough, where [d] is the number of binary digits
of the first argument. *)
Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b =>
match n with
| O => 1 (* arbitrary, since n should be big enough *)
| S n => match a with
| Z0 => Zabs b
| Zpos _ => Zgcdn n (Zmod b a) a
| Zneg a => Zgcdn n (Zmod b (Zpos a)) (Zpos a)
end
end.
(* For technical reason, we don't use [Ndigit.Psize] but this
ad-hoc version: [Psize p = S (Psiz p)]. *)
Fixpoint Psiz (p:positive) : nat :=
match p with
| xH => O
| xI p => S (Psiz p)
| xO p => S (Psiz p)
end.
Definition Zgcd_bound (a:Z) := match a with
| Z0 => S O
| Zpos p => let n := Psiz p in S (S (n+n))
| Zneg p => let n := Psiz p in S (S (n+n))
end.
Definition Zgcd a b := Zgcdn (Zgcd_bound a) a b.
(** A first obvious fact : [Zgcd a b] is positive. *)
Lemma Zgcdn_is_pos : forall n a b,
0 <= Zgcdn n a b.
Proof.
induction n.
simpl; auto with zarith.
destruct a; simpl; intros; auto with zarith; auto.
Qed.
Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b.
Proof.
intros; unfold Zgcd; apply Zgcdn_is_pos; auto.
Qed.
(** We now prove that Zgcd is indeed a gcd. *)
(** 1) We prove a weaker & easier bound. *)
Lemma Zgcdn_linear_bound : forall n a b,
Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b).
Proof.
induction n.
simpl; intros.
elimtype False; generalize (Zabs_pos a); omega.
destruct a; intros; simpl;
[ generalize (Zis_gcd_0_abs b); intuition | | ];
unfold Zmod;
generalize (Z_div_mod b (Zpos p) (refl_equal Gt));
destruct (Zdiv_eucl b (Zpos p)) as (q,r);
intros (H0,H1);
rewrite inj_S in H; simpl Zabs in H;
assert (H2: Zabs r < Z_of_nat n) by (rewrite Zabs_eq; auto with zarith);
assert (IH:=IHn r (Zpos p) H2); clear IHn;
simpl in IH |- *;
rewrite H0.
apply Zis_gcd_for_euclid2; auto.
apply Zis_gcd_minus; apply Zis_gcd_sym.
apply Zis_gcd_for_euclid2; auto.
Qed.
(** 2) For Euclid's algorithm, the worst-case situation corresponds
to Fibonacci numbers. Let's define them: *)
Fixpoint fibonacci (n:nat) : Z :=
match n with
| O => 1
| S O => 1
| S (S n as p) => fibonacci p + fibonacci n
end.
Lemma fibonacci_pos : forall n, 0 <= fibonacci n.
Proof.
cut (forall N n, (n<N)%nat -> 0<=fibonacci n).
eauto.
induction N.
inversion 1.
intros.
destruct n.
simpl; auto with zarith.
destruct n.
simpl; auto with zarith.
change (0 <= fibonacci (S n) + fibonacci n).
generalize (IHN n) (IHN (S n)); omega.
Qed.
Lemma fibonacci_incr :
forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m.
Proof.
induction 1.
auto with zarith.
apply Zle_trans with (fibonacci m); auto.
clear.
destruct m.
simpl; auto with zarith.
change (fibonacci (S m) <= fibonacci (S m)+fibonacci m).
generalize (fibonacci_pos m); omega.
Qed.
(** 3) We prove that fibonacci numbers are indeed worst-case:
for a given number [n], if we reach a conclusion about [gcd(a,b)] in
exactly [n+1] loops, then [fibonacci (n+1)<=a /\ fibonacci(n+2)<=b] *)
Lemma Zgcdn_worst_is_fibonacci : forall n a b,
0 < a < b ->
Zis_gcd a b (Zgcdn (S n) a b) ->
Zgcdn n a b <> Zgcdn (S n) a b ->
fibonacci (S n) <= a /\
fibonacci (S (S n)) <= b.
Proof.
induction n.
simpl; intros.
destruct a; omega.
intros.
destruct a; [simpl in *; omega| | destruct H; discriminate].
revert H1; revert H0.
set (m:=S n) in *; (assert (m=S n) by auto); clearbody m.
pattern m at 2; rewrite H0.
simpl Zgcdn.
unfold Zmod; generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).
destruct (Zdiv_eucl b (Zpos p)) as (q,r).
intros (H1,H2).
destruct H2.
destruct (Zle_lt_or_eq _ _ H2).
generalize (IHn _ _ (conj H4 H3)).
intros H5 H6 H7.
replace (fibonacci (S (S m))) with (fibonacci (S m) + fibonacci m) by auto.
assert (r = Zpos p * (-q) + b) by (rewrite H1; ring).
destruct H5; auto.
pattern r at 1; rewrite H8.
apply Zis_gcd_sym.
apply Zis_gcd_for_euclid2; auto.
apply Zis_gcd_sym; auto.
split; auto.
rewrite H1.
apply Zplus_le_compat; auto.
apply Zle_trans with (Zpos p * 1); auto.
ring (Zpos p * 1); auto.
apply Zmult_le_compat_l.
destruct q.
omega.
assert (0 < Zpos p0) by (compute; auto).
omega.
assert (Zpos p * Zneg p0 < 0) by (compute; auto).
omega.
compute; intros; discriminate.
(* r=0 *)
subst r.
simpl; rewrite H0.
intros.
simpl in H4.
simpl in H5.
destruct n.
simpl in H5.
simpl.
omega.
simpl in H5.
elim H5; auto.
Qed.
(** 3b) We reformulate the previous result in a more positive way. *)
Lemma Zgcdn_ok_before_fibonacci : forall n a b,
0 < a < b -> a < fibonacci (S n) ->
Zis_gcd a b (Zgcdn n a b).
Proof.
destruct a; [ destruct 1; elimtype False; omega | | destruct 1; discriminate].
cut (forall k n b,
k = (S (nat_of_P p) - n)%nat ->
0 < Zpos p < b -> Zpos p < fibonacci (S n) ->
Zis_gcd (Zpos p) b (Zgcdn n (Zpos p) b)).
destruct 2; eauto.
clear n; induction k.
intros.
assert (nat_of_P p < n)%nat by omega.
apply Zgcdn_linear_bound.
simpl.
generalize (inj_le _ _ H2).
rewrite inj_S.
rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto.
omega.
intros.
generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros.
assert (Zis_gcd (Zpos p) b (Zgcdn (S n) (Zpos p) b)).
apply IHk; auto.
omega.
replace (fibonacci (S (S n))) with (fibonacci (S n)+fibonacci n) by auto.
generalize (fibonacci_pos n); omega.
replace (Zgcdn n (Zpos p) b) with (Zgcdn (S n) (Zpos p) b); auto.
generalize (H2 H3); clear H2 H3; omega.
Qed.
(** 4) The proposed bound leads to a fibonacci number that is big enough. *)
Lemma Zgcd_bound_fibonacci :
forall a, 0 < a -> a < fibonacci (Zgcd_bound a).
Proof.
destruct a; [omega| | intro H; discriminate].
intros _.
induction p.
simpl Zgcd_bound in *.
rewrite Zpos_xI.
rewrite plus_comm; simpl plus.
set (n:=S (Psiz p+Psiz p)) in *.
change (2*Zpos p+1 <
fibonacci (S n) + fibonacci n + fibonacci (S n)).
generalize (fibonacci_pos n).
omega.
simpl Zgcd_bound in *.
rewrite Zpos_xO.
rewrite plus_comm; simpl plus.
set (n:= S (Psiz p +Psiz p)) in *.
change (2*Zpos p <
fibonacci (S n) + fibonacci n + fibonacci (S n)).
generalize (fibonacci_pos n).
omega.
simpl; auto with zarith.
Qed.
(* 5) the end: we glue everything together and take care of
situations not corresponding to [0<a<b]. *)
Lemma Zgcd_is_gcd :
forall a b, Zis_gcd a b (Zgcd a b).
Proof.
unfold Zgcd; destruct a; intros.
simpl; generalize (Zis_gcd_0_abs b); intuition.
(*Zpos*)
generalize (Zgcd_bound_fibonacci (Zpos p)).
simpl Zgcd_bound.
set (n:=S (Psiz p+Psiz p)); (assert (n=S (Psiz p+Psiz p)) by auto); clearbody n.
simpl Zgcdn.
unfold Zmod.
generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).
destruct (Zdiv_eucl b (Zpos p)) as (q,r).
intros (H1,H2) H3.
rewrite H1.
apply Zis_gcd_for_euclid2.
destruct H2.
destruct (Zle_lt_or_eq _ _ H0).
apply Zgcdn_ok_before_fibonacci; auto; omega.
subst r n; simpl.
apply Zis_gcd_sym; apply Zis_gcd_0.
(*Zneg*)
generalize (Zgcd_bound_fibonacci (Zpos p)).
simpl Zgcd_bound.
set (n:=S (Psiz p+Psiz p)); (assert (n=S (Psiz p+Psiz p)) by auto); clearbody n.
simpl Zgcdn.
unfold Zmod.
generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).
destruct (Zdiv_eucl b (Zpos p)) as (q,r).
intros (H1,H2) H3.
rewrite H1.
apply Zis_gcd_minus.
apply Zis_gcd_sym.
apply Zis_gcd_for_euclid2.
destruct H2.
destruct (Zle_lt_or_eq _ _ H0).
apply Zgcdn_ok_before_fibonacci; auto; omega.
subst r n; simpl.
apply Zis_gcd_sym; apply Zis_gcd_0.
Qed.
(** A generalized gcd: it additionnally keeps track of the divisors. *)
Fixpoint Zggcdn (n:nat) : Z -> Z -> (Z*(Z*Z)) := fun a b =>
match n with
| O => (1,(a,b)) (*(Zabs b,(0,Zsgn b))*)
| S n => match a with
| Z0 => (Zabs b,(0,Zsgn b))
| Zpos _ =>
let (q,r) := Zdiv_eucl b a in (* b = q*a+r *)
let (g,p) := Zggcdn n r a in
let (rr,aa) := p in (* r = g *rr /\ a = g * aa *)
(g,(aa,q*aa+rr))
| Zneg a =>
let (q,r) := Zdiv_eucl b (Zpos a) in (* b = q*(-a)+r *)
let (g,p) := Zggcdn n r (Zpos a) in
let (rr,aa) := p in (* r = g*rr /\ (-a) = g * aa *)
(g,(-aa,q*aa+rr))
end
end.
Definition Zggcd a b : Z * (Z * Z) := Zggcdn (Zgcd_bound a) a b.
(** The first component of [Zggcd] is [Zgcd] *)
Lemma Zggcdn_gcdn : forall n a b,
fst (Zggcdn n a b) = Zgcdn n a b.
Proof.
induction n; simpl; auto.
destruct a; unfold Zmod; simpl; intros; auto;
destruct (Zdiv_eucl b (Zpos p)) as (q,r);
rewrite <- IHn;
destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)); simpl; auto.
Qed.
Lemma Zggcd_gcd : forall a b, fst (Zggcd a b) = Zgcd a b.
Proof.
intros; unfold Zggcd, Zgcd; apply Zggcdn_gcdn; auto.
Qed.
(** [Zggcd] always returns divisors that are coherent with its
first output. *)
Lemma Zggcdn_correct_divisors : forall n a b,
let (g,p) := Zggcdn n a b in
let (aa,bb):=p in
a=g*aa /\ b=g*bb.
Proof.
induction n.
simpl.
split; [destruct a|destruct b]; auto.
intros.
simpl.
destruct a.
rewrite Zmult_comm; simpl.
split; auto.
symmetry; apply Zabs_Zsgn.
generalize (Z_div_mod b (Zpos p));
destruct (Zdiv_eucl b (Zpos p)) as (q,r).
generalize (IHn r (Zpos p));
destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)).
intuition.
destruct H0.
compute; auto.
rewrite H; rewrite H1; rewrite H2; ring.
generalize (Z_div_mod b (Zpos p));
destruct (Zdiv_eucl b (Zpos p)) as (q,r).
destruct 1.
compute; auto.
generalize (IHn r (Zpos p));
destruct (Zggcdn n r (Zpos p)) as (g,(rr,aa)).
intuition.
destruct H0.
replace (Zneg p) with (-Zpos p) by compute; auto.
rewrite H4; ring.
rewrite H; rewrite H4; rewrite H0; ring.
Qed.
Lemma Zggcd_correct_divisors : forall a b,
let (g,p) := Zggcd a b in
let (aa,bb):=p in
a=g*aa /\ b=g*bb.
Proof.
unfold Zggcd; intros; apply Zggcdn_correct_divisors; auto.
Qed.
(** Due to the use of an explicit measure, the extraction of [Zgcd]
isn't optimal. We propose here another version [Zgcd_spec] that
doesn't suffer from this problem (but doesn't compute in Coq). *)
Definition Zgcd_spec_pos :
forall a:Z,
0 <= a -> forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}.
Proof.
intros a Ha.
apply
(Zlt_0_rec
(fun a:Z => forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}));
try assumption.
intro x; case x.
intros _ _ b; exists (Zabs b).
generalize (Zis_gcd_0_abs b); intuition.
intros p Hrec _ b.
generalize (Z_div_mod b (Zpos p)).
case (Zdiv_eucl b (Zpos p)); intros q r Hqr.
elim Hqr; clear Hqr; intros; auto with zarith.
elim (Hrec r H0 (Zpos p)); intros g Hgkl.
inversion_clear H0.
elim (Hgkl H1); clear Hgkl; intros H3 H4.
exists g; intros.
split; auto.
rewrite H.
apply Zis_gcd_for_euclid2; auto.
intros p _ H b.
elim H; auto.
Defined.
Definition Zgcd_spec : forall a b:Z, {g : Z | Zis_gcd a b g /\ g >= 0}.
Proof.
intros a; case (Z_gt_le_dec 0 a).
intros; assert (0 <= - a).
omega.
elim (Zgcd_spec_pos (- a) H b); intros g Hgkl.
exists g.
intuition.
intros Ha b; elim (Zgcd_spec_pos a Ha b); intros g; exists g; intuition.
Defined.
(** A last version aimed at extraction that also returns the divisors. *)
Definition Zggcd_spec_pos :
forall a:Z,
0 <= a -> forall b:Z, {p : Z*(Z*Z) | let (g,p):=p in let (aa,bb):=p in
0 <= a -> Zis_gcd a b g /\ g >= 0 /\ a=g*aa /\ b=g*bb}.
Proof.
intros a Ha.
pattern a; apply Zlt_0_rec; try assumption.
intro x; case x.
intros _ _ b; exists (Zabs b,(0,Zsgn b)).
intros _; apply Zis_gcd_0_abs.
intros p Hrec _ b.
generalize (Z_div_mod b (Zpos p)).
case (Zdiv_eucl b (Zpos p)); intros q r Hqr.
elim Hqr; clear Hqr; intros; auto with zarith.
destruct (Hrec r H0 (Zpos p)) as ((g,(rr,pp)),Hgkl).
destruct H0.
destruct (Hgkl H0) as (H3,(H4,(H5,H6))).
exists (g,(pp,pp*q+rr)); intros.
split; auto.
rewrite H.
apply Zis_gcd_for_euclid2; auto.
repeat split; auto.
rewrite H; rewrite H6; rewrite H5; ring.
intros p _ H b.
elim H; auto.
Defined.
Definition Zggcd_spec :
forall a b:Z, {p : Z*(Z*Z) | let (g,p):=p in let (aa,bb):=p in
Zis_gcd a b g /\ g >= 0 /\ a=g*aa /\ b=g*bb}.
Proof.
intros a; case (Z_gt_le_dec 0 a).
intros; assert (0 <= - a).
omega.
destruct (Zggcd_spec_pos (- a) H b) as ((g,(aa,bb)),Hgkl).
exists (g,(-aa,bb)).
intuition.
rewrite <- Zopp_mult_distr_r.
rewrite <- H2; auto with zarith.
intros Ha b; elim (Zggcd_spec_pos a Ha b); intros p; exists p.
repeat destruct p; intuition.
Defined.
(** * Relative primality *)
Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.
(** Bezout's theorem: [a] and [b] are relatively prime if and
only if there exist [u] and [v] such that [ua+vb = 1]. *)
Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.
Proof.
intros a b; exact (Zis_gcd_bezout a b 1).
Qed.
Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.
Proof.
simple induction 1; constructor; auto with zarith.
intros. rewrite <- H0; auto with zarith.
Qed.
(** Gauss's theorem: if [a] divides [bc] and if [a] and [b] are
relatively prime, then [a] divides [c]. *)
Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).
Proof.
intros. elim (rel_prime_bezout a b H0); intros.
replace c with (c * 1); [ idtac | ring ].
rewrite <- H1.
replace (c * (u * a + v * b)) with (c * u * a + v * (b * c));
[ eauto with zarith | ring ].
Qed.
(** If [a] is relatively prime to [b] and [c], then it is to [bc] *)
Lemma rel_prime_mult :
forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).
Proof.
intros a b c Hb Hc.
elim (rel_prime_bezout a b Hb); intros.
elim (rel_prime_bezout a c Hc); intros.
apply bezout_rel_prime.
apply Bezout_intro with
(u := u * u0 * a + v0 * c * u + u0 * v * b) (v := v * v0).
rewrite <- H.
replace (u * a + v * b) with ((u * a + v * b) * 1); [ idtac | ring ].
rewrite <- H0.
ring.
Qed.
Lemma rel_prime_cross_prod :
forall a b c d:Z,
rel_prime a b ->
rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.
Proof.
intros a b c d; intros.
elim (Zdivide_antisym b d).
split; auto with zarith.
rewrite H4 in H3.
rewrite Zmult_comm in H3.
apply Zmult_reg_l with d; auto with zarith.
intros; omega.
apply Gauss with a.
rewrite H3.
auto with zarith.
red in |- *; auto with zarith.
apply Gauss with c.
rewrite Zmult_comm.
rewrite <- H3.
auto with zarith.
red in |- *; auto with zarith.
Qed.
(** After factorization by a gcd, the original numbers are relatively prime. *)
Lemma Zis_gcd_rel_prime :
forall a b g:Z,
b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).
intros a b g; intros.
assert (g <> 0).
intro.
elim H1; intros.
elim H4; intros.
rewrite H2 in H6; subst b; omega.
unfold rel_prime in |- *.
elim (Zgcd_spec (a / g) (b / g)); intros g' [H3 H4].
assert (H5 := Zis_gcd_mult _ _ g _ H3).
rewrite <- Z_div_exact_2 in H5; auto with zarith.
rewrite <- Z_div_exact_2 in H5; auto with zarith.
elim (Zis_gcd_uniqueness_apart_sign _ _ _ _ H1 H5).
intros; rewrite (Zmult_reg_l 1 g' g); auto with zarith.
intros; rewrite (Zmult_reg_l 1 (- g') g); auto with zarith.
pattern g at 1 in |- *; rewrite H6; ring.
elim H1; intros.
elim H7; intros.
rewrite H9.
replace (q * g) with (0 + q * g).
rewrite Z_mod_plus.
compute in |- *; auto.
omega.
ring.
elim H1; intros.
elim H6; intros.
rewrite H9.
replace (q * g) with (0 + q * g).
rewrite Z_mod_plus.
compute in |- *; auto.
omega.
ring.
Qed.
(** * Primality *)
Inductive prime (p:Z) : Prop :=
prime_intro :
1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.
(** The sole divisors of a prime number [p] are [-1], [1], [p] and [-p]. *)
Lemma prime_divisors :
forall p:Z,
prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.
Proof.
simple induction 1; intros.
assert
(a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p).
assert (Zabs a <= Zabs p). apply Zdivide_bounds; [ assumption | omega ].
generalize H3.
pattern (Zabs a) in |- *; apply Zabs_ind; pattern (Zabs p) in |- *;
apply Zabs_ind; intros; omega.
intuition idtac.
(* -p < a < -1 *)
absurd (rel_prime (- a) p); intuition.
inversion H3.
assert (- a | - a); auto with zarith.
assert (- a | p); auto with zarith.
generalize (H8 (- a) H9 H10); intuition idtac.
generalize (Zdivide_1 (- a) H11); intuition.
(* a = 0 *)
inversion H2. subst a; omega.
(* 1 < a < p *)
absurd (rel_prime a p); intuition.
inversion H3.
assert (a | a); auto with zarith.
assert (a | p); auto with zarith.
generalize (H8 a H9 H10); intuition idtac.
generalize (Zdivide_1 a H11); intuition.
Qed.
(** A prime number is relatively prime with any number it does not divide *)
Lemma prime_rel_prime :
forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.
Proof.
simple induction 1; intros.
constructor; intuition.
elim (prime_divisors p H x H3); intuition; subst; auto with zarith.
absurd (p | a); auto with zarith.
absurd (p | a); intuition.
Qed.
Hint Resolve prime_rel_prime: zarith.
(** [Zdivide] can be expressed using [Zmod]. *)
Lemma Zmod_divide : forall a b:Z, b > 0 -> a mod b = 0 -> (b | a).
intros a b H H0.
apply Zdivide_intro with (a / b).
pattern a at 1 in |- *; rewrite (Z_div_mod_eq a b H).
rewrite H0; ring.
Qed.
Lemma Zdivide_mod : forall a b:Z, b > 0 -> (b | a) -> a mod b = 0.
intros a b; simple destruct 2; intros; subst.
change (q * b) with (0 + q * b) in |- *.
rewrite Z_mod_plus; auto.
Qed.
(** [Zdivide] is hence decidable *)
Lemma Zdivide_dec : forall a b:Z, {(a | b)} + {~ (a | b)}.
Proof.
intros a b; elim (Ztrichotomy_inf a 0).
(* a<0 *)
intros H; elim H; intros.
case (Z_eq_dec (b mod - a) 0).
left; apply Zdivide_opp_l_rev; apply Zmod_divide; auto with zarith.
intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
(* a=0 *)
case (Z_eq_dec b 0); intro.
left; subst; auto with zarith.
right; subst; intro H0; inversion H0; omega.
(* a>0 *)
intro H; case (Z_eq_dec (b mod a) 0).
left; apply Zmod_divide; auto with zarith.
intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
Qed.
(** If a prime [p] divides [ab] then it divides either [a] or [b] *)
Lemma prime_mult :
forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).
Proof.
intro p; simple induction 1; intros.
case (Zdivide_dec p a); intuition.
right; apply Gauss with a; auto with zarith.
Qed.
|